Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Agricultural and Veterinary Pesticides Residues in Human Food

Author(s): Latifa Khattabi*, Moussa Mokhtari, Mustapha Mounir Bouhenna, Ahmed Fellak, Mohamed Abu-Mustapha, Saleh Akkal and Feriel Sellam

Volume 10, Issue 2, 2023

Published on: 09 June, 2023

Page: [174 - 185] Pages: 12

DOI: 10.2174/2213346110666230607150014

Price: $65

Abstract

Introduction: Expanding utilization of pesticides can provoke serious issues due to their biomagnification and persistent nature. Eventual contamination of fresh daily-consumed food by pesticide constitutes a human food security problem.

Methods: The present investigation planned to check out whether the most hazardous pesticides could be found in a varied collection of wheat, vegetables and fruit, on the other hand, we attempted to know if some banned and no more commercialized pesticides could be even detected. Effectively, we have chosen to analyze wheat, potato, tomato, apple, peach and grape, so, after the extraction procedure of pesticides, we used gas chromatography-mass spectrometry (GC-MS) to identify some hazardous compounds (organochlorines and organophosphorus). These compounds were used as standards to generate calibration curves and estimate precisely their concentration in the tested samples using selected ion monitoring (SIM) mode.

Results: The results have shown the presence of an important quantity of pesticides that are no more used (banned) for decades for agriculture purposes but they are still used as veterinary drugs, such as lindane (0.2 ppm grape, 0.32 ppm tomato) and fenchlorphos (0.5 ppm grape).

Conclusion: This survey should be routinely executed by scientists and concerned authorities to control pesticides circulation with their exact amounts in food and other environmental matrices as well as eventual contamination with another toxic element.

Keywords: Food, fenchlorphos, lindane, agriculture, veterinary, pesticide, GC-MS/SIM.

Graphical Abstract
[1]
Fanzo, J.; Bellows, A.L.; Spiker, M.L.; Thorne-Lyman, A.L.; Bloem, M.W. The importance of food systems and the environment for nutrition. Am. J. Clin. Nutr., 2021, 113(1), 7-16.
[http://dx.doi.org/10.1093/ajcn/nqaa313] [PMID: 33236086]
[2]
Xin, J.; Wang, X.; Li, N.; Liu, L.; Lian, Y.; Wang, M.; Zhao, R.S. Recent applications of covalent organic frameworks and their multifunctional composites for food contaminant analysis. Food Chem., 2020, 330, 127255.
[http://dx.doi.org/10.1016/j.foodchem.2020.127255] [PMID: 32535320]
[3]
Li, C.; Zhu, H.; Li, C.; Qian, H.; Yao, W.; Guo, Y. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem., 2021, 354, 129552.
[http://dx.doi.org/10.1016/j.foodchem.2021.129552] [PMID: 33756332]
[4]
Hassaan, M.A.; El Nemr, A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res., 2020, 46(3), 207-220.
[http://dx.doi.org/10.1016/j.ejar.2020.08.007]
[5]
Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod., 2021, 283, 124657.
[http://dx.doi.org/10.1016/j.jclepro.2020.124657]
[6]
Sulaiman, N.S.; Rovina, K.; Joseph, V.M. Classification, extraction and current analytical approaches for detection of pesticides in various food products. J. Verbraucherschutz Lebensmsicherh., 2019, 14(3), 209-221.
[http://dx.doi.org/10.1007/s00003-019-01242-4]
[7]
Ecobichon, D.J. Pesticide use in developing countries. Toxicology, 2001, 160(1-3), 27-33.
[http://dx.doi.org/10.1016/S0300-483X(00)00452-2] [PMID: 11246121]
[8]
Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; Dar, O.I.; Singh, K.; Jasrotia, S.; Bakshi, P.; Ramakrishnan, M.; Kumar, S.; Bhardwaj, R.; Thukral, A.K. Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sci., 2019, 1(11), 1446.
[http://dx.doi.org/10.1007/s42452-019-1485-1]
[9]
Gadabu, A. Extensive use of organochlorine pesticides in agriculture: environmental and health concerns: A review. North Am. Acad. Res., 2020, 3, 413-429.
[http://dx.doi.org/10.5281/zenodo.3732795]
[10]
Krishna, K.R.; Philip, L. Biodegradation of mixed pesticides by mixed pesticide enriched cultures. J. Environ. Sci. Health B, 2008, 44(1), 18-30.
[http://dx.doi.org/10.1080/03601230802519520] [PMID: 19089711]
[11]
Casida, J.E.; Durkin, K.A. Pesticide chemical research in toxicology: Lessons from nature. Chem. Res. Toxicol., 2017, 30(1), 94-104.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00303] [PMID: 27715053]
[12]
Parra-Arroyo, L.; González-González, R.B.; Castillo-Zacarías, C.; Melchor Martínez, E.M.; Sosa-Hernández, J.E.; Bilal, M.; Iqbal, H.M.N.; Barceló, D.; Parra-Saldívar, R. Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects. Sci. Total Environ., 2022, 807(Pt 3), 151879.
[http://dx.doi.org/10.1016/j.scitotenv.2021.151879] [PMID: 34826476]
[13]
Jayaraj, R.; Megha, P.; Sreedev, P. Review Article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol., 2016, 9(3-4), 90-100.
[http://dx.doi.org/10.1515/intox-2016-0012] [PMID: 28652852]
[14]
Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int., 2003, 86(2), 412-431.
[http://dx.doi.org/10.1093/jaoac/86.2.412] [PMID: 12723926]
[15]
Ngabirano, H.; Birungi, G. Pesticide residues in vegetables produced in rural south-western uganda. Food Chem., 2022, 370, 130972.
[http://dx.doi.org/10.1016/j.foodchem.2021.130972] [PMID: 34788944]
[16]
Olisah, C.; Okoh, O.O.; Okoh, A.I. Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: A two-decade review. Heliyon, 2020, 6(3), e03518.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03518] [PMID: 32154427]
[17]
Tang, J.; Zhang, Q.; Zhou, J.; Fang, H.; Yang, H.; Wang, F. Investigation of pesticide residue removal effect of gelatinized starch using surface-enhanced Raman scattering mapping. Food Chem., 2021, 365, 130448.
[http://dx.doi.org/10.1016/j.foodchem.2021.130448] [PMID: 34218109]
[18]
Witczak, A. Pohoryło, A.; Abdel-Gawad, H.; Cybulski, J. Residues of some organophosphorus pesticides on and in fruits and vegetables available in Poland, an assessment based on the European union regulations and health assessment for human populations. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(11), 711-720.
[http://dx.doi.org/10.1080/10426507.2018.1492921]
[19]
Jiang, Y.; Ni, Y.; Zhu, H.; Zhu, C. Using fast gas chromatography-mass spectrometry with auto-headspace solid-phase microextraction to determine ultra trace residues of organophosphorus pesticides in fruits. J. Chromatogr. Sci., 2011, 49(5), 353-360.
[http://dx.doi.org/10.1093/chromsci/49.5.353] [PMID: 21549025]
[20]
Abhilash, P.C.; Singh, V.; Singh, N. Simplified determination of combined residues of lindane and other HCH isomers in vegetables, fruits, wheat, pulses and medicinal plants by matrix solid-phase dispersion (MSPD) followed by GC-ECD. Food Chem., 2009, 113(1), 267-271.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.004]
[21]
Golba, J.; Nowacka, A. Evaluation of pesticide residues occurrence in random samples of organic fruits and vegetables marketed in Poland. Foods, 2022, 11(13), 1963.
[http://dx.doi.org/10.3390/foods11131963]
[22]
Bakırcı, G.T.; Yaman Acay, D.B.; Bakırcı, F.; Ötleş, S. Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem., 2014, 160, 379-392.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.051] [PMID: 24799252]
[23]
Abou-Arab, A.A.K. Behavior of pesticides in tomatoes during commercial and home preparation. Food Chem., 1999, 65(4), 509-514.
[http://dx.doi.org/10.1016/S0308-8146(98)00231-3]
[24]
Farajzadeh, M.A.; Khoshmaram, L. Air-assisted liquid-liquid microextraction-gas chromatography-flame ionisation detection: A fast and simple method for the assessment of triazole pesticides residues in surface water, cucumber, tomato and grape juices samples. Food Chem., 2013, 141(3), 1881-1887.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.088] [PMID: 23870905]
[25]
Cabras, P.; Angioni, A.; Garau, V.L.; Pirisi, F.M.; Cabitza, F.; Pala, M.; Farris, G.A. Fate of quinoxyfen residues in grapes, wine, and their processing products. J. Agric. Food Chem., 2000, 48(12), 6128-6131.
[http://dx.doi.org/10.1021/jf0007176] [PMID: 11312786]
[26]
Rashidi Nodeh, H.; Sereshti, H.; Gaikani, H.; Kamboh, M.A.; Afsharsaveh, Z. Magnetic graphene coated inorganic-organic hybrid nanocomposite for enhanced preconcentration of selected pesticides in tomato and grape. J. Chromatogr. A, 2017, 1509, 26-34.
[http://dx.doi.org/10.1016/j.chroma.2017.06.032] [PMID: 28634067]
[27]
Spradbery, J.P.; Tozer, R.S.; Pound, A.A. The efficacy of insecticides against the screw-worm fly (Chrysomya bezziana). Aust. Vet. J., 1991, 68(10), 338-342.
[http://dx.doi.org/10.1111/j.1751-0813.1991.tb03095.x] [PMID: 1755786]
[28]
Fontenot, J.P.; Smith, L.W.; Sutton, A.L. Alternative utilization of animal wastes. J. Anim. Sci., 1983, 57, 221-233.
[29]
Campagnolo, E.R.; Johnson, K.R.; Karpati, A.; Rubin, C.S.; Kolpin, D.W.; Meyer, M.T.; Esteban, J.E.; Currier, R.W.; Smith, K.; Thu, K.M.; McGeehin, M. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Sci. Total Environ., 2002, 299(1-3), 89-95.
[http://dx.doi.org/10.1016/S0048-9697(02)00233-4] [PMID: 12462576]
[30]
Kumar, K.; Gupta, S.C.; Baidoo, S.K.; Chander, Y.; Rosen, C.J. Antibiotic uptake by plants from soil fertilized with animal manure. J. Environ. Qual., 2005, 34(6), 2082-2085.
[http://dx.doi.org/10.2134/jeq2005.0026] [PMID: 16221828]
[31]
Avrahami, M.; Clear, M.H.; Ritchie, A.R. Residues in milk, blood, urine, and faeces of cows after treatment with 32 P-labelled fenchlorphos “pour-on”. N. Z. J. Exp. Agric., 1974, 2(2), 115-119.
[http://dx.doi.org/10.1080/03015521.1974.10425745]
[32]
Madaj, R.; Sobiecka, E.; Kalinowska, H. Lindane, kepone and pentachlorobenzene: chloropesticides banned by Stockholm convention. Int. J. Environ. Sci. Technol., 2018, 15(2), 471-480.
[http://dx.doi.org/10.1007/s13762-017-1417-9]
[33]
Vijgen, J.; Abhilash, P.C.; Li, Y.F.; Lal, R.; Forter, M.; Torres, J.; Singh, N.; Yunus, M.; Tian, C.; Schäffer, A.; Weber, R. Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—a global perspective on the management of Lindane and its waste isomers. Environ. Sci. Pollut. Res. Int., 2011, 18(2), 152-162.
[http://dx.doi.org/10.1007/s11356-010-0417-9] [PMID: 21104204]
[34]
Nolan, K.; Kamrath, J.; Levitt, J. Lindane toxicity: a comprehensive review of the medical literature. Pediatr. Dermatol., 2012, 29(2), 141-146.
[http://dx.doi.org/10.1111/j.1525-1470.2011.01519.x] [PMID: 21995612]
[35]
Sandu, M.A.; Virsta, A. Environmental toxicity of lindane and health effect. J. Environ. Prot. Ecol., 2015, 16, 933-944.
[36]
Habschied, K. Organochlorine pesticides and PCBs in traditionally. Foods, 2020, 12, 1-14.
[37]
Mukhamedshin, R.A. Lesions in hens poisoned by fenchlorphos; Inst. po Boleznyam Ptits, Moskovskii prosp. 99, Leningrad M-6.: Moscow, 1970, 7.
[38]
Sitkiewicz, D.; Gietka, G.; Bicz, W. Effect of fenchlorphos intoxication on the respiration of brain mitochondria of rats at different age. Neuropatol. Pol., 1981, 19(2), 209-216.
[PMID: 6170914]
[39]
Cazorla-Reyes, R.; Fernández-Moreno, J.L.; Romero-González, R.; Frenich, A.G.; Vidal, J.L.M. Single solid phase extraction method for the simultaneous analysis of polar and non-polar pesticides in urine samples by gas chromatography and ultra high pressure liquid chromatography coupled to tandem mass spectrometry. Talanta, 2011, 85(1), 183-196.
[http://dx.doi.org/10.1016/j.talanta.2011.03.048] [PMID: 21645688]
[40]
Ellsworth, R.E.; Kostyniak, P.J.; Chi, L.H.; Shriver, C.D.; Costantino, N.S.; Ellsworth, D.L. Organochlorine pesticide residues in human breast tissue and their relationships with clinical and pathological characteristics of breast cancer. Environ. Toxicol., 2018, 33(8), 876-884.
[http://dx.doi.org/10.1002/tox.22573] [PMID: 29923341]
[41]
Waliszewski, S.M.; Caba, M.; Herrero-Mercado, M.; Saldariaga-Noreña, H.; Meza, E.; Zepeda, R.; Martínez-Valenzuela, C.; Gómez Arroyo, S.; Villalobos, P.R. Organochlorine pesticide residue levels in blood serum of inhabitants from Veracruz, Mexico. Environ. Monit. Assess., 2012, 184(9), 5613-5621.
[http://dx.doi.org/10.1007/s10661-011-2366-2] [PMID: 21922174]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy