Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

咖啡因通过调节阿尔茨海默氏症大鼠模型中的神经祖细胞存活和减少氧化应激来改善记忆力和认知

卷 20, 期 3, 2023

发表于: 06 July, 2023

页: [175 - 189] 页: 15

弟呕挨: 10.2174/1567205020666230605113856

价格: $65

conference banner
摘要

目的:咖啡因具有有效的抗氧化、抗炎和抗凋亡活性,可对抗多种神经退行性疾病,包括阿尔茨海默病 (AD) 和帕金森病 (PD)。本研究的目的是探讨咖啡因等精神活性物质对链脲佐菌素 (STZ) 诱导的大鼠神经变性的海马神经发生和记忆功能的保护作用。 背景:咖啡因是一种天然的中枢神经系统兴奋剂,属于甲基黄嘌呤类,是一种广泛食用的精神活性物质。据报道,它可以降低与心血管系统(CVS)相关、癌症相关或由于代谢失调引起的各种异常的风险。短期咖啡因暴露已被广泛评估,但其长期暴露却很少被探索和追求。多项研究表明咖啡因在神经退行性疾病中具有毁灭性的作用。然而,咖啡因对神经退行性变的保护作用仍不清楚。 目的:在这里,我们研究了长期服用咖啡因对侧脑室注射 STZ 引起的记忆功能障碍的海马神经发生的影响。通过标记新生细胞的胸苷类似物 BrdU、标记新生细胞的 DCX(未成熟神经元的标记)和标记成熟神经元的 NeuN 共同标记神经元,评估咖啡因对海马神经元增殖和神经元命运决定的长期影响。 方法:第 1 天将 STZ(1 mg/kg,2 μl)立体定向注射到侧脑室(侧脑室内注射)一次,然后用咖啡因(10 mg/kg,腹腔注射)和多奈哌齐(5 mg/kg, i.p.)。评估咖啡因对认知障碍和成人海马神经发生的保护作用。 结果:我们的研究结果表明,STZ 损伤的 SD 大鼠服用咖啡因后,氧化应激负担和淀粉样蛋白负担减少。此外,溴脱氧尿苷/双皮质素 (BrdU /DCX ) 和溴脱氧尿苷 / 神经元核 (BrdU /NeuN ) 的双重免疫标记表明,咖啡因改善了 STZ 损伤大鼠的神经元干细胞增殖和长期存活。 结论:我们的研究结果支持咖啡因在 STZ 诱导的神经变性中具有神经源性潜力。

关键词: 阿尔茨海默氏症,咖啡因,神经发生,海马体,前额叶皮层,莫里斯水迷宫。

[1]
Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 2006; 368(9533): 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[2]
Nelson PT, Braak H, Markesbery WR. Neuropathology and cognitive impairment in Alzheimer disease: A complex but coherent relationship. J Neuropathol Exp Neurol 2009; 68(1): 1-14.
[http://dx.doi.org/10.1097/NEN.0b013e3181919a48] [PMID: 19104448]
[3]
Parihar MS, Hemnani T. Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 2004; 11(5): 456-67.
[http://dx.doi.org/10.1016/j.jocn.2003.12.007] [PMID: 15177383]
[4]
Alzheimer A. Uber eine eigenartige erkrankung der hirnrinde allgem zeit psychiat. Psych-Gerich Med 1907; 64: 146-8.
[5]
Alzheimer’s Association Report. 2020 Alzheimer’s disease facts and figures. Alzheimer's& Dementia 2020; 16(3): 391-460.
[6]
Vergara C, Houben S, Suain V, et al. Amyloid-β pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta Neuropathol 2019; 137(3): 397-412.
[http://dx.doi.org/10.1007/s00401-018-1953-5] [PMID: 30599077]
[7]
Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009; 11(2): 111-28.
[http://dx.doi.org/10.31887/DCNS.2009.11.2/cqiu] [PMID: 19585947]
[8]
Reitz C, Mayeux R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88(4): 640-51.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[9]
Chiang K, Koo EH. Emerging therapeutics for Alzheimer’s disease. Annu Rev Pharmacol Toxicol 2014; 54(1): 381-405.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135932] [PMID: 24392696]
[10]
Francis PT, Nordberg A, Arnold SE. A preclinical view of cholinesterase inhibitors in neuroprotection: Do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol Sci 2005; 26(2): 104-11.
[http://dx.doi.org/10.1016/j.tips.2004.12.010] [PMID: 15681028]
[11]
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol Med Rep 2019; 20(2): 1479-87.
[PMID: 31257471]
[12]
Gauthier S, Herrmann N, Ferreri F, Agbokou C. Use of memantine to treat Alzheimer’s disease. CMAJ 2006; 175(5): 501-2.
[http://dx.doi.org/10.1503/cmaj.1060168] [PMID: 16940271]
[13]
Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 1999; 51(1): 83-133.
[PMID: 10049999]
[14]
Rosendahl AH, Perks CM, Zeng L, et al. Caffeine and Caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clin Cancer Res 2015; 21(8): 1877-87.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1748] [PMID: 25691730]
[15]
Astorino TA, Roberson DW. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. J Strength Cond Res 2010; 24(1): 257-65.
[http://dx.doi.org/10.1519/JSC.0b013e3181c1f88a] [PMID: 19924012]
[16]
Vlachopoulos C, Hirata K, Stefanadis C, Toutouzas P, O’Rourke MF. Caffeine increases aortic stiffness in hypertensive patients. Am J Hypertens 2003; 16(1): 63-6.
[http://dx.doi.org/10.1016/S0895-7061(02)03155-2] [PMID: 12517685]
[17]
Nehlig A. Is caffeine a cognitive enhancer? J Alzheimers Dis 2010; 20: S85-94.
[http://dx.doi.org/10.3233/JAD-2010-091315] [PMID: 20182035]
[18]
Lorist MM, Tops M. Caffeine, fatigue, and cognition. Brain Cogn 2003; 53(1): 82-94.
[http://dx.doi.org/10.1016/S0278-2626(03)00206-9] [PMID: 14572506]
[19]
Stonehouse AH, Adachi M, Walcott EC, Jones FS. Caffeine regulates neuronal expression of the dopamine 2 receptor gene. Mol Pharmacol 2003; 64(6): 1463-73.
[http://dx.doi.org/10.1124/mol.64.6.1463] [PMID: 14645677]
[20]
Björklund O, Kahlström J, Salmi P, et al. The effects of methylmercury on motor activity are sex- and age-dependent, and modulated by genetic deletion of adenosine receptors and caffeine administration. Toxicology 2007; 241(3): 119-33.
[http://dx.doi.org/10.1016/j.tox.2007.08.092] [PMID: 17920182]
[21]
Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: Different roles, different sources and different receptors. Neurochem Int 2001; 38(2): 107-25.
[http://dx.doi.org/10.1016/S0197-0186(00)00034-6] [PMID: 11137880]
[22]
Espinosa J, Rocha A, Nunes F, et al. Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia. J Alzheimers Dis 2013; 34(2): 509-18.
[http://dx.doi.org/10.3233/JAD-111982] [PMID: 23241554]
[23]
Arendash GW, Schleif W, Rezai-Zadeh K, et al. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain β-amyloid production. Neuroscience 2006; 142(4): 941-52.
[http://dx.doi.org/10.1016/j.neuroscience.2006.07.021] [PMID: 16938404]
[24]
Arendash GW, Mori T, Cao C, et al. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J Alzheimers Dis 2009; 17(3): 661-80.
[http://dx.doi.org/10.3233/JAD-2009-1087] [PMID: 19581722]
[25]
Ullah F, Ali T, Ullah N, Kim MO. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain. Neurochem Int 2015; 90: 114-24.
[http://dx.doi.org/10.1016/j.neuint.2015.07.001] [PMID: 26209154]
[26]
Mishra J, Kumar A. Improvement of mitochondrial NAD+/FAD+-linked state-3 respiration by caffeine attenuates quinolinic acid induced motor impairment in rats: Implications in Huntington’s disease. Pharmacol Rep 2014; 66(6): 1148-55.
[http://dx.doi.org/10.1016/j.pharep.2014.07.006] [PMID: 25443748]
[27]
Carelli-Alinovi C, Ficarra S, Russo AM, et al. Involvement of acetylcholinesterase and protein kinase C in the protective effect of caffeine against β-amyloid-induced alterations in red blood cells. Biochimie 2016; 121: 52-9.
[http://dx.doi.org/10.1016/j.biochi.2015.11.022] [PMID: 26620258]
[28]
Spiff A, Uwakwe A. Activation of human erythrocyte glutathione–s–transferase (EC. 2.5. 1.18) by caffeine (1, 3, 7–trimethylxanthine). J Appl Sci Environ Manag 2003; 7(2): 45-8.
[29]
Ikram M, Park TJ, Ali T, Kim MO. Antioxidant and neuroprotective effects of caffeine against Alzheimer’s and Parkinson’s Disease: Insight into the role of Nrf-2 and A2AR signaling. Antioxidants 2020; 9(9): 902.
[http://dx.doi.org/10.3390/antiox9090902] [PMID: 32971922]
[30]
Basurto-Islas G, Blanchard J, Tung YC, et al. Therapeutic benefits of a component of coffee in a rat model of Alzheimer’s disease. Neurobiol Aging 2014; 35(12): 2701-12.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.06.012] [PMID: 25034344]
[31]
Yelanchezian YMM, Waldvogel HJ, Faull RLM, Kwakowsky A. Neuroprotective effect of caffeine in Alzheimer’s Disease. Molecules 2022; 27(12): 3737.
[32]
Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124(3): 319-35.
[http://dx.doi.org/10.1002/cne.901240303] [PMID: 5861717]
[33]
Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4(11): 1313-7.
[http://dx.doi.org/10.1038/3305] [PMID: 9809557]
[34]
Magavi SSP, Mitchell BD, Szentirmai O, Carter BS, Macklis JD. Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J Neurosci 2005; 25(46): 10729-39.
[http://dx.doi.org/10.1523/JNEUROSCI.2250-05.2005] [PMID: 16291946]
[35]
Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature 2001; 410(6826): 372-6.
[http://dx.doi.org/10.1038/35066584] [PMID: 11268214]
[36]
Jacobs BL, van Praag H, Gage FH. Adult brain neurogenesis and psychiatry: A novel theory of depression. Mol Psychiatry 2000; 5(3): 262-9.
[http://dx.doi.org/10.1038/sj.mp.4000712] [PMID: 10889528]
[37]
Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997; 386(6624): 493-5.
[http://dx.doi.org/10.1038/386493a0] [PMID: 9087407]
[38]
Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. J Neurosci 1996; 16(6): 2027-33.
[http://dx.doi.org/10.1523/JNEUROSCI.16-06-02027.1996] [PMID: 8604047]
[39]
Gardener SL, Rainey-Smith SR, Villemagne VL, et al. Higher coffee consumption is associated with slower cognitive decline and less cerebral aβ-amyloid accumulation over 126 months: Data from the Australian imaging, biomarkers, and lifestyle study. Front Aging Neurosci 2021; 13: 744872.
[http://dx.doi.org/10.3389/fnagi.2021.744872] [PMID: 34867277]
[40]
Sahu S, Kauser H, Ray K, Kishore K, Kumar S, Panjwani U. Caffeine and modafinil promote adult neuronal cell proliferation during 48h of total sleep deprivation in rat dentate gyrus. Exp Neurol 2013; 248: 470-81.
[http://dx.doi.org/10.1016/j.expneurol.2013.07.021] [PMID: 23920241]
[41]
Stazi M, Lehmann S, Sakib MS, et al. Long-term caffeine treatment of Alzheimer mouse models ameliorates behavioural deficits and neuron loss and promotes cellular and molecular markers of neurogenesis. Cell Mol Life Sci 2022; 79(1): 55.
[http://dx.doi.org/10.1007/s00018-021-04062-8] [PMID: 34913091]
[42]
Viña J, Lloret A. Why women have more Alzheimer’s disease than men: Gender and mitochondrial toxicity of amyloid-beta peptide. J Alzheimers Dis 2010; 20: S527-33.
[http://dx.doi.org/10.3233/JAD-2010-100501] [PMID: 20442496]
[43]
Dufouil C, Seshadri S, Chêne G. Cardiovascular risk profile in women and dementia. J Alzheimers Dis 2014; 42(s4) (Suppl. 4): S353-63.
[http://dx.doi.org/10.3233/JAD-141629] [PMID: 25351109]
[44]
Assis MS, Soares AC, Sousa DN, et al. Effects of caffeine on behavioural and cognitive deficits in rats. Basic Clin Pharmacol Toxicol 2018; 123(4): 435-42.
[http://dx.doi.org/10.1111/bcpt.13036] [PMID: 29736913]
[45]
Dias ALA, de Oliveira Golzio AMF, de Lima Santos BH, et al. Post-learning caffeine administration improves ‘what-when’ and ‘what-where’ components of episodic-like memory in rats. Behav Brain Res 2022; 433: 113982.
[http://dx.doi.org/10.1016/j.bbr.2022.113982] [PMID: 35779707]
[46]
Krishna KV, Saha RN, Singhvi G, Dubey SK. Pre-clinical pharmacokinetic-pharmacodynamic modelling and biodistribution studies of donepezil hydrochloride by a validated HPLC method. RSC Advances 2018; 8(44): 24740-9.
[http://dx.doi.org/10.1039/C8RA03379J] [PMID: 35542150]
[47]
Das TK, Chakrabarti SK, Zulkipli IN, Abdul Hamid MRW. Curcumin ameliorates the impaired insulin signaling involved in the pathogenesis of Alzheimer’s Disease in rats. J Alzheimers Dis Rep 2019; 3(1): 59-70.
[http://dx.doi.org/10.3233/ADR-180091] [PMID: 31025030]
[48]
Paxinos G, Watson C. The rat brain in stereotaxic coordinates: Hard cover edition. Amsterdam: Elsevier 2006.
[49]
Mehla J, Pahuja M, Gupta YK. Streptozotocin-induced sporadic Alzheimer’s disease: Selection of appropriate dose. J Alzheimers Dis 2012; 33(1): 17-21.
[http://dx.doi.org/10.3233/JAD-2012-120958] [PMID: 22886014]
[50]
Kraska A, Santin MD, Dorieux O, et al. In vivo cross-sectional characterization of cerebral alterations induced by intracerebroventricular administration of streptozotocin. PLoS One 2012; 7(9): e46196.
[http://dx.doi.org/10.1371/journal.pone.0046196] [PMID: 23049978]
[51]
Moreira-Silva D, Vizin R, Martins T, Ferreira T, Almeida M, Carrettiero D. Intracerebral injection of streptozotocin to model Alzheimer Disease in rats. Bio Protoc 2019; 9(20): e3397.
[http://dx.doi.org/10.21769/BioProtoc.3397] [PMID: 33654898]
[52]
Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 1988; 31(1): 47-59.
[http://dx.doi.org/10.1016/0166-4328(88)90157-X] [PMID: 3228475]
[53]
Mishra SK, Singh S, Shukla S, Shukla R. Intracerebroventricular streptozotocin impairs adult neurogenesis and cognitive functions via regulating neuroinflammation and insulin signaling in adult rats. Neurochem Int 2018; 113: 56-68.
[http://dx.doi.org/10.1016/j.neuint.2017.11.012] [PMID: 29174383]
[54]
Tiwari V, Mishra A, Singh S, et al. Protriptyline improves spatial memory and reduces oxidative damage by regulating NFκB-BDNF/CREB signaling axis in streptozotocin-induced rat model of Alzheimer’s disease. Brain Res 2021; 1754: 147261.
[http://dx.doi.org/10.1016/j.brainres.2020.147261] [PMID: 33422534]
[55]
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82(1): 70-7.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[56]
Tiwari V, Singh M, Rawat JK, et al. Redefining the role of peripheral LPS as a neuroinflammatory agent and evaluating the role of hydrogen sulphide through metformin intervention. Inflammopharmacology 2016; 24(5): 253-64.
[http://dx.doi.org/10.1007/s10787-016-0274-3] [PMID: 27488281]
[57]
Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001; 5(1): 62-71.
[http://dx.doi.org/10.1006/niox.2000.0319] [PMID: 11178938]
[58]
Mishra A, Singh S, Tiwari V, Bano S, Shukla S. Dopamine D1 receptor agonism induces dynamin related protein-1 inhibition to improve mitochondrial biogenesis and dopaminergic neurogenesis in rat model of Parkinson’s disease. Behav Brain Res 2020; 378: 112304.
[http://dx.doi.org/10.1016/j.bbr.2019.112304] [PMID: 31626851]
[59]
Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[60]
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680-5.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[61]
Singh S, Mishra A, Mohanbhai SJ, et al. Axin-2 knockdown promote mitochondrial biogenesis and dopaminergic neurogenesis by regulating Wnt/β-catenin signaling in rat model of Parkinson’s disease. Free Radic Biol Med 2018; 129: 73-87.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.033] [PMID: 30176346]
[62]
Mayer G, Nitsch R, Hoyer S. Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res 1990; 532(1-2): 95-100.
[http://dx.doi.org/10.1016/0006-8993(90)91747-5] [PMID: 2149302]
[63]
Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 1998; 112(5): 1199-208.
[http://dx.doi.org/10.1037/0735-7044.112.5.1199] [PMID: 9829797]
[64]
Blokland A, Jolles J. Behavioral and biochemical effects of an ICV injection of streptozotocin in old Lewis rats. Pharmacol Biochem Behav 1994; 47(4): 833-7.
[http://dx.doi.org/10.1016/0091-3057(94)90284-4] [PMID: 8029252]
[65]
Cappelletti S, Daria P, Sani G, Aromatario M. Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol 2015; 13(1): 71-88.
[http://dx.doi.org/10.2174/1570159X13666141210215655] [PMID: 26074744]
[66]
van Duinen H, Lorist MM, Zijdewind I. The effect of caffeine on cognitive task performance and motor fatigue. Psychopharmacology 2005; 180(3): 539-47.
[http://dx.doi.org/10.1007/s00213-005-2191-9] [PMID: 15723227]
[67]
Singh S, Mishra A, Srivastava N, Shukla R, Shukla S. Acetyl-l-Carnitine via upegulating dopamine D1 receptor and attenuating microglial activation prevents neuronal loss and improves memory functions in parkinsonian rats. Mol Neurobiol 2018; 55(1): 583-602.
[http://dx.doi.org/10.1007/s12035-016-0293-5] [PMID: 27975173]
[68]
Kamat PK, Kalani A, Rai S, et al. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s Disease: Understanding the therapeutics strategies. Mol Neurobiol 2016; 53(1): 648-61.
[http://dx.doi.org/10.1007/s12035-014-9053-6] [PMID: 25511446]
[69]
Cardoso S, Santos RX, Correia SC, et al. Insulin-induced recurrent hypoglycemia exacerbates diabetic brain mitochondrial dysfunction and oxidative imbalance. Neurobiol Dis 2013; 49: 1-12.
[http://dx.doi.org/10.1016/j.nbd.2012.08.008] [PMID: 22940631]
[70]
Dzoljić E, Nesić Z, Stojanović R, et al. [Nitric oxide, neurodegeneration, and Parkinson’s disease]. Vojnosanit Pregl 2005; 62(10): 751-6.
[http://dx.doi.org/10.2298/VSP0510751D] [PMID: 16305103]
[71]
Nakamura T, Lipton SA. Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: Potential implications for Alzheimer’s and Parkinson’s diseases. Apoptosis 2010; 15(11): 1354-63.
[http://dx.doi.org/10.1007/s10495-010-0476-x] [PMID: 20177970]
[72]
Butterfield DA, Lange MLB. Multifunctional roles of enolase in Alzheimer’s disease brain: Beyond altered glucose metabolism. J Neurochem 2009; 111(4): 915-33.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06397.x] [PMID: 19780894]
[73]
Lue LF, Brachova L, Civin HW, Rogers J. Inflammation, A beta deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J Neuropathol Exp Neurol 1996; 55(10): 1083-8.
[http://dx.doi.org/10.1097/00005072-199655100-00008] [PMID: 8858005]
[74]
Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 2010; 69(2): 155-67.
[http://dx.doi.org/10.1097/NEN.0b013e3181cb5af4] [PMID: 20084018]
[75]
Botton PH, Costa MS, Ardais AP, et al. Caffeine prevents disruption of memory consolidation in the inhibitory avoidance and novel object recognition tasks by scopolamine in adult mice. Behav Brain Res 2010; 214(2): 254-9.
[http://dx.doi.org/10.1016/j.bbr.2010.05.034] [PMID: 20553765]
[76]
Abreu RV, Silva-Oliveira EM, Moraes MFD, Pereira GS, Moraes-Santos T. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains. Pharmacol Biochem Behav 2011; 99(4): 659-64.
[http://dx.doi.org/10.1016/j.pbb.2011.06.010] [PMID: 21693129]
[77]
Angelucci MEM, Cesário C, Hiroi RH, Rosalen PL, Cunha CD. Effects of caffeine on learning and memory in rats tested in the Morris water maze. Braz J Med Biol Res 2002; 35(10): 1201-8.
[http://dx.doi.org/10.1590/S0100-879X2002001000013] [PMID: 12424493]
[78]
Marshad RA, Khatib RA, Amer H, et al. Streptozotocin-induced diabetes mellitus affects the NMDA receptors: Role of caffeine administration in enhancing learning, memory and locomotor deficits. Int J Health Sci 2018; 12(3): 10-7.
[PMID: 29896066]
[79]
Zheng H, Koo EH. Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener 2011; 6(1): 27.
[http://dx.doi.org/10.1186/1750-1326-6-27] [PMID: 21527012]
[80]
De Strooper B, Annaert W. Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 2000; 113(11): 1857-70.
[http://dx.doi.org/10.1242/jcs.113.11.1857] [PMID: 10806097]
[81]
Audrain M, Fol R, Dutar P, et al. Alzheimer’s disease-like APP processing in wild-type mice identifies synaptic defects as initial steps of disease progression. Mol Neurodegener 2016; 11(1): 5.
[http://dx.doi.org/10.1186/s13024-016-0070-y] [PMID: 26759118]
[82]
Goel R, Bhat SA, Hanif K, Nath C, Shukla R, Angiotensin II. Angiotensin II receptor blockers attenuate lipopolysaccharide-induced memory impairment by modulation of NF-κB-Mediated BDNF/CREB expression and apoptosis in spontaneously hypertensive rats. Mol Neurobiol 2018; 55(2): 1725-39.
[http://dx.doi.org/10.1007/s12035-017-0450-5] [PMID: 28215000]
[83]
Laurent C, Eddarkaoui S, Derisbourg M, et al. Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiol Aging 2014; 35(9): 2079-90.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.03.027] [PMID: 24780254]
[84]
Mancini RS, Wang Y, Weaver DF. Phenylindanes in Brewed coffee inhibit Amyloid-Beta and Tau aggregation. Front Neurosci 2018; 12: 735.
[http://dx.doi.org/10.3389/fnins.2018.00735] [PMID: 30369868]
[85]
Sharma B, Paul S. Action of caffeine as an amyloid inhibitor in the aggregation of Aβ 16–22 peptides. J Phys Chem B 2016; 120(34): 9019-33.
[http://dx.doi.org/10.1021/acs.jpcb.6b03892] [PMID: 27487451]
[86]
Li S, Geiger NH, Soliman ML, Hui L, Geiger JD, Chen X. Caffeine, through adenosine A3 receptor-mediated actions, suppresses Amyloid-β protein precursor internalization and Amyloid-β generation. J Alzheimers Dis 2015; 47(1): 73-83.
[http://dx.doi.org/10.3233/JAD-142223] [PMID: 26402756]
[87]
Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR. Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (25–35)-induced cognitive deficits in mice. Exp Neurol 2007; 203(1): 241-5.
[http://dx.doi.org/10.1016/j.expneurol.2006.08.008] [PMID: 17007839]
[88]
Cuccurazzu B, Bortolotto V, Valente MM, et al. Upregulation of mGlu2 receptors via NF-κB p65 acetylation is involved in the Proneurogenic and antidepressant effects of acetyl-L-carnitine. Neuropsychopharmacology 2013; 38(11): 2220-30.
[http://dx.doi.org/10.1038/npp.2013.121] [PMID: 23670591]
[89]
Chauhan G, Ray K, Sahu S, et al. Adenosine A1 receptor antagonist mitigates deleterious effects of sleep deprivation on adult neurogenesis and spatial reference memory in rats. Neuroscience 2016; 337: 107-16.
[http://dx.doi.org/10.1016/j.neuroscience.2016.09.007] [PMID: 27623393]
[90]
Crews L, Adame A, Patrick C, et al. Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci 2010; 30(37): 12252-62.
[http://dx.doi.org/10.1523/JNEUROSCI.1305-10.2010] [PMID: 20844121]
[91]
Boekhoorn K, Joels M, Lucassen PJ. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis 2006; 24(1): 1-14.
[http://dx.doi.org/10.1016/j.nbd.2006.04.017] [PMID: 16814555]
[92]
Mao ZF, Ouyang SH, Zhang QY, et al. New insights into the effects of caffeine on adult hippocampal neurogenesis in stressed mice: Inhibition of CORT-induced microglia activation. FASEB J 2020; 34(8): 10998-1014.
[http://dx.doi.org/10.1096/fj.202000146RR] [PMID: 32619083]
[93]
van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999; 2(3): 266-70.
[http://dx.doi.org/10.1038/6368] [PMID: 10195220]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy