Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Understanding the Molecular Aspects of Vitamins in Parkinson’s Disease: Present-day Concepts and Perspectives

Author(s): Tapan Behl*, Piyush Madaan, Aayush Sehgal, Hafiz A. Makeen, Mohammed Albratty, Hassan A. Alhazmi, Abdulkarim M. Meraya, Md. Khalid Anwer and Raman Verma

Volume 29, Issue 19, 2023

Published on: 03 July, 2023

Page: [1467 - 1485] Pages: 19

DOI: 10.2174/1381612829666230614145026

Price: $65

conference banner
Abstract

Parkinson’s disease (PD) is designated as a convoluted nerve cell devastating disorder that encompasses the profound declination of dopaminergic (DArgic) nerve cells of the mesencephalon region. The condition is sketched by four eminent motor manifestations, namely, slow movement, muscle tension, shaking, and disrupted balance, but the pathology behind these manifestations is still vague. Modern-day medicinal treatment emphasizes curbing the manifestations via introducing a gold standard (levodopa) instead of forestalling the DArgic nerve cell destruction. Therefore, the invention and utilization of novel neuroprotective candidates are of paramount importance in overcoming PD. Vitamins are organic molecules engaged in the modulation of evolution, procreation, biotransformation, and other operations of the body. Numerous studies employing varying experimental models have promulgated a prominent linkage between vitamins and PD. Vitamins, owing to their antioxidant and gene expression modulation abilities, might be efficacious in PD therapy. Recent corroborations depict that adequate augmentation of vitamins might de-escalate the manifestations and emergence of PD; however, the safety of daily vitamin intake must be considered. By assembling the comprehensive information obtained from existing publications via searching various renowned medical portals, the investigators render in-depth insights into the physiological association amongst vitamins (D, E, B3, and C) and PD and concerned pathological processes and their safeguarding actions in varied PD models. Furthermore, the manuscript delineates the remedial aptitude of vitamins in PD therapy. Conclusively, augmentation of vitamins (owing to their antioxidant and gene expression regulation capabilities) might appear as a novel and terribly efficacious ancillary therapeutic approach for PD.

Keywords: Parkinson’s disease, dopaminergic, levodopa, vitamins, antioxidant, neuroprotective.

Next »
[1]
Alexander GE. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 2004; 6(3): 259-80.
[http://dx.doi.org/10.31887/DCNS.2004.6.3/galexander] [PMID: 22033559]
[2]
Postuma RB, Aarsland D, Barone P, et al. Identifying prodromal Parkinson’s disease: Pre-Motor disorders in Parkinson’s disease. Mov Disord 2012; 27(5): 617-26.
[http://dx.doi.org/10.1002/mds.24996] [PMID: 22508280]
[3]
Khoo TK, Yarnall AJ, Duncan GW, et al. The spectrum of nonmotor symptoms in early Parkinson disease. Neurology 2013; 80(3): 276-81.
[http://dx.doi.org/10.1212/WNL.0b013e31827deb74] [PMID: 23319473]
[4]
Gasser T. Genetics of Parkinson’s disease. Dialogues Clin Neurosci 2004; 6(3): 295-301.
[http://dx.doi.org/10.31887/DCNS.2004.6.3/tgasser] [PMID: 22033678]
[5]
Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C. Environmental impact on the epigenetic mechanisms underlying Parkinson’s disease pathogenesis: A narrative review. Brain Sci 2022; 12(2): 175.
[http://dx.doi.org/10.3390/brainsci12020175] [PMID: 35203939]
[6]
MacMahon Copas AN, McComish SF, Fletcher JM, Caldwell MA. The pathogenesis of Parkinson’s disease: A complex interplay between astrocytes, microglia, and T lymphocytes? Front Neurol 2021; 12: 666737.
[http://dx.doi.org/10.3389/fneur.2021.666737] [PMID: 34122308]
[7]
Behl T, Madaan P, Sehgal A, et al. Mechanistic insights expatiating the redox-active-metal-mediated neuronal degeneration in Parkinson’s disease. Int J Mol Sci 2022; 23(2): 678.
[http://dx.doi.org/10.3390/ijms23020678] [PMID: 35054862]
[8]
Korczyn AD. Drug treatment of Parkinson’s disease. Dialogues Clin Neurosci 2004; 6(3): 315-22.
[http://dx.doi.org/10.31887/DCNS.2004.6.3/akorczyn] [PMID: 22033779]
[9]
Raghav S, Perju-Dumbrava LD. Treatment of Parkinson’s Disease.Techniques for Assessment of Parkinsonism for Diagnosis and Rehabilitation. Singapore: Springer 2022; pp. 105-17.
[http://dx.doi.org/10.1007/978-981-16-3056-9_7]
[10]
Behl T, Madaan P, Sehgal A, et al. Demystifying the neuroprotective role of neuropeptides in Parkinson’s disease: A newfangled and eloquent therapeutic perspective. Int J Mol Sci 2022; 23(9): 4565.
[http://dx.doi.org/10.3390/ijms23094565] [PMID: 35562956]
[11]
Behl T, Madaan P, Sehgal A, et al. Elucidating the neuroprotective role of PPARs in Parkinson’s disease: A neoteric and prospective target. Int J Mol Sci 2021; 22(18): 10161.
[http://dx.doi.org/10.3390/ijms221810161] [PMID: 34576325]
[12]
Davison KM. The essential vitamins: From A to K. Nutrition Guide for Physicians and Related Healthcare Professions. Cham: Humana 2022; pp. 353-64.
[http://dx.doi.org/10.1007/978-3-030-82515-7_34]
[13]
Combs GF Jr, McClung JP. The vitamins: Fundamental aspects in nutrition and health. Academic press 2016.
[14]
Rai SN, Singh P, Steinbusch HWM, Vamanu E, Ashraf G, Singh MP. The role of vitamins in neurodegenerative disease: An update. Biomedicines 2021; 9(10): 1284.
[http://dx.doi.org/10.3390/biomedicines9101284] [PMID: 34680401]
[15]
Garg M, Sharma A, Vats S, et al. Vitamins in cereals: a critical review of content, health effects, processing losses, bioaccessibility, fortification, and biofortification strategies for their improvement. Front Nutr 2021; 8: 586815.
[http://dx.doi.org/10.3389/fnut.2021.586815] [PMID: 34222296]
[16]
Sies H, Stahl W, Sundquist AR. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann N Y Acad Sci 1992; 669(1): 7-20.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb17085.x] [PMID: 1444060]
[17]
Ofoedu CE, Iwouno JO, Ofoedu EO, et al. Revisiting food- sourced vitamins for consumer diet and health needs: a perspective review, from vitamin classification, metabolic functions, absorption, utilization, to balancing nutritional requirements. PeerJ 2021; 9: e11940.
[http://dx.doi.org/10.7717/peerj.11940] [PMID: 34557342]
[18]
Sánchez-Hernández D, Anderson GH, Poon AN, et al. Maternal fat-soluble vitamins, brain development, and regulation of feeding behavior: An overview of research. Nutr Res 2016; 36(10): 1045-54.
[http://dx.doi.org/10.1016/j.nutres.2016.09.009] [PMID: 27865346]
[19]
Chawla J, Kvarnberg D. Hydrosoluble vitamins. Handb Clin Neurol 2014; 120: 891-914.
[http://dx.doi.org/10.1016/B978-0-7020-4087-0.00059-0] [PMID: 24365359]
[20]
Zhang SM, Hernán MA, Chen H, Spiegelman D, Willett WC, Ascherio A. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology 2002; 59(8): 1161-9.
[http://dx.doi.org/10.1212/01.WNL.0000028688.75881.12] [PMID: 12391343]
[21]
Zhao X, Zhang M, Li C, Jiang X, Su Y, Zhang Y. Benefits of vitamins in the treatment of Parkinson’s disease. Oxid Med Cell Longev 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/9426867] [PMID: 30915197]
[22]
Sies H, Berndt C, Jones DP. Oxidative Stress. Annu Rev Biochem 2017; 86(1): 715-48.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[23]
Percário S, da Silva Barbosa A, Varela ELP, et al. Oxidative stress in Parkinson’s disease: Potential benefits of antioxidant supplementation. Oxid Med Cell Longev 2020; 2020: 1-23.
[http://dx.doi.org/10.1155/2020/2360872] [PMID: 33101584]
[24]
N Kolodkin A, Sharma RP, Colangelo AM, et al. ROS networks: Designs, aging, Parkinson’s disease and precision therapies. NPJ Syst Biol Appl 2020; 6(1): 34.
[http://dx.doi.org/10.1038/s41540-020-00150-w] [PMID: 33106503]
[25]
Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019; 18(6): e13031.
[http://dx.doi.org/10.1111/acel.13031] [PMID: 31432604]
[26]
Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 2020; 37: 101674.
[http://dx.doi.org/10.1016/j.redox.2020.101674] [PMID: 32811789]
[27]
Reeve AK, Grady JP, Cosgrave EM, et al. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease. NPJ Parkinsons Dis 2018; 4(1): 9.
[http://dx.doi.org/10.1038/s41531-018-0044-6] [PMID: 29872690]
[28]
Gluck MR, Zeevalk GD. Inhibition of brain mitochondrial respiration by dopamine and its metabolites: implications for Parkinson’s disease and catecholamine-associated diseases. J Neurochem 2004; 91(4): 788-95.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02747.x] [PMID: 15525332]
[29]
Sian J, Dexter DT, Lees AJ, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 1994; 36(3): 348-55.
[http://dx.doi.org/10.1002/ana.410360305] [PMID: 8080242]
[30]
Hare DJ, Double KL. Iron and dopamine: a toxic couple. Brain 2016; 139(4): 1026-35.
[http://dx.doi.org/10.1093/brain/aww022] [PMID: 26962053]
[31]
Albahrani AA, Greaves RF. Fat-soluble vitamins: Clinical indications and current challenges for chromatographic measurement. Clin Biochem Rev 2016; 37(1): 27-47.
[PMID: 27057076]
[32]
Goncalves A, Roi S, Nowicki M, et al. Fat-soluble vitamin intestinal absorption: Absorption sites in the intestine and interactions for absorption. Food Chem 2015; 172: 155-60.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.021] [PMID: 25442537]
[33]
Khadim RM, Al-Fartusie FS. Antioxidant vitamins and their effect on immune system. J Phys Conf Ser 2021; 1853(1): 012065.
[http://dx.doi.org/10.1088/1742-6596/1853/1/012065]
[34]
Bennasir H, Sridhar S, Abdel-Razek TT. Vitamin A from physiology to disease prevention. Int J Pharm Sci Rev Res 2010; 1: 68-73.
[35]
Marazziti D, Parra E, Palermo S, et al. Vitamin D: A pleiotropic hormone with possible psychotropic activities. Curr Med Chem 2021; 28(19): 3843-64.
[http://dx.doi.org/10.2174/0929867328666201210104701] [PMID: 33302828]
[36]
Bendik I, Friedel A, Roos FF, Weber P, Eggersdorfer M. Vitamin D: A critical and essential micronutrient for human health. Front Physiol 2014; 5: 248.
[http://dx.doi.org/10.3389/fphys.2014.00248] [PMID: 25071593]
[37]
DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 2004; 80(6) (Suppl.): 1689S-96S.
[http://dx.doi.org/10.1093/ajcn/80.6.1689S] [PMID: 15585789]
[38]
Rizvi S, Raza ST, Ahmed F, Ahmad A, Abbas S, Mahdi F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ Med J 2014; 14(2): e157-65.
[PMID: 24790736]
[39]
Sokol RJ. Vitamin E deficiency and neurologic disease. Annu Rev Nutr 1988; 8(1): 351-73.
[http://dx.doi.org/10.1146/annurev.nu.08.070188.002031] [PMID: 3060170]
[40]
Dror DK, Allen LH. Vitamin E deficiency in developing countries. Food Nutr Bull 2011; 32(2): 124-43.
[http://dx.doi.org/10.1177/156482651103200206] [PMID: 22164974]
[41]
DiNicolantonio JJ, Bhutani J, O’Keefe JH. The health benefits of vitamin K. Open Heart 2015; 2(1): e000300.
[http://dx.doi.org/10.1136/openhrt-2015-000300] [PMID: 26468402]
[42]
Gröber U, Reichrath J, Holick MF, Kisters K. Vitamin K: an old vitamin in a new perspective. Dermatoendocrinol 2014; 6(1): e968490.
[http://dx.doi.org/10.4161/19381972.2014.968490] [PMID: 26413183]
[43]
Mladěnka P, Macáková K, Kujovská Krčmová L, et al. Vitamin K – sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr Rev 2022; 80(4): 677-98.
[http://dx.doi.org/10.1093/nutrit/nuab061] [PMID: 34472618]
[44]
Yaman M, Çatak J, Uğur H, et al. The bioaccessibility of water-soluble vitamins: A review. Trends Food Sci Technol 2021; 109: 552-63.
[http://dx.doi.org/10.1016/j.tifs.2021.01.056]
[45]
Halsted CH. Absorption of water-soluble vitamins. Curr Opin Gastroenterol 2003; 19(2): 113-7.
[http://dx.doi.org/10.1097/00001574-200303000-00003] [PMID: 15703550]
[46]
Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evid Based Complement Alternat Med 2006; 3(1): 49-59.
[http://dx.doi.org/10.1093/ecam/nek009] [PMID: 16550223]
[47]
Dhir S, Tarasenko M, Napoli E, Giulivi C. Neurological, psychiatric, and biochemical aspects of thiamine deficiency in children and adults. Front Psychiatry 2019; 10: 207.
[http://dx.doi.org/10.3389/fpsyt.2019.00207] [PMID: 31019473]
[48]
Powers HJ. Riboflavin (vitamin B-2) and health. Am J Clin Nutr 2003; 77(6): 1352-60.
[http://dx.doi.org/10.1093/ajcn/77.6.1352] [PMID: 12791609]
[49]
Madaan P, Sikka P, Malik DS. Cosmeceutical aptitudes of niacinamide: A review. Recent Adv Anti-Infect Drug Discov 2021; 16(3): 196-208.
[http://dx.doi.org/10.2174/2772434416666211129105629] [PMID: 34844552]
[50]
Lisicki D, Nowak K, Orlińska B. Methods to produce nicotinic acid with potential industrial applications. Materials (Basel) 2022; 15(3): 765.
[http://dx.doi.org/10.3390/ma15030765] [PMID: 35160711]
[51]
Podyacheva E, Toropova Y. Nicotinamide riboside for the prevention and treatment of doxorubicin cardiomyopathy. opportunities and prospects. Nutrients 2021; 13(10): 3435.
[http://dx.doi.org/10.3390/nu13103435] [PMID: 34684434]
[52]
Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr 2019; 6: 48.
[http://dx.doi.org/10.3389/fnut.2019.00048] [PMID: 31058161]
[53]
Parra M, Stahl S, Hellmann H. Vitamin B6 and its role in cell metabolism and physiology. Cells 2018; 7(7): 84.
[http://dx.doi.org/10.3390/cells7070084] [PMID: 30037155]
[54]
Partearroyo T, Samaniego-Vaesken ML, Ruiz E, et al. Dietary sources and intakes of folates and vitamin B12 in the Spanish population: Findings from the ANIBES study. PLoS One 2017; 12(12): e0189230.
[http://dx.doi.org/10.1371/journal.pone.0189230] [PMID: 29244867]
[55]
Starzl TE, Butz GW Jr, Hartman CF. The blind-loop syndrome after gastric operations. Surgery 1961; 50: 849-58.
[PMID: 13916392]
[56]
Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: An overview. Indian J Clin Biochem 2013; 28(4): 314-28.
[http://dx.doi.org/10.1007/s12291-013-0375-3] [PMID: 24426232]
[57]
Nair R, Maseeh A, Vitamin D. Vitamin D: The “sunshine” vitamin. J Pharmacol Pharmacother 2012; 3(2): 118-26.
[http://dx.doi.org/10.4103/2F0976-500X.95506] [PMID: 22629085]
[58]
Zhang R, Naughton DP. Vitamin D in health and disease: Current perspectives. Nutr J 2010; 9(1): 65.
[http://dx.doi.org/10.1186/1475-2891-9-65] [PMID: 21143872]
[59]
Chang SW, Lee HC. Vitamin D and health-The missing vitamin in humans. Pediatr Neonatol 2019; 60(3): 237-44.
[http://dx.doi.org/10.1016/j.pedneo.2019.04.007] [PMID: 31101452]
[60]
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 2016; 96(1): 365-408.
[http://dx.doi.org/10.1152/physrev.00014.2015] [PMID: 26681795]
[61]
L Bishop E, Ismailova A, Dimeloe S, Hewison M, White JH. Vitamin D and immune regulation: antibacterial, antiviral, anti‐inflammatory. JBMR Plus 2021; 5(1): e10405.
[http://dx.doi.org/10.1002/jbm4.10405] [PMID: 32904944]
[62]
Haussler MR, Whitfield GK, Kaneko I, et al. Molecular mechanisms of vitamin D action. Calcif Tissue Int 2013; 92(2): 77-98.
[http://dx.doi.org/10.1007/s00223-012-9619-0] [PMID: 22782502]
[63]
Carlberg C, Molnár F. Vitamin D receptor signaling and its therapeutic implications: Genome-wide and structural view. Can J Physiol Pharmacol 2015; 93(5): 311-8.
[http://dx.doi.org/10.1139/cjpp-2014-0383] [PMID: 25741777]
[64]
Skrobot A, Demkow U, Wachowska M. Immunomodulatory role of vitamin D: A review. Adv Exp Med Biol 2018; 1108: 13-23.
[http://dx.doi.org/10.1007/5584_2018_246] [PMID: 30143987]
[65]
Samuel S, Sitrin MD. Vitamin D’s role in cell proliferation and differentiation. Nutr Rev 2008; 66(10) (Suppl. 2): S116-24.
[http://dx.doi.org/10.1111/j.1753-4887.2008.00094.x] [PMID: 18844838]
[66]
Kono K, Fujii H, Nakai K, et al. Anti-oxidative effect of vitamin D analog on incipient vascular lesion in non-obese type 2 diabetic rats. Am J Nephrol 2013; 37(2): 167-74.
[http://dx.doi.org/10.1159/000346808] [PMID: 23406697]
[67]
McKenna MJ, Kilbane M. Vitamin D deficiency. Endocrinology and Diabetes. Cham: Springer 2022; pp. 245-56.
[http://dx.doi.org/10.1007/978-3-030-90684-9_23]
[68]
Janoušek J, Pilařová V, Macáková K, et al. Vitamin D: Sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Crit Rev Clin Lab Sci 2022; 59(8): 517-54.
[http://dx.doi.org/10.1080/10408363.2022.2070595] [PMID: 35575431]
[69]
Sindhu RK, Rahman MH, Madaan P, Chandel P, Akter R, Adilakshmi G. Therapeutic approaches for the management of autoimmune disorders via gene therapy: Prospects, challenges and opportunities. Curr Gene Ther 2022; 22(3): 245-61.
[http://dx.doi.org/10.2174/1566523221666210916113609] [PMID: 34530709]
[70]
Sahota O. Understanding vitamin D deficiency. Age Ageing 2014; 43(5): 589-91.
[http://dx.doi.org/10.1093/ageing/afu104] [PMID: 25074537]
[71]
Newmark HL, Newmark J. Vitamin D and Parkinson’s disease-A hypothesis. Mov Disord 2007; 22(4): 461-8.
[http://dx.doi.org/10.1002/mds.21317] [PMID: 17230473]
[72]
Köstner K, Denzer N, Müller CS, Klein R, Tilgen W, Reichrath J. The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: A review of the literature. Anticancer Res 2009; 29(9): 3511-36.
[PMID: 19667145]
[73]
Kim JS, Kim YI, Song C, et al. Association of vitamin D receptor gene polymorphism and Parkinson’s disease in Koreans. J Korean Med Sci 2005; 20(3): 495-8.
[http://dx.doi.org/10.3346/jkms.2005.20.3.495] [PMID: 15953876]
[74]
Li C, Qi H, Wei S, et al. Vitamin D receptor gene polymorphisms and the risk of Parkinson’s disease. Neurol Sci 2015; 36(2): 247-55.
[http://dx.doi.org/10.1007/s10072-014-1928-9] [PMID: 25169913]
[75]
Suzuki M, Yoshioka M, Hashimoto M, et al. 25-hydroxyvitamin D, vitamin D receptor gene polymorphisms, and severity of Parkinson’s disease. Mov Disord 2012; 27(2): 264-71.
[http://dx.doi.org/10.1002/mds.24016] [PMID: 22213340]
[76]
Gatto NM, Paul KC, Sinsheimer JS, et al. Vitamin D receptor gene polymorphisms and cognitive decline in Parkinson’s disease. J Neurol Sci 2016; 370: 100-6.
[http://dx.doi.org/10.1016/j.jns.2016.09.013] [PMID: 27772736]
[77]
Burne T, McGrath J, Eyles D, MacKaysim A. Behavioural characterization of Vitamin D receptor knockout mice. Behav Brain Res 2005; 157(2): 299-308.
[http://dx.doi.org/10.1016/j.bbr.2004.07.008] [PMID: 15639181]
[78]
Cintrón-Colón AF, Almeida-Alves G, Boynton AM, Spitsbergen JM. GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res 2020; 382(1): 47-56.
[http://dx.doi.org/10.1007/s00441-020-03287-6] [PMID: 32897420]
[79]
Campos FL, Cristovão AC, Rocha SM, Fonseca CP, Baltazar G. GDNF contributes to oestrogen-mediated protection of midbrain dopaminergic neurones. J Neuroendocrinol 2012; 24(11): 1386-97.
[http://dx.doi.org/10.1111/j.1365-2826.2012.02348.x] [PMID: 22672424]
[80]
Sanchez B, Relova JL, Gallego R, Ben-Batalla I, Perez-Fernandez R. 1,25-Dihydroxyvitamin D 3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. J Neurosci Res 2009; 87(3): 723-32.
[http://dx.doi.org/10.1002/jnr.21878] [PMID: 18816795]
[81]
Sanchez B, Lopez-Martin E, Segura C, Labandeira-Garcia JL, Perez-Fernandez R. 1,25-Dihydroxyvitamin D3 increases striatal GDNF mRNA and protein expression in adult rats. Brain Res Mol Brain Res 2002; 108(1-2): 143-6.
[http://dx.doi.org/10.1016/S0169-328X(02)00545-4] [PMID: 12480187]
[82]
Kim JS, Ryu SY, Yun I, et al. 1α, 25-Dihydroxyvitamin D3 protects dopaminergic neurons in rodent models of Parkinson’s disease through inhibition of microglial activation. J Clin Neurol 2006; 2(4): 252-7.
[http://dx.doi.org/10.3988/jcn.2006.2.4.252] [PMID: 20396528]
[83]
Calvello R, Cianciulli A, Nicolardi G, et al. Vitamin D treatment attenuates neuroinflammation and dopaminergic neurodegeneration in an animal model of Parkinson’s disease, shifting M1 to M2 microglia responses. J Neuroimmune Pharmacol 2017; 12(2): 327-39.
[http://dx.doi.org/10.1007/s11481-016-9720-7] [PMID: 27987058]
[84]
Wang JY, Wu JN, Cherng TL, et al. Vitamin D3 attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res 2001; 904(1): 67-75.
[http://dx.doi.org/10.1016/S0006-8993(01)02450-7] [PMID: 11516412]
[85]
Jang W, Kim HJ, Li H, et al. 1,25-Dyhydroxyvitamin D3 attenuates rotenone-induced neurotoxicity in SH-SY5Y cells through induction of autophagy. Biochem Biophys Res Commun 2014; 451(1): 142-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.081] [PMID: 25078626]
[86]
Yoon JH, Park DK, Yong SW, Hong JM. Vitamin D deficiency and its relationship with endothelial dysfunction in patients with early Parkinson’s disease. J Neural Transm (Vienna) 2015; 122(12): 1685-91.
[http://dx.doi.org/10.1007/s00702-015-1452-y] [PMID: 26343034]
[87]
Knekt P, Kilkkinen A, Rissanen H, Marniemi J, Sääksjärvi K, Heliövaara M. Serum vitamin D and the risk of Parkinson disease. Arch Neurol 2010; 67(7): 808-11.
[http://dx.doi.org/10.1001/archneurol.2010.120] [PMID: 20625085]
[88]
Evatt ML, DeLong MR, Khazai N, Rosen A, Triche S, Tangpricha V. Prevalence of vitamin D insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol 2008; 65(10): 1348-52.
[http://dx.doi.org/10.1001/archneur.65.10.1348] [PMID: 18852350]
[89]
Kenborg L, Lassen CF, Ritz B, et al. Outdoor work and risk for Parkinson’s disease: a population-based case-control study. Occup Environ Med 2011; 68(4): 273-8.
[http://dx.doi.org/10.1136/oem.2010.057448] [PMID: 20884793]
[90]
Kravietz A, Kab S, Wald L, et al. Association of UV radiation with Parkinson disease incidence: A nationwide French ecologic study. Environ Res 2017; 154: 50-6.
[http://dx.doi.org/10.1016/j.envres.2016.12.008] [PMID: 28033496]
[91]
Wang J, Yang D, Yu Y, Shao G, Wang Q. Vitamin D and sunlight exposure in newly-diagnosed Parkinson’s disease. Nutrients 2016; 8(3): 142.
[http://dx.doi.org/10.3390/nu8030142] [PMID: 26959053]
[92]
Liu Y, Zhang B. Serum 25-hydroxyvitamin D predicts severity in Parkinson’s disease patients. Neurol Sci 2014; 35(1): 67-71.
[http://dx.doi.org/10.1007/s10072-013-1539-x] [PMID: 24036688]
[93]
Sleeman I, Aspray T, Lawson R, et al. The role of vitamin D in disease progression in early Parkinson’s disease. J Parkinsons Dis 2017; 7(4): 669-75.
[http://dx.doi.org/10.3233/JPD-171122] [PMID: 28984616]
[94]
Suzuki M, Yoshioka M, Hashimoto M, et al. Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am J Clin Nutr 2013; 97(5): 1004-13.
[http://dx.doi.org/10.3945/ajcn.112.051664] [PMID: 23485413]
[95]
Kim JE, Oh E, Park J, Youn J, Kim JS, Jang W. Serum 25-hydroxyvitamin D3 level may be associated with olfactory dysfunction in de novo Parkinson’s disease. J Clin Neurosci 2018; 57: 131-5.
[http://dx.doi.org/10.1016/j.jocn.2018.08.003] [PMID: 30135017]
[96]
Shrestha S, Lutsey PL, Alonso A, Huang X, Mosley TH Jr, Chen H. Serum 25-hydroxyvitamin D concentrations in Mid-adulthood and Parkinson’s disease risk. Mov Disord 2016; 31(7): 972-8.
[http://dx.doi.org/10.1002/mds.26573] [PMID: 27090608]
[97]
Sato Y, Manabe S, Kuno H, Oizumi K. Amelioration of osteopenia and hypovitaminosis D by 1α -hydroxyvitamin D3 in elderly patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999; 66(1): 64-8.
[http://dx.doi.org/10.1136/jnnp.66.1.64] [PMID: 9886454]
[98]
Lima LAR, Lopes MJP, Costa RO, et al. Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in Hemiparkinsonian rats. J Neuroinflammation 2018; 15(1): 249.
[http://dx.doi.org/10.1186/s12974-018-1266-6] [PMID: 30170624]
[99]
Li H, Jang W, Kim HJ, et al. Biochemical protective effect of 1,25-dihydroxyvitamin D3 through autophagy induction in the MPTP mouse model of Parkinson’s disease. Neuroreport 2015; 26(12): 669-74.
[http://dx.doi.org/10.1097/WNR.0000000000000401] [PMID: 26164453]
[100]
Cass WA, Peters LE, Fletcher AM, Yurek DM. Calcitriol promotes augmented dopamine release in the lesioned striatum of 6-hydroxydopamine treated rats. Neurochem Res 2014; 39(8): 1467-76.
[http://dx.doi.org/10.1007/s11064-014-1331-1] [PMID: 24858239]
[101]
Asbaghi O, Sadeghian M, Nazarian B, et al. The effect of vitamin E supplementation on selected inflammatory biomarkers in adults: A systematic review and meta-analysis of randomized clinical trials. Sci Rep 2020; 10(1): 17234.
[http://dx.doi.org/10.1038/s41598-020-73741-6] [PMID: 33057114]
[102]
Keen M, Hassan I. Vitamin E in dermatology. Indian Dermatol Online J 2016; 7(4): 311-5.
[http://dx.doi.org/10.4103/2229-5178.185494] [PMID: 27559512]
[103]
Allan Butterfield D, Castegna A, Drake J, Scapagnini G, Calabrese V. Vitamin E and neurodegenerative disorders associated with oxidative stress. Nutr Neurosci 2002; 5(4): 229-39.
[http://dx.doi.org/10.1080/10284150290028954] [PMID: 12168685]
[104]
Jain P, Singh I, Surana SJ, et al. Tocopherols and tocotrienols: The essential vitamin E. Bioactive Food Components Activity in Mechanistic Approach. Academic Press 2022; pp. 139-54.
[http://dx.doi.org/10.1016/B978-0-12-823569-0.00009-6]
[105]
Rosen E, Fatanmi OO, Wise SY, Rao VA, Singh VK. Gamma-tocotrienol, a radiation countermeasure, reverses proteomic changes in serum following total-body gamma irradiation in mice. Sci Rep 2022; 12(1): 3387.
[http://dx.doi.org/10.1038/s41598-022-07266-5] [PMID: 35233005]
[106]
Szewczyk K, Daniluk P, Górnicka M. Assessment of tocotrienols intake in adults-A pilot study. Biol Life Sci Forum 2022; 12(1): 16.
[http://dx.doi.org/10.3390/IECN2022-12397]
[107]
Cesari M, Pahor M, Bartali B, et al. Antioxidants and physical performance in elderly persons: the Invecchiare in Chianti (InCHIANTI) study. Am J Clin Nutr 2004; 79(2): 289-94.
[http://dx.doi.org/10.1093/ajcn/79.2.289] [PMID: 14749236]
[108]
Power R, Nolan JM, Prado-Cabrero A, et al. Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trial. Clin Nutr 2022; 41(2): 405-14.
[http://dx.doi.org/10.1016/j.clnu.2021.12.004] [PMID: 34999335]
[109]
Azzi A, Gysin R, Kempná P, et al. Vitamin E mediates cell signaling and regulation of gene expression. Ann N Y Acad Sci 2004; 1031(1): 86-95.
[http://dx.doi.org/10.1196/annals.1331.009] [PMID: 15753136]
[110]
Wu D, Meydani S. Age-associated changes in immune function: Impact of vitamin E intervention and the underlying mechanisms. Endocr Metab Immune Disord Drug Targets 2014; 14(4): 283-9.
[http://dx.doi.org/10.2174/1871530314666140922143950] [PMID: 25244230]
[111]
Cadet JL, Katz M, Jackson-Lewis V, Fahn S. Vitamin E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: Behavioral and biochemical evidence. Brain Res 1989; 476(1): 10-5.
[http://dx.doi.org/10.1016/0006-8993(89)91530-8] [PMID: 2492442]
[112]
Sharma N, Nehru B. Beneficial effect of vitamin E in rotenone induced model of PD: behavioural, neurochemical and biochemical study. Exp Neurobiol 2013; 22(3): 214-23.
[http://dx.doi.org/10.5607/en.2013.22.3.214] [PMID: 24167416]
[113]
Roghani M, Behzadi G. Neuroprotective effect of vitamin E on the early model of Parkinson’s disease in rat: behavioral and histochemical evidence. Brain Res 2001; 892(1): 211-7.
[http://dx.doi.org/10.1016/S0006-8993(00)03296-0] [PMID: 11172767]
[114]
Perry TL, Yong VW, Hansen S, et al. α-Tocopherol and β-carotene do not protect marmosets against the dopaminergic neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurol Sci 1987; 81(2-3): 321-31.
[http://dx.doi.org/10.1016/0022-510X(87)90106-7] [PMID: 3121800]
[115]
Comitato R, Nesaretnam K, Leoni G, et al. A novel mechanism of natural vitamin E tocotrienol activity: involvement of ERβ signal transduction. Am J Physiol Endocrinol Metab 2009; 297(2): E427-37.
[http://dx.doi.org/10.1152/ajpendo.00187.2009] [PMID: 19491296]
[116]
Nakaso K, Tajima N, Horikoshi Y, et al. The estrogen receptor β-PI3K/Akt pathway mediates the cytoprotective effects of tocotrienol in a cellular Parkinson’s disease model. Biochim Biophys Acta Mol Basis Dis 2014; 1842(9): 1303-12.
[http://dx.doi.org/10.1016/j.bbadis.2014.04.008] [PMID: 24768803]
[117]
Nakaso K, Horikoshi Y, Takahashi T, et al. Estrogen receptor-mediated effect of δ-tocotrienol prevents neurotoxicity and motor deficit in the MPTP mouse model of Parkinson’s disease. Neurosci Lett 2016; 610: 117-22.
[http://dx.doi.org/10.1016/j.neulet.2015.10.062] [PMID: 26523792]
[118]
Steering DATATOP. DATATOP: a multicenter controlled clinical trial in early Parkinson’s disease. Arch Neurol 1989; 46(10): 1052-60.
[http://dx.doi.org/10.1001/archneur.1989.00520460028009] [PMID: 2508608]
[119]
Logroscino G, Marder K, Cote L, Tang MX, Shea S, Mayeux R. Dietary lipids and antioxidants in Parkinson’s disease: A population-based, case-control study. Ann Neurol 1996; 39(1): 89-94.
[http://dx.doi.org/10.1002/ana.410390113] [PMID: 8572672]
[120]
de Rijk MC, Breteler MM, den Breeijen JH, et al. Dietary antioxidants and Parkinson disease. The Rotterdam Study. Arch Neurol 1997; 54(6): 762-5.
[http://dx.doi.org/10.1001/archneur.1997.00550180070015] [PMID: 9193212]
[121]
Fahn S. A pilot trial of high-dose alpha-tocopherol and ascorbate in early Parkinson’s disease. Ann Neurol 1992; 32(S1) (Suppl.): S128-32.
[http://dx.doi.org/10.1002/ana.410320722] [PMID: 1510371]
[122]
Férnandez-Calle P, Molina JA, Jiménez-Jiménez FJ, et al. Serum levels of alpha-tocopherol (vitamin E) in Parkinson’s disease. Neurology 1992; 42(5): 1064-6.
[http://dx.doi.org/10.1212/WNL.42.5.1064] [PMID: 1579230]
[123]
Dexter DT, Jenner P, Ward RJ, et al. Alpha-tocopherol levels in brain are not altered in Parkinson’s disease. Ann Neurol 1992; 32(4): 591-3.
[http://dx.doi.org/10.1002/ana.410320420] [PMID: 1456747]
[124]
Molina JA, de Bustos F, Jiménez-Jiménez FJ, et al. Cerebrospinal fluid levels of alpha-tocopherol (vitamin E) in Parkinson’s disease. J Neural Transm (Vienna) 1997; 104(11-12): 1287-93.
[http://dx.doi.org/10.1007/BF01294729] [PMID: 9503274]
[125]
Vatassery GT, Fahn S, Kuskowski MA. Alpha tocopherol in CSF of subjects taking high-dose vitamin E in the DATATOP study. Neurology 1998; 50(6): 1900-2.
[http://dx.doi.org/10.1212/WNL.50.6.1900] [PMID: 9633757]
[126]
Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1993; 328(3): 176-83.
[http://dx.doi.org/10.1056/NEJM199301213280305] [PMID: 8417384]
[127]
Taghizadeh M, Tamtaji OR, Dadgostar E, et al. The effects of omega-3 fatty acids and vitamin E co-supplementation on clinical and metabolic status in patients with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Neurochem Int 2017; 108: 183-9.
[http://dx.doi.org/10.1016/j.neuint.2017.03.014] [PMID: 28342967]
[128]
Ortiz GG, Pacheco-Moisés FP, Gómez-Rodríguez VM, González-Renovato ED, Torres-Sánchez ED, Ramírez-Anguiano AC. Fish oil, melatonin and vitamin E attenuates midbrain cyclooxygenase-2 activity and oxidative stress after the administration of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine. Metab Brain Dis 2013; 28(4): 705-9.
[http://dx.doi.org/10.1007/s11011-013-9416-0] [PMID: 23703110]
[129]
Pasbakhsh P, Omidi N, Mehrannia K, et al. The protective effect of vitamin E on locus coeruleus in early model of Parkinson’s disease in rat: immunoreactivity evidence. Iran Biomed J 2008; 12(4): 217-22.
[PMID: 19079535]
[130]
Berson DS, Osborne R, Oblong JE, et al. Niacinamide: A topical vitamin with wide-ranging skin appearance benefits.Cosmeceuticals and Cosmetic Practice. Hoboken, NJ, USA: John Wiley & Sons 2013; pp. 103-12.
[http://dx.doi.org/10.1002/9781118384824.ch10]
[131]
Wohlrab J, Kreft D. Niacinamide-Mechanisms of action and its topical use in dermatology. Skin Pharmacol Physiol 2014; 27(6): 311-5.
[http://dx.doi.org/10.1159/000359974] [PMID: 24993939]
[132]
Rolfe HM. A review of nicotinamide: Treatment of skin diseases and potential side effects. J Cosmet Dermatol 2014; 13(4): 324-8.
[http://dx.doi.org/10.1111/jocd.12119] [PMID: 25399625]
[133]
Gehring W. Nicotinic acid/niacinamide and the skin. J Cosmet Dermatol 2004; 3(2): 88-93.
[http://dx.doi.org/10.1111/j.1473-2130.2004.00115.x] [PMID: 17147561]
[134]
Chen AC, Damian DL. Nicotinamide and the skin. Australas J Dermatol 2014; 55(3): 169-75.
[http://dx.doi.org/10.1111/ajd.12163] [PMID: 24635573]
[135]
Williams A, Ramsden D. Nicotinamide: A double edged sword. Parkinsonism Relat Disord 2005; 11(7): 413-20.
[http://dx.doi.org/10.1016/j.parkreldis.2005.05.011] [PMID: 16183323]
[136]
Fukushima T. Niacin metabolism and Parkinson’s disease. Environ Health Prev Med 2005; 10(1): 3-8.
[http://dx.doi.org/10.1265/ehpm.10.3] [PMID: 21432157]
[137]
Aoyama K, Matsubara K, Kondo M, et al. Nicotinamide-N-methyltransferase is higher in the lumbar cerebrospinal fluid of patients with Parkinson’s disease. Neurosci Lett 2001; 298(1): 78-80.
[http://dx.doi.org/10.1016/S0304-3940(00)01723-7] [PMID: 11154840]
[138]
Griffin SM, Pickard MR, Orme RP, Hawkins CP, Fricker RA. Nicotinamide promotes neuronal differentiation of mouse embryonic stem cells in vitro. Neuroreport 2013; 24(18): 1041-6.
[http://dx.doi.org/10.1097/WNR.0000000000000071] [PMID: 24257250]
[139]
Imai S. Nicotinamide phosphoribosyltransferase (Nampt): A link between NAD biology, metabolism, and diseases. Curr Pharm Des 2009; 15(1): 20-8.
[http://dx.doi.org/10.2174/138161209787185814] [PMID: 19149599]
[140]
Pearl SM, Antion MD, Stanwood GD, Jaumotte JD, Kapatos G, Zigmond MJ. Effects of NADH on dopamine release in rat striatum. Synapse 2000; 36(2): 95-101.
[http://dx.doi.org/10.1002/(SICI)1098-2396(200005)36:2<95::AID-SYN2>3.0.CO;2-U] [PMID: 10767056]
[141]
Schapira AHV, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1989; 333(8649): 1269.
[http://dx.doi.org/10.1016/S0140-6736(89)92366-0] [PMID: 2566813]
[142]
Mizuno Y, Ohta S, Tanaka M, et al. Deficiencies in Complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 1989; 163(3): 1450-5.
[http://dx.doi.org/10.1016/0006-291X(89)91141-8] [PMID: 2551290]
[143]
Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 1985; 36(26): 2503-8.
[http://dx.doi.org/10.1016/0024-3205(85)90146-8] [PMID: 2861548]
[144]
Lu L, Tang L, Wei W, et al. Nicotinamide mononucleotide improves energy activity and survival rate in an in vitro model of Parkinson’s disease. Exp Ther Med 2014; 8(3): 943-50.
[http://dx.doi.org/10.3892/etm.2014.1842] [PMID: 25120628]
[145]
Xu J, Xu SQ, Liang J, Lu Y, Luo JH, Jin JH. Protective effect of nicotinamide in a mouse Parkinson’s disease model. Zhejiang Da Xue Xue Bao Yi Xue Ban 2012; 41(2): 146-52.
[PMID: 22499510]
[146]
Cen Y. Sirtuins inhibitors: The approach to affinity and selectivity. Biochim Biophys Acta Proteins Proteomics 2010; 1804(8): 1635-44.
[http://dx.doi.org/10.1016/j.bbapap.2009.11.010] [PMID: 19931429]
[147]
Liu L, Peritore C, Ginsberg J, Shih J, Arun S, Donmez G. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease. Behav Brain Res 2015; 281: 215-21.
[http://dx.doi.org/10.1016/j.bbr.2014.12.035] [PMID: 25541039]
[148]
Hellenbrand W, Boeing H, Robra BP, et al. Diet and Parkinson’s disease II. Neurology 1996; 47(3): 644-50.
[http://dx.doi.org/10.1212/WNL.47.3.644] [PMID: 8797457]
[149]
Fall PA, Fredrikson M, Axelson O, Granérus AK. Nutritional and occupational factors influencing the risk of Parkinson’s disease: A case-control study in Southeastern Sweden. Mov Disord 1999; 14(1): 28-37.
[http://dx.doi.org/10.1002/1531-8257(199901)14:1<28::AID-MDS1007>3.0.CO;2-O] [PMID: 9918341]
[150]
Alisky JM. Niacin improved rigidity and bradykinesia in a Parkinson’s disease patient but also caused unacceptable nightmares and skin rash-A case report. Nutr Neurosci 2005; 8(5-6): 327-9.
[http://dx.doi.org/10.1080/10284150500484638] [PMID: 16669604]
[151]
Chong R, Wakade C, Seamon M, Giri B, Morgan J, Purohit S. Niacin enhancement for Parkinson’s disease: An effectiveness trial. Front Aging Neurosci 2021; 13: 667032.
[http://dx.doi.org/10.3389/fnagi.2021.667032] [PMID: 34220485]
[152]
Johnson C, Gorell JM, Rybicki BA, Sanders K, Peterson EL. Adult nutrient intake as a risk factor for Parkinson’s disease. Int J Epidemiol 1999; 28(6): 1102-9.
[http://dx.doi.org/10.1093/ije/28.6.1102] [PMID: 10661654]
[153]
Abbott RD, Webster Ross G, White LR, et al. Environmental, life-style, and physical precursors of clinical Parkinson's disease: recent findings from the Honolulu-Asia Aging Study. J Neurol 2003; 250(0) (Suppl. 3): 1.
[http://dx.doi.org/10.1007/s00415-003-1306-7] [PMID: 14579122]
[154]
Jia H, Li X, Gao H, et al. High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson’s disease. J Neurosci Res 2008; 86(9): 2083-90.
[http://dx.doi.org/10.1002/jnr.21650] [PMID: 18381761]
[155]
Anderson DW, Bradbury KA, Schneider JS. Broad neuroprotective profile of nicotinamide in different mouse models of MPTP-induced Parkinsonism. Eur J Neurosci 2008; 28(3): 610-7.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06356.x] [PMID: 18702732]
[156]
Cisternas P, Silva-Alvarez C, Martínez F, et al. The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism. J Neurochem 2014; 129(4): 663-71.
[http://dx.doi.org/10.1111/jnc.12663] [PMID: 24460956]
[157]
Chatterjee IB, Majumder AK, Nandi BK, Subramanian N. Synthesis and some major functions of vitamin C in animals. Ann N Y Acad Sci 1975; 258(1 Second Confer): 24-47.
[http://dx.doi.org/10.1111/j.1749-6632.1975.tb29266.x] [PMID: 1106297]
[158]
Bei R, Bei R, Mistretta A, et al. Effects of vitamin C on health: A review of evidence. Front Biosci 2013; 18(3): 1017-29.
[http://dx.doi.org/10.2741/4160] [PMID: 23747864]
[159]
Belluzzi E, Bisaglia M, Lazzarini E, Tabares LC, Beltramini M, Bubacco L. Human SOD2 modification by dopamine quinones affects enzymatic activity by promoting its aggregation: possible implications for Parkinson’s disease. PLoS One 2012; 7(6): e38026.
[http://dx.doi.org/10.1371/journal.pone.0038026] [PMID: 22723845]
[160]
Mefford IN, Oke AF, Adams RN. Regional distribution of ascorbate in human brain. Brain Res 1981; 212(1): 223-6.
[http://dx.doi.org/10.1016/0006-8993(81)90056-1] [PMID: 7225858]
[161]
Milby K, Oke A, Adams RN. Detailed mapping of ascorbate distribution in rat brain. Neurosci Lett 1982; 28(1): 15-20.
[http://dx.doi.org/10.1016/0304-3940(82)90201-4] [PMID: 6121305]
[162]
Coker SJ, Smith-Díaz CC, Dyson RM, Vissers MCM, Berry MJ. The epigenetic role of vitamin C in neurodevelopment. Int J Mol Sci 2022; 23(3): 1208.
[http://dx.doi.org/10.3390/ijms23031208] [PMID: 35163133]
[163]
Hosoya K, Nakamura G, Akanuma S, Tomi M, Tachikawa M. Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Müller glial cells (TR-MUL). Neurochem Int 2008; 52(7): 1351-7.
[http://dx.doi.org/10.1016/j.neuint.2008.02.001] [PMID: 18353508]
[164]
Sershen H, Reith MEA, Hashim A, Lajtha A. Protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity by the antioxidant ascorbic acid. Neuropharmacology 1985; 24(12): 1257-9.
[http://dx.doi.org/10.1016/0028-3908(85)90163-7] [PMID: 3879338]
[165]
Pardo B, Mena MA, Fahn S, de Yébenes JG. Ascorbic acid protects against levodopa-induced neurotoxicity on a catecholamine-rich human neuroblastoma cell line. Mov Disord 1993; 8(3): 278-84.
[http://dx.doi.org/10.1002/mds.870080305] [PMID: 8341291]
[166]
Seitz G, Gebhardt S, Beck JF, et al. Ascorbic acid stimulates DOPA synthesis and tyrosine hydroxylase gene expression in the human neuroblastoma cell line SK-N-SH. Neurosci Lett 1998; 244(1): 33-6.
[http://dx.doi.org/10.1016/S0304-3940(98)00129-3] [PMID: 9578138]
[167]
Nagayama H, Hamamoto M, Ueda M, Nito C, Yamaguchi H, Katayama Y. The effect of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clin Neuropharmacol 2004; 27(6): 270-3.
[http://dx.doi.org/10.1097/01.wnf.0000150865.21759.bc] [PMID: 15613930]
[168]
Sacks W, Simpson GM. Letter: Ascorbic acid in levodopa therapy. Lancet 1975; 1(7905): 527-7.
[PMID: 47001]
[169]
Yan J, Studer L, McKay RDG. Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J Neurochem 2001; 76(1): 307-11.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00073.x] [PMID: 11146004]
[170]
Lee JY, Chang MY, Park CH, et al. Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. J Neurosci Res 2003; 73(2): 156-65.
[http://dx.doi.org/10.1002/jnr.10647] [PMID: 12836158]
[171]
He XB, Kim M, Kim SY, et al. Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner. Stem Cells 2015; 33(4): 1320-32.
[http://dx.doi.org/10.1002/stem.1932] [PMID: 25535150]
[172]
Wulansari N, Kim EH, Sulistio YA, Rhee YH, Song JJ, Lee SH. Vitamin C-induced epigenetic modifications in donor NSCs establish midbrain marker expressions critical for cell-based therapy in Parkinson’s disease. Stem Cell Reports 2017; 9(4): 1192-206.
[http://dx.doi.org/10.1016/j.stemcr.2017.08.017] [PMID: 28943252]
[173]
Férnandez-Calle P, Jiménez-Jiménez FJ, Molina J, et al. Serum levels of ascorbic acid (vitamin C) in patients with Parkinson’s disease. J Neurol Sci 1993; 118(1): 25-8.
[http://dx.doi.org/10.1016/0022-510X(93)90240-Y] [PMID: 8229047]
[174]
Sudha K, Rao AV, Rao S, Rao A. Free radical toxicity and antioxidants in Parkinson’s disease. Neurol India 2003; 51(1): 60-2.
[PMID: 12865518]
[175]
Ide K, Yamada H, Umegaki K, et al. Lymphocyte vitamin C levels as potential biomarker for progression of Parkinson’s disease. Nutrition 2015; 31(2): 406-8.
[http://dx.doi.org/10.1016/j.nut.2014.08.001] [PMID: 25592020]
[176]
Hughes KC, Gao X, Kim IY, et al. Intake of antioxidant vitamins and risk of Parkinson’s disease. Mov Disord 2016; 31(12): 1909-14.
[http://dx.doi.org/10.1002/mds.26819] [PMID: 27787934]
[177]
Yang F, Wolk A, Håkansson N, Pedersen NL, Wirdefeldt K. Dietary antioxidants and risk of Parkinson’s disease in two population-based cohorts. Mov Disord 2017; 32(11): 1631-6.
[http://dx.doi.org/10.1002/mds.27120] [PMID: 28881039]
[178]
Miyake Y, Fukushima W, Tanaka K, et al. Dietary intake of antioxidant vitamins and risk of Parkinson’s disease: A case-control study in Japan. Eur J Neurol 2011; 18(1): 106-13.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03088.x] [PMID: 20491891]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy