Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Mini-Review Article

Bioactive Natural Products for Breast Cancer Chemoprevention and Treatment

Author(s): Asma A. Mokashi and Neela M. Bhatia*

Volume 19, Issue 10, 2023

Published on: 05 July, 2023

Article ID: e290523217422 Pages: 30

DOI: 10.2174/1573407219666230529151351

Price: $65

conference banner
Abstract

Background: In addition to being one of the deadliest tumors, breast cancer is also one of the most difficult to cure. Due to the serious side effects of current breast cancer treatments and the rise in drug resistance, current drugs are losing their effectiveness.

Potential Natural Bioactives: Bioactive natural compounds target various pathophysiological pathways involved in the development and progression of cancer and hence have the ability to prevent both the growth of breast cancer and the advancement of metastatic disease concurrently.

Natural anticancer compounds have been shown to be effective, complementary treatment may be of great assistance in this case.

Clinical Outcomes: Nutraceuticals and popular folk remedies may provide benefits over manufactured pharmaceuticals since they have fewer side effects and less toxicity in both in vitro and in vivo studies. A variety of natural compounds have been shown to reduce the aggressiveness of breast cancer, inhibit the growth of malignant cells, and alter the pathways involved in cancer development and progression. Either by directly affecting certain biological targets, such genes, or by indirectly stabilising conjugates that have an impact on metabolic processes, natural compounds called phytochemicals can enhance human health.

Mechanistic Pathways: There are many promising bioactive natural products that can be used to treat breast cancer, including those that inhibit aromatase activity, target HIF-1 signaling, inhibit cytoplasmic signaling, modulate epigenetic regulation, modulate estrogen signaling pathways, or work in chemosensitivity/adjuvant therapy (such as resveratrol, epigallocatechin-3-gallate, and eugenol).

Keywords: Cancer, breast, mechanism, natural products, targets, phytoconstituents.

Graphical Abstract
[1]
Konieczny, M.; Cipora, E.; Sygit, K.; Fal, A. Quality of life of women with breast cancer and socio-demographic factors. Asian Pac. J. Cancer Prev., 2020, 21(1), 185-193.
[http://dx.doi.org/10.31557/APJCP.2020.21.1.185] [PMID: 31983183]
[2]
Lei, S.; Zheng, R.; Zhang, S.; Wang, S.; Chen, R.; Sun, K.; Zeng, H.; Zhou, J.; Wei, W. Global patterns of breast cancer incidence and mortality: A population‐based cancer registry data analysis from 2000 to 2020. Cancer Commun., 2021, 41(11), 1183-1194.
[http://dx.doi.org/10.1002/cac2.12207] [PMID: 34399040]
[3]
World Health Organization International Agency for Research on Cancer; , 2019. Available from [https://www.iarc.who.int
[4]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[5]
Wilkinson, L.; Gathani, T. Understanding breast cancer as a global health concern. Br. J. Radiol., 2022, 95(1130), 20211033.
[http://dx.doi.org/10.1259/bjr.20211033] [PMID: 34905391]
[6]
Ke, D.Y.J.; El-Sahli, S.; Wang, L. The potential of natural products in the treatment of triple-negative breast cancer. Curr. Cancer Drug Targets, 2022, 22(5), 388-403.
[http://dx.doi.org/10.2174/1568009622666211231140623] [PMID: 34970954]
[7]
Sartaj, A.; Baboota, S.; Ali, J. Assessment of combination approaches of phytoconstituents with chemotherapy for the treatment of breast cancer: A systematic review. Curr. Pharm. Des., 2021, 27(45), 4630-4648.
[http://dx.doi.org/10.2174/1381612827666210902155752] [PMID: 34477513]
[8]
Buumba, B.M.; Bhardwaj, S.; Kaur, P. A critical review on recent development of techniques and drug targets in the management of breast cancer. Mini Rev. Med. Chem., 2021, 21(15), 2103-2129.
[http://dx.doi.org/10.2174/1389557521666210126125200] [PMID: 33573544]
[9]
Lee, J.Y.; Kim, J.W.; Lim, M.C.; Kim, S.; Kim, H.S.; Choi, C.H.; Yi, J.Y.; Park, S.Y.; Kim, B.G. A phase II study of neoadjuvant chemotherapy plus durvalumab and tremelimumab in advanced-stage ovarian cancer: A Korean Gynecologic Oncology Group Study (KGOG 3046), TRU-D. J. Gynecol. Oncol., 2019, 30(6), e112.
[http://dx.doi.org/10.3802/jgo.2019.30.e112] [PMID: 31576697]
[10]
Pathak, K.; Pathak, M.P.; Saikia, R.; Gogoi, U.; Sahariah, J.J.; Zothantluanga, J.H.; Samanta, A.; Das, A. Cancer chemotherapy via natural bioactive compounds. Curr. Drug Discov. Technol., 2022, 19(4), e310322202888.
[http://dx.doi.org/10.2174/1570163819666220331095744] [PMID: 35362385]
[11]
Chen, X.; Sood, S.; Yang, C.; Li, N.; Sun, Z. Five-lipoxygenase pathway of arachidonic acid metabolism in carcino-genesis and cancer chemoprevention. Curr. Cancer Drug Targets, 2006, 6(7), 613-622.
[http://dx.doi.org/10.2174/156800906778742451] [PMID: 17100567]
[12]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[13]
Singla, H.; Munshi, A.; Banipal, R.P.S.; Kumar, V. Recent updates on the therapeutic potential of HER2 tyrosine kinase inhibitors for the treatment of breast cancer. Curr. Cancer Drug Targets, 2018, 18(4), 306-327.
[http://dx.doi.org/10.2174/1568009617666170623122213] [PMID: 28669349]
[14]
Prabhakar, P.; Pavankumar, G.S.; Raghu, S.V.; Rao, S.; Prasad, K.; Baliga, M.S. Utility of indian fruits in cancer prevention and treatment: Time to undertake translational and bedside studies. Curr. Pharm. Des., 2022, 28(19), 1543-1560.
[15]
Ariazi, E.; Ariazi, J.; Cordera, F.; Jordan, V. Estrogen receptors as therapeutic targets in breast cancer. Curr. Top. Med. Chem., 2006, 6(3), 181-202.
[http://dx.doi.org/10.2174/156802606776173483] [PMID: 16515478]
[16]
Nagini, S. Breast cancer: Current molecular therapeutic targets and new players. Anticancer. Agents Med. Chem., 2017, 17(2), 152-163.
[http://dx.doi.org/10.2174/1871520616666160502122724] [PMID: 27137076]
[17]
Musa, M.; Cooperwood, J.; Khan, M.O. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem., 2008, 15(26), 2664-2679.
[http://dx.doi.org/10.2174/092986708786242877] [PMID: 18991629]
[18]
Bertucci, F.; Finetti, P.; Birnbaum, D. Basal breast cancer: A complex and deadly molecular subtype. Curr. Mol. Med., 2012, 12(1), 96-110.
[http://dx.doi.org/10.2174/156652412798376134] [PMID: 22082486]
[19]
Breast Cancer, WHO Statistics. Available from : https://www.who.int/news-room/fact-sheets/detail/breast-cancer
[20]
Fisusi, F.A.; Akala, E.O. Drug combinations in breast cancer therapy. Pharm. Nanotechnol., 2019, 7(1), 3-23.
[http://dx.doi.org/10.2174/2211738507666190122111224] [PMID: 30666921]
[21]
Bonofiglio, D.; Giordano, C.; De Amicis, F.; Lanzino, M.; Andò, S. Natural products as promising antitumoral agents in breast cancer: Mechanisms of action and molecular targets. Mini Rev. Med. Chem., 2016, 16(8), 596-604.
[http://dx.doi.org/10.2174/1389557515666150709110959] [PMID: 26156544]
[22]
Siddiqui, J.; Singh, A.; Chagtoo, M.; Singh, N.; Godbole, M.; Chakravarti, B. Phytochemicals for breast cancer therapy: current status and future implications. Curr. Cancer Drug Targets, 2015, 15(2), 116-135.
[http://dx.doi.org/10.2174/1568009615666141229152256] [PMID: 25544650]
[23]
la Mare, J-A.; Contu, L.; Hunter, M.; Moyo, B.; Sterrenberg, J.; Dhanani, K.; Mutsvunguma, L.; Edkins, A. Breast cancer: Current developments in molecular approaches to diagnosis and treatment. Recent Patents Anticancer Drug Discov., 2014, 9(2), 153-175.
[http://dx.doi.org/10.2174/15748928113086660046]
[24]
Nicolini, A.; Carpi, A.; Ferrari, P.; Mario Biava, P.; Rossi, G. Immunotherapy and hormone-therapy in metastatic breast cancer: A review and an update. Curr. Drug Targets, 2016, 17(10), 1127-1139.
[http://dx.doi.org/10.2174/1389450117666160201114752] [PMID: 26844558]
[25]
Lau, T.Y.; Leung, L.K. Soya isoflavones suppress phorbol 12-myristate 13-acetate-induced COX-2 expression in MCF-7 cells. Br. J. Nutr., 2006, 96(1), 169-176.
[http://dx.doi.org/10.1079/BJN20061639] [PMID: 16870006]
[26]
Scheckel, K.A.; Degner, S.C.; Romagnolo, D.F. Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines. J. Nutr., 2008, 138(11), 2098-2105.
[http://dx.doi.org/10.3945/jn.108.090431] [PMID: 18936204]
[27]
Kim, S.; Kim, S.H.; Hur, S.M.; Lee, S.K.; Kim, W.W.; Kim, J.S.; Kim, J.H.; Choe, J.H.; Nam, S.J.; Lee, J.E.; Yang, J.H. Silibinin prevents TPA-induced MMP-9 expression by down-regulation of COX-2 in human breast cancer cells. J. Ethnopharmacol., 2009, 126(2), 252-257.
[http://dx.doi.org/10.1016/j.jep.2009.08.032] [PMID: 19715751]
[28]
Degner, S.C.; Papoutsis, A.J.; Selmin, O.; Romagnolo, D.F. Targeting of aryl hydrocarbon receptor-mediated activation of cyclooxygenase-2 expression by the indole-3-carbinol metabolite 3,3′-diindolylmethane in breast cancer cells. J. Nutr., 2009, 139(1), 26-32.
[http://dx.doi.org/10.3945/jn.108.099259] [PMID: 19056653]
[29]
Chung, M.H.; Kim, D.H.; Na, H.K.; Kim, J.H.; Kim, H.N.; Haegeman, G.; Surh, Y.J. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutat. Res., 2014, 768, 74-83.
[http://dx.doi.org/10.1016/j.mrfmmm.2014.04.003] [PMID: 24742714]
[30]
Kim, H.N.; Kim, D.H.; Kim, E.H.; Lee, M.H.; Kundu, J.K.; Na, H.K.; Cha, Y.N.; Surh, Y.J. Sulforaphane inhibits phorbol ester-stimulated IKK-NF-κB signaling and COX-2 expression in human mammary epithelial cells by targeting NF-κB activating kinase and ERK. Cancer Lett., 2014, 351(1), 41-49.
[http://dx.doi.org/10.1016/j.canlet.2014.03.037] [PMID: 24747121]
[31]
Calado, A.; Neves, P.M.; Santos, T.; Ravasco, P. The effect of flaxseed in breast cancer: A literature review. Front. Nutr., 2018, 5, 4.
[http://dx.doi.org/10.3389/fnut.2018.00004] [PMID: 29468163]
[32]
Riby, J.E.; Firestone, G.L.; Bjeldanes, L.F. 3,3′-Diindolylmethane reduces levels of HIF-1α and HIF-1 activity in hypoxic cultured human cancer cells. Biochem. Pharmacol., 2008, 75(9), 1858-1867.
[http://dx.doi.org/10.1016/j.bcp.2008.01.017] [PMID: 18329003]
[33]
Courtnay, R.; Ngo, D.C.; Malik, N.; Ververis, K.; Tortorella, S.M.; Karagiannis, T.C. Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K. Mol. Biol. Rep., 2015, 42(4), 841-851.
[http://dx.doi.org/10.1007/s11033-015-3858-x] [PMID: 25689954]
[34]
Li, M.J.; Yin, Y.C.; Wang, J.; Jiang, Y.F. Green tea compounds in breast cancer prevention and treatment. World J. Clin. Oncol., 2014, 5(3), 520-528.
[http://dx.doi.org/10.5306/wjco.v5.i3.520] [PMID: 25114865]
[35]
Lee, S.H.; Jaganath, I.B.; Atiya, N.; Manikam, R.; Sekaran, S.D. Suppression of ERK1/2 and hypoxia pathways by four Phyllanthus species inhibits metastasis of human breast cancer cells. Yao Wu Shi Pin Fen Xi, 2016, 24(4), 855-865.
[PMID: 28911625]
[36]
Wang, Y.; Man Gho, W.; Chan, F.L.; Chen, S.; Leung, L.K. The red clover (Trifolium pratense) isoflavone biochanin A inhibits aromatase activity and expression. Br. J. Nutr., 2008, 99(2), 303-310.
[http://dx.doi.org/10.1017/S0007114507811974] [PMID: 17761019]
[37]
Licznerska, B.E.; Szaefer, H.; Murias, M.; Bartoszek, A.; Baer-Dubowska, W. Modulation of CYP19 expression by cabbage juices and their active components: indole-3-carbinol and 3,3′-diindolylmethene in human breast epithelial cell lines. Eur. J. Nutr., 2013, 52(5), 1483-1492.
[http://dx.doi.org/10.1007/s00394-012-0455-9] [PMID: 23090135]
[38]
Sharma, P.; McClees, S.; Afaq, F. Pomegranate for prevention and treatment of cancer: An update. Molecules, 2017, 22(1), 177.
[http://dx.doi.org/10.3390/molecules22010177] [PMID: 28125044]
[39]
Roy, A.M.; Baliga, M.S.; Katiyar, S.K. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor–negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol. Cancer Ther., 2005, 4(1), 81-90.
[http://dx.doi.org/10.1158/1535-7163.81.4.1] [PMID: 15657356]
[40]
Hsu, Y.C.; Liou, Y.M. The anti-cancer effects of (-)-Epigalocathine-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells. J. Cell. Physiol., 2011, 226(10), 2721-2730.
[http://dx.doi.org/10.1002/jcp.22623] [PMID: 21792929]
[41]
Hong, O.Y.; Noh, E.M.; Jang, H.Y.; Lee, Y.R.; Lee, B.K.; Jung, S.H.; Kim, J.S.; Youn, H.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway. Oncol. Lett., 2017, 14(1), 441-446.
[http://dx.doi.org/10.3892/ol.2017.6108] [PMID: 28693189]
[42]
Rahman, K.M.W.; Li, Y.; Wang, Z.; Sarkar, S.H.; Sarkar, F.H. Gene expression profiling revealed survivin as a target of 3,3′-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells. Cancer Res., 2006, 66(9), 4952-4960.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3918] [PMID: 16651453]
[43]
Liu, Q.; Loo, W.T.Y.; Sze, S.C.W.; Tong, Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription. Phytomedicine, 2009, 16(10), 916-922.
[http://dx.doi.org/10.1016/j.phymed.2009.04.008] [PMID: 19524420]
[44]
Sun, S.H.; Huang, H.C.; Huang, C.; Lin, J.K. Cycle arrest and apoptosis in MDA-MB-231/Her2 cells induced by curcumin. Eur. J. Pharmacol., 2012, 690(1-3), 22-30.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.036] [PMID: 22705896]
[45]
Shim, H.Y.; Park, J.H.; Paik, H.D.; Nah, S.Y.; Kim, D.S.H.L.; Han, Y.S. Genistein-induced apoptosis of human breast cancer MCF-7 cells involves calpain–caspase and apoptosis signaling kinase 1–p38 mitogen-activated protein kinase activation cascades. Anticancer Drugs, 2007, 18(6), 649-657.
[http://dx.doi.org/10.1097/CAD.0b013e3280825573] [PMID: 17762393]
[46]
Liu, X.; Sun, C.; Jin, X.; Li, P.; Ye, F.; Zhao, T.; Gong, L.; Li, Q. Genistein enhances the radiosensitivity of breast cancer cells via G2/M cell cycle arrest and apoptosis. Molecules, 2013, 18(11), 13200-13217.
[http://dx.doi.org/10.3390/molecules181113200] [PMID: 24284485]
[47]
Chen, J.; Duan, Y.; Zhang, X.; Ye, Y.; Ge, B.; Chen, J. Genistein induces apoptosis by the inactivation of the IGF-1R/p-Akt signaling pathway in MCF-7 human breast cancer cells. Food Funct., 2015, 6(3), 995-1000.
[http://dx.doi.org/10.1039/C4FO01141D] [PMID: 25675448]
[48]
Takeshima, M.; Ono, M.; Higuchi, T.; Chen, C.; Hara, T.; Nakano, S. Anti‐proliferative and apoptosis‐inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci., 2014, 105(3), 252-257.
[http://dx.doi.org/10.1111/cas.12349] [PMID: 24397737]
[49]
Peng, S.J.; Li, J.; Zhou, Y.; Tuo, M.; Qin, X.X.; Yu, Q.; Cheng, H.; Li, Y.M. In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells. Genet. Mol. Res., 2017, 16(2), 13.
[http://dx.doi.org/10.4238/gmr16029434] [PMID: 28407181]
[50]
Pledgie-Tracy, A.; Sobolewski, M.D.; Davidson, N.E. Sulforaphane induces cell type–specific apoptosis in human breast cancer cell lines. Mol. Cancer Ther., 2007, 6(3), 1013-1021.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0494] [PMID: 17339367]
[51]
Kim, S.H.; Park, H.J.; Moon, D.O. Sulforaphane sensitizes human breast cancer cells to paclitaxel-induced apoptosis by downregulating the NF-κB signaling pathway. Oncol. Lett., 2017, 13(6), 4427-4432.
[http://dx.doi.org/10.3892/ol.2017.5950] [PMID: 28599444]
[52]
Li, W.; Liu, J.; Jackson, K.; Shi, R.; Zhao, Y. Sensitizing the therapeutic efficacy of taxol with shikonin in human breast cancer cells. PLoS One, 2014, 9(4), e94079.
[http://dx.doi.org/10.1371/journal.pone.0094079] [PMID: 24710512]
[53]
Zhang, C.H.; Wang, J.; Zhang, L.X.; Lu, Y.H.; Ji, T.H.; Xu, L.; Ling, L.J. Shikonin reduces tamoxifen resistance through long non-coding RNA uc.57. Oncotarget, 2017, 8(51), 88658-88669.
[http://dx.doi.org/10.18632/oncotarget.20809] [PMID: 29179465]
[54]
Jiang, K.; Wang, W.; Jin, X.; Wang, Z.; Ji, Z.; Meng, G. Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncol. Rep., 2015, 33(6), 2711-2718.
[http://dx.doi.org/10.3892/or.2015.3915] [PMID: 25891311]
[55]
Laux, M.T.; Aregullin, M.; Berry, J.P.; Flanders, J.A.; Rodriguez, E. Identification of a p53-dependent pathway in the induction of apoptosis of human breast cancer cells by the natural product, resveratrol. J. Altern. Complement. Med., 2004, 10(2), 235-239.
[http://dx.doi.org/10.1089/107555304323062211] [PMID: 15165403]
[56]
Li, Y.; Liu, J.; Liu, X.; Xing, K.; Wang, Y.; Li, F.; Yao, L. Resveratrol-induced cell inhibition of growth and apoptosis in MCF7 human breast cancer cells are associated with modulation of phosphorylated Akt and caspase-9. Appl. Biochem. Biotechnol., 2006, 135(3), 181-192.
[http://dx.doi.org/10.1385/ABAB:135:3:181] [PMID: 17299206]
[57]
Sareen, D.; Darjatmoko, S.R.; Albert, D.M.; Polans, A.S. Mitochondria, calcium, and calpain are key mediators of resveratrol-induced apoptosis in breast cancer. Mol. Pharmacol., 2007, 72(6), 1466-1475.
[http://dx.doi.org/10.1124/mol.107.039040] [PMID: 17848600]
[58]
Kushwaha, P.P.; Singh, A.K.; Prajapati, K.S.; Shuaib, M.; Fayez, S.; Bringmann, G.; Kumar, S. Induction of apoptosis in breast cancer cells by naphthylisoquinoline alkaloids. Toxicol. Appl. Pharmacol., 2020, 409, 115297.
[http://dx.doi.org/10.1016/j.taap.2020.115297] [PMID: 33091442]
[59]
Fasoulakis, Z.; Koutras, A.; Syllaios, A.; Schizas, D.; Garmpis, N.; Diakosavvas, M.; Angelou, K.; Tsatsaris, G.; Pagkalos, A.; Ntounis, T.; Kontomanolis, E.N. Breast cancer apoptosis and the therapeutic role of luteolin. Chirurgia, 2021, 116(2), 170-177.
[http://dx.doi.org/10.21614/chirurgia.116.2.170] [PMID: 33950812]
[60]
Liu, J.; Liu, Y.; Li, H.; Wei, C.; Mao, A.; Liu, W.; Pan, G. Polyphyllin D induces apoptosis and protective autophagy in breast cancer cells through JNK1-Bcl-2 pathway. J. Ethnopharmacol., 2022, 282, 114591.
[http://dx.doi.org/10.1016/j.jep.2021.114591] [PMID: 34481873]
[61]
Sehdev, V.; Lai, J.C. Bhushan, A Biochanin A modulates cell viability, invasion, and growth promoting signaling pathways in HER-2-positive breast cancer cells. J. Oncol., 2009, 2009, 121458.
[62]
Júnior, P.L.S.; Câmara, D.A.D.; Costa, A.S.; Ruiz, J.L.M.; Levy, D.; Azevedo, R.A.; Pasqualoto, K.F.M.; de Oliveira, C.F.; de Melo, T.C.; Pessoa, N.D.S.; Fonseca, P.M.M.; Pereira, A.; Araldi, R.P.; Ferreira, A.K. Apoptotic effect of eugenol envolves G2/M phase abrogation accompanied by mitochondrial damage and clastogenic effect on cancer cell in vitro. Phytomedicine, 2016, 23(7), 725-735.
[http://dx.doi.org/10.1016/j.phymed.2016.03.014] [PMID: 27235711]
[63]
Song, L.; Chen, X.; Mi, L.; Liu, C.; Zhu, S.; Yang, T.; Luo, X.; Zhang, Q.; Lu, H.; Liang, X. Icariin‐induced inhibition of SIRT6/NF‐κB triggers redox mediated apoptosis and enhances anti‐tumor immunity in triple‐negative breast cancer. Cancer Sci., 2020, 111(11), 4242-4256.
[http://dx.doi.org/10.1111/cas.14648] [PMID: 32926492]
[64]
Ahmadipour, F.; Noordin, M.I.; Mohan, S.; Arya, A.; Paydar, M.; Looi, C.Y.; Keong, Y.S.; Siyamak, E.N.; Fani, S.; Firoozi, M.; Yong, C.L.; Sukari, M.A.; Kamalidehghan, B. Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44(+)/CD24(-/low)): an in vitro study. Drug Des. Devel. Ther., 2015, 9, 1193-1208.
[PMID: 25759564]
[65]
Yang, J.; Cao, Y.; Sun, J.; Zhang, Y. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med. Oncol., 2010, 27(4), 1114-1118.
[http://dx.doi.org/10.1007/s12032-009-9344-3] [PMID: 19908170]
[66]
Deb, G.; Thakur, V.S.; Limaye, A.M.; Gupta, S. Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells. Mol. Carcinog., 2015, 54(6), 485-499.
[http://dx.doi.org/10.1002/mc.22121] [PMID: 24481780]
[67]
Li, Y.; Chen, H.; Hardy, T.M.; Tollefsbol, T.O. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. PLoS One, 2013, 8(1), e54369.
[http://dx.doi.org/10.1371/journal.pone.0054369] [PMID: 23342141]
[68]
King-Batoon, A.; Leszczynska, J.M.; Klein, C.B. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ. Mol. Mutagen., 2008, 49(1), 36-45.
[http://dx.doi.org/10.1002/em.20363] [PMID: 18181168]
[69]
Castillo-Pichardo, L.; Cubano, L.A.; Dharmawardhane, S. Dietary grape polyphenol resveratrol increases mammary tumor growth and metastasis in immunocompromised mice. BMC Complement. Altern. Med., 2013, 13(1), 6.
[http://dx.doi.org/10.1186/1472-6882-13-6] [PMID: 23298290]
[70]
Hsieh, T.; Wu, J.M. Resveratrol: Biological and pharmaceutical properties as anticancer molecule. Biofactors, 2010, 36(5), 360-369.
[http://dx.doi.org/10.1002/biof.105] [PMID: 20623546]
[71]
Pan, C.; Hu, Y.; Li, J.; Wang, Z.; Huang, J.; Zhang, S.; Ding, L. Estrogen receptor-α36 is involved in pterostilbene-induced apoptosis and anti-proliferation in in vitro and in vivo breast cancer. PLoS One, 2014, 9(8), e104459.
[http://dx.doi.org/10.1371/journal.pone.0104459] [PMID: 25127034]
[72]
Ahmed, S.; Othman, N.H. The anti-cancer effects of Tualang honey in modulating breast carcinogenesis: an experimental animal study. BMC Complement. Altern. Med., 2017, 17(1), 208.
[http://dx.doi.org/10.1186/s12906-017-1721-4] [PMID: 28399853]
[73]
Ghiulai, R.; Avram, S.; Stoian, D.; Pavel, I.Z.; Coricovac, D.; Oprean, C.; Vlase, L.; Farcas, C.; Mioc, M.; Minda, D.; Motoc, A. Lemon balm extracts prevent breast cancer progression in vitro and in ovo on chorioallantoic membrane assay. Evid. Based Complement. Alternat. Med., 2020, 2020, 6489159.
[http://dx.doi.org/10.1155/2020/6489159]
[74]
Maharjan, C.K.; Mo, J.; Wang, L.; Kim, M.C.; Wang, S.; Borcherding, N.; Vikas, P.; Zhang, W. Natural and synthetic estrogens in chronic inflammation and breast cancer. Cancers., 2021, 14(1), 206.
[http://dx.doi.org/10.3390/cancers14010206] [PMID: 35008370]
[75]
Tan, X.; Chen, W.; Jiao, C.; Liang, H.; Yun, H.; He, C.; Chen, J.; Ma, X.; Xie, Y. Anti-tumor and immunomodulatory activity of the aqueous extract of Sarcodon imbricatus in vitro and in vivo. Food Funct., 2020, 11(1), 1110-1121.
[http://dx.doi.org/10.1039/C9FO01230C] [PMID: 31825431]
[76]
Aggarwal, B.B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R.A.; Bueso-Ramos, C.E.; Price, J.E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res., 2005, 11(20), 7490-7498.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1192] [PMID: 16243823]
[77]
Limtrakul, P.; Chearwae, W.; Shukla, S.; Phisalphong, C.; Ambudkar, S.V. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol. Cell. Biochem., 2007, 296(1-2), 85-95.
[http://dx.doi.org/10.1007/s11010-006-9302-8] [PMID: 16960658]
[78]
Shin, S.C.; Choi, J.S. Effects of epigallocatechin gallate on the oral bioavailability and pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats. Anticancer Drugs, 2009, 20(7), 584-588.
[http://dx.doi.org/10.1097/CAD.0b013e32832d6834] [PMID: 19491656]
[79]
Ahmad, A.; Ali, S.; Ahmed, A.; Ali, A.S.; Raz, A.; Sakr, W.A.; Rahman, K.M.W. 3, 3′-Diindolylmethane enhances the effectiveness of herceptin against HER-2/neu-expressing breast cancer cells. PLoS One, 2013, 8(1), e54657.
[http://dx.doi.org/10.1371/journal.pone.0054657] [PMID: 23372748]
[80]
Thomson, C.A.; Chow, H.H.S.; Wertheim, B.C.; Roe, D.J.; Stopeck, A.; Maskarinec, G.; Altbach, M.; Chalasani, P.; Huang, C.; Strom, M.B.; Galons, J.P.; Thompson, P.A. A randomized, placebo-controlled trial of diindolylmethane for breast cancer biomarker modulation in patients taking tamoxifen. Breast Cancer Res. Treat., 2017, 165(1), 97-107.
[http://dx.doi.org/10.1007/s10549-017-4292-7] [PMID: 28560655]
[81]
Lewinska, A.; Bednarz, D.; Adamczyk-Grochala, J.; Wnuk, M. Phytochemical-induced nucleolar stress results in the inhibition of breast cancer cell proliferation. Redox Biol., 2017, 12, 469-482.
[http://dx.doi.org/10.1016/j.redox.2017.03.014] [PMID: 28334682]
[82]
Li, Y.; Meeran, S.M.; Tollefsbol, T.O. Combinatorial bioactive botanicals re-sensitize tamoxifen treatment in ER-negative breast cancer via epigenetic reactivation of ERα expression. Sci. Rep., 2017, 7(1), 9345.
[http://dx.doi.org/10.1038/s41598-017-09764-3] [PMID: 28839265]
[83]
Chavoshi, H.; Vahedian, V.; Saghaei, S.; Pirouzpanah, M.B.; Raeisi, M.; Samadi, N. Adjuvant therapy with silibinin improves the efficacy of paclitaxel and cisplatin in MCF-7 breast cancer cells. Asian Pac. J. Cancer Prev., 2017, 18(8), 2243-2247.
[PMID: 28843263]
[84]
Molavi, O.; Narimani, F.; Asiaee, F.; Sharifi, S.; Tarhriz, V.; Shayanfar, A.; Hejazi, M.; Lai, R. Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy. Pharm. Biol., 2017, 55(1), 729-739.
[http://dx.doi.org/10.1080/13880209.2016.1270972] [PMID: 28027688]
[85]
Iriti, M.; Kubina, R.; Cochis, A.; Sorrentino, R.; Varoni, E.M.; Kabała-Dzik, A.; Azzimonti, B.; Dziedzic, A.; Rimondini, L.; Wojtyczka, R.D. Rutin, a quercetin glycoside, restores chemosensitivity in human breast cancer cells. Phytother. Res., 2017, 31(10), 1529-1538.
[http://dx.doi.org/10.1002/ptr.5878] [PMID: 28752532]
[86]
Elsayed, H.E.; Ebrahim, H.Y.; Mohyeldin, M.M.; Siddique, A.B.; Kamal, A.M.; Haggag, E.G.; El Sayed, K.A. Rutin as a novel c-Met inhibitory lead for the control of triple negative breast malignancies. Nutr. Cancer, 2017, 69(8), 1256-1271.
[http://dx.doi.org/10.1080/01635581.2017.1367936] [PMID: 29083228]
[87]
Moon, Y.J.; Brazeau, D.A.; Morris, M.E. Effects of flavonoids genistein and biochanin a on gene expression and their metabolism in human mammary cells. Nutr. Cancer, 2007, 57(1), 48-58.
[http://dx.doi.org/10.1080/01635580701268196] [PMID: 17516862]
[88]
Moon, Y.J.; Shin, B.S.; An, G.; Morris, M.E. Biochanin A inhibits breast cancer tumor growth in a murine xenograft model. Pharm. Res., 2008, 25(9), 2158-2163.
[http://dx.doi.org/10.1007/s11095-008-9583-6] [PMID: 18454305]
[89]
Choudhuri, T.; Pal, S.; Agwarwal, M.L.; Das, T.; Sa, G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett., 2002, 512(1-3), 334-340.
[http://dx.doi.org/10.1016/S0014-5793(02)02292-5] [PMID: 11852106]
[90]
Lin, M.T.; Chang, C.C.; Chen, S.T.; Chang, H.L.; Su, J.L.; Chau, Y.P.; Kuo, M.L. Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation. J. Biol. Chem., 2004, 279(23), 24015-24023.
[http://dx.doi.org/10.1074/jbc.M402305200] [PMID: 15044484]
[91]
Kakarala, M.; Brenner, D.E.; Korkaya, H.; Cheng, C.; Tazi, K.; Ginestier, C.; Liu, S.; Dontu, G.; Wicha, M.S. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res. Treat., 2010, 122(3), 777-785.
[http://dx.doi.org/10.1007/s10549-009-0612-x] [PMID: 19898931]
[92]
Chen, Y.; Shu, W.; Chen, W.; Wu, Q.; Liu, H.; Cui, G. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin. Pharmacol. Toxicol., 2007, 101(6), 427-433.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00142.x] [PMID: 17927689]
[93]
Goodin, M.G.; Fertuck, K.C.; Zacharewski, T.R.; Rosengren, R.J. Estrogen receptor-mediated actions of polyphenolic catechins in vivo and in vitro. Toxicol. Sci., 2002, 69(2), 354-361.
[http://dx.doi.org/10.1093/toxsci/69.2.354] [PMID: 12377984]
[94]
Baker, KM Bauer, AC Green tea catechin, EGCG, suppresses PCB 102-induced proliferation in estrogen-sensitive breast cancer cells. Int J Breast Cancer, 2015, 2015
[95]
Stearns, M.E.; Amatangelo, M.D.; Varma, D.; Sell, C.; Goodyear, S.M. Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am. J. Pathol., 2010, 177(6), 3169-3179.
[http://dx.doi.org/10.2353/ajpath.2010.100330] [PMID: 20971741]
[96]
Zhang, F.F.; Haslam, D.E.; Terry, M.B.; Knight, J.A.; Andrulis, I.L.; Daly, M.B.; Buys, S.S.; John, E.M. Dietary isoflavone intake and all-cause mortality in breast cancer survivors: The Breast Cancer Family Registry. Cancer, 2017, 123(11), 2070-2079.
[http://dx.doi.org/10.1002/cncr.30615] [PMID: 28263368]
[97]
Sergeev, I.N. Genistein induces Ca2+-mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells. Biochem. Biophys. Res. Commun., 2004, 321(2), 462-467.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.173] [PMID: 15358198]
[98]
Vissac-Sabatier, C.; Bignon, Y.J.; Bernard-Gallon, D.J. Effects of the phytoestrogens genistein and daidzein on BRCA2 tumor suppressor gene expression in breast cell lines. Nutr. Cancer, 2003, 45(2), 247-255.
[http://dx.doi.org/10.1207/S15327914NC4502_15] [PMID: 12881020]
[99]
Rao, A.V.; Shen, H. Effect of low dose lycopene intake on lycopene bioavailability and oxidative stress. Nutr. Res., 2002, 22(10), 1125-1131.
[http://dx.doi.org/10.1016/S0271-5317(02)00430-X]
[100]
Yao, Y.; Brodie, A.M.H.; Davidson, N.E.; Kensler, T.W.; Zhou, Q. Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer. Breast Cancer Res. Treat., 2010, 124(2), 585-591.
[http://dx.doi.org/10.1007/s10549-010-1023-8] [PMID: 20623181]
[101]
Jang, S.Y.; Lee, J.K.; Jang, E.H.; Jeong, S.Y.; Kim, J.H. Shikonin blocks migration and invasion of human breast cancer cells through inhibition of matrix metalloproteinase-9 activation. Oncol. Rep., 2014, 31(6), 2827-2833.
[http://dx.doi.org/10.3892/or.2014.3159] [PMID: 24789371]
[102]
Wang, W.; Dai, M.; Zhu, C.; Zhang, J.; Lin, L.; Ding, J.; Duan, W. Synthesis and biological activity of novel shikonin analogues. Bioorg. Med. Chem. Lett., 2009, 19(3), 735-737.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.032] [PMID: 19111464]
[103]
Qin, W.; Zhang, K.; Clarke, K.; Weiland, T.; Sauter, E.R. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr. Cancer, 2014, 66(2), 270-277.
[http://dx.doi.org/10.1080/01635581.2014.868910] [PMID: 24447120]
[104]
Stefanska, B.; Karlic, H.; Varga, F.; Fabianowska-Majewska, K.; Haslberger, A.G. Epigenetic mechanisms in anti-cancer actions of bioactive food components - the implications in cancer prevention. Br. J. Pharmacol., 2012, 167(2), 279-297.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02002.x] [PMID: 22536923]
[105]
Sinha, D.; Sarkar, N.; Biswas, J.; Bishayee, A. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin. Cancer Biol., 2016, 40-41, 209-232.
[106]
Park, M.A.; Hwang, K.A.; Choi, K.C. Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property? Lab. Anim. Res., 2011, 27(4), 265-273.
[http://dx.doi.org/10.5625/lar.2011.27.4.265] [PMID: 22232634]
[107]
Bhat, K.P.; Lantvit, D.; Christov, K.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res., 2001, 61(20), 7456-7463.
[PMID: 11606380]
[108]
Chow, H.H.S.; Garland, L.L.; Heckman-Stoddard, B.M.; Hsu, C.H.; Butler, V.D.; Cordova, C.A.; Chew, W.M.; Cornelison, T.L. A pilot clinical study of resveratrol in postmenopausal women with high body mass index: effects on systemic sex steroid hormones. J. Transl. Med., 2014, 12(1), 223.
[http://dx.doi.org/10.1186/s12967-014-0223-0] [PMID: 25115686]
[109]
Fulda, S.; Debatin, K.M. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res., 2004, 64(1), 337-346.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-1656] [PMID: 14729643]
[110]
Karimi, M.; Babaahmadi-Rezaei, H.; Mohammadzadeh, G.; Ghaffari, M.A. Effect of silibinin on maspin and ERα gene expression in MCF-7 human breast cancer cell line. Iran. J. Pathol., 2017, 12(2), 135-143.
[http://dx.doi.org/10.30699/ijp.2017.24871] [PMID: 29515635]
[111]
Rocha, A.; Wang, L.; Penichet, M.; Martins-Green, M. Pomegranate juice and specific components inhibit cell and molecular processes critical for metastasis of breast cancer. Breast Cancer Res. Treat., 2012, 136(3), 647-658.
[http://dx.doi.org/10.1007/s10549-012-2264-5] [PMID: 23065001]
[112]
Banerjee, N.; Talcott, S.; Safe, S.; Mertens-Talcott, S.U. Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: Potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Cancer Res. Treat., 2012, 136(1), 21-34.
[http://dx.doi.org/10.1007/s10549-012-2224-0] [PMID: 22941571]
[113]
Khan, G.N.; Gorin, M.A.; Rosenthal, D.; Pan, Q.; Bao, L.W.; Wu, Z.F.; Newman, R.A.; Pawlus, A.D.; Yang, P.; Lansky, E.P.; Merajver, S.D. Pomegranate fruit extract impairs invasion and motility in human breast cancer. Integr. Cancer Ther., 2009, 8(3), 242-253.
[http://dx.doi.org/10.1177/1534735409341405] [PMID: 19815594]
[114]
Kim, N.D.; Mehta, R.; Yu, W.; Neeman, I.; Livney, T.; Amichay, A.; Poirier, D.; Nicholls, P.; Kirby, A.; Jiang, W.; Mansel, R.; Ramachandran, C.; Rabi, T.; Kaplan, B.; Lansky, E. Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res. Treat., 2002, 71(3), 203-217.
[http://dx.doi.org/10.1023/A:1014405730585] [PMID: 12002340]
[115]
Moongkarndi, P.; Kosem, N.; Kaslungka, S.; Luanratana, O.; Pongpan, N.; Neungton, N. Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana (mangosteen) on SKBR3 human breast cancer cell line. J. Ethnopharmacol., 2004, 90(1), 161-166.
[http://dx.doi.org/10.1016/j.jep.2003.09.048] [PMID: 14698525]
[116]
Balunas, M.J.; Su, B.; Brueggemeier, R.W.; Kinghorn, A.D. Xanthones from the botanical dietary supplement mangosteen (Garcinia mangostana) with aromatase inhibitory activity. J. Nat. Prod., 2008, 71(7), 1161-1166.
[http://dx.doi.org/10.1021/np8000255] [PMID: 18558747]
[117]
Li, P.; Tian, W.; Ma, X. Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells. Mol. Cancer, 2014, 13(1), 138.
[http://dx.doi.org/10.1186/1476-4598-13-138] [PMID: 24894151]
[118]
Shibata, M.A.; Iinuma, M.; Morimoto, J.; Kurose, H.; Akamatsu, K.; Okuno, Y.; Akao, Y.; Otsuki, Y. α-Mangostin extracted from the pericarp of the mangosteen (Garcinia mangostanaLinn) reduces tumor growth and lymph node metastasis in an immunocompetent xenograft model of metastatic mammary cancer carrying a p53 mutation. BMC Med., 2011, 9(1), 69.
[http://dx.doi.org/10.1186/1741-7015-9-69] [PMID: 21639868]
[119]
Park, J.Y.; Shin, M.S.; Kim, S.N.; Kim, H.Y.; Kim, K.H.; Shin, K.S.; Kang, K.S. Polysaccharides from Korean Citrus hallabong peels inhibit angiogenesis and breast cancer cell migration. Int. J. Biol. Macromol., 2016, 85, 522-529.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.015] [PMID: 26778161]
[120]
Nguyen, L.T.T.; Song, Y.W.; Tran, T.A.; Kim, K.S.; Cho, S.K. Induction of apoptosis in anoikis-resistant breast cancer stem cells by supercritical CO2 extracts from Citrus hassaku Hort ex Tanaka. J. Korean Soc. Appl. Biol. Chem., 2014, 57(4), 469-472.
[http://dx.doi.org/10.1007/s13765-014-4117-x]
[121]
Alshatwi, A.A.; Shafi, G.; Hasan, T.N.; Al-Hazzani, A.A.; Alsaif, M.A.; Alfawaz, M.A.; Lei, K.Y.; Munshi, A. Apoptosis-mediated inhibition of human breast cancer cell proliferation by lemon citrus extract. Asian Pac. J. Cancer Prev., 2011, 12(6), 1555-1559.
[PMID: 22126498]
[122]
Yang, S.; Zhang, H.; Yang, X.; Zhu, Y.; Zhang, M. Evaluation of antioxidative and antitumor activities of extracted flavonoids from Pink Lady apples in human colon and breast cancer cell lines. Food Funct., 2015, 6(12), 3789-3798.
[http://dx.doi.org/10.1039/C5FO00570A] [PMID: 26416794]
[123]
Sun, J.; Liu, R.H. Apple phytochemical extracts inhibit proliferation of estrogen-dependent and estrogen-independent human breast cancer cells through cell cycle modulation. J. Agric. Food Chem., 2008, 56(24), 11661-11667.
[http://dx.doi.org/10.1021/jf8021223] [PMID: 19053381]
[124]
Delphi, L.; Sepehri, H. Apple pectin: A natural source for cancer suppression in 4T1 breast cancer cells in vitro and express p53 in mouse bearing 4T1 cancer tumors, in vivo. Biomed. Pharmacother., 2016, 84, 637-644.
[http://dx.doi.org/10.1016/j.biopha.2016.09.080] [PMID: 27697635]
[125]
Yang, J.; Liu, R.H. Synergistic effect of apple extracts and quercetin 3-β-d-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro. J. Agric. Food Chem., 2009, 57(18), 8581-8586.
[http://dx.doi.org/10.1021/jf8039796] [PMID: 19694432]
[126]
Sun, T.; Chen, Q.Y.; Wu, L.J.; Yao, X.M.; Sun, X.J. Antitumor and antimetastatic activities of grape skin polyphenols in a murine model of breast cancer. Food Chem. Toxicol., 2012, 50(10), 3462-3467.
[http://dx.doi.org/10.1016/j.fct.2012.07.037] [PMID: 22871396]
[127]
Dinicola, S.; Pasqualato, A.; Cucina, A.; Coluccia, P.; Ferranti, F.; Canipari, R.; Catizone, A.; Proietti, S.; D’Anselmi, F.; Ricci, G.; Palombo, A.; Bizzarri, M. Grape seed extract suppresses MDA-MB231 breast cancer cell migration and invasion. Eur. J. Nutr., 2014, 53(2), 421-431.
[http://dx.doi.org/10.1007/s00394-013-0542-6] [PMID: 23754570]
[128]
Burton, L.J.; Smith, B.A.; Smith, B.N.; Loyd, Q.; Nagappan, P.; McKeithen, D.; Wilder, C.L.; Platt, M.O.; Hudson, T.; Odero-Marah, V.A. Muscadine grape skin extract can antagonize Snail-cathepsin L-mediated invasion, migration and osteoclastogenesis in prostate and breast cancer cells. Carcinogenesis, 2015, 36(9), 1019-1027.
[http://dx.doi.org/10.1093/carcin/bgv084] [PMID: 26069256]
[129]
Banerjee, N.; Kim, H.; Krenek, K.; Talcott, S.T.; Mertens-Talcott, S.U. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs. Nutr. Res., 2015, 35(8), 744-751.
[http://dx.doi.org/10.1016/j.nutres.2015.06.002] [PMID: 26194618]
[130]
Hoang, V.L.T.; Pierson, J.T.; Curry, M.C.; Shaw, P.N.; Dietzgen, R.G.; Gidley, M.J.; Roberts-Thomson, S.J.; Monteith, G.R. Polyphenolic contents and the effects of methanol extracts from mango varieties on breast cancer cells. Food Sci. Biotechnol., 2015, 24(1), 265-271.
[http://dx.doi.org/10.1007/s10068-015-0035-x]
[131]
Abdullah, A.S.; Mohammed, A.; Rasedee, A.; Mirghani, M. Oxidative stress-mediated apoptosis induced by ethanolic mango seed extract in cultured estrogen receptor positive breast cancer MCF-7 cells. Int. J. Mol. Sci., 2015, 16(2), 3528-3536.
[http://dx.doi.org/10.3390/ijms16023528] [PMID: 25664859]
[132]
Liu, X.; Lv, K. Cruciferous vegetables intake is inversely associated with risk of breast cancer: A meta-analysis. Breast, 2013, 22(3), 309-313.
[http://dx.doi.org/10.1016/j.breast.2012.07.013] [PMID: 22877795]
[133]
Tseng, E.; Ramsay, E.A.S.; Morris, M.E. Dietary organic isothiocyanates are cytotoxic in human breast cancer MCF-7 and mammary epithelial MCF-12A cell lines. Exp. Biol. Med., 2004, 229(8), 835-842.
[http://dx.doi.org/10.1177/153537020422900817] [PMID: 15337839]
[134]
Xiao, D.; Vogel, V.; Singh, S.V. Benzyl isothiocyanate–induced apoptosis in human breast cancer cells is initiated by reactive oxygen species and regulated by Bax and Bak. Mol. Cancer Ther., 2006, 5(11), 2931-2945.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0396] [PMID: 17121941]
[135]
Hugo, H.; Ackland, M.L.; Blick, T.; Lawrence, M.G.; Clements, J.A.; Williams, E.D.; Thompson, E.W. Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J. Cell. Physiol., 2007, 213(2), 374-383.
[http://dx.doi.org/10.1002/jcp.21223] [PMID: 17680632]
[136]
Sehrawat, A.; Singh, S.V. Benzyl isothiocyanate inhibits epithelial-mesenchymal transition in cultured and xenografted human breast cancer cells. Cancer Prev. Res., 2011, 4(7), 1107-1117.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0306] [PMID: 21464039]
[137]
Aras, U.; Gandhi, Y.A.; Masso-Welch, P.A.; Morris, M.E. Chemopreventive and anti-angiogenic effects of dietary phenethyl isothiocyanate in an N -methyl nitrosourea-induced breast cancer animal model. Biopharm. Drug Dispos., 2013, 34(2), 98-106.
[http://dx.doi.org/10.1002/bdd.1826] [PMID: 23138465]
[138]
Moon, YJ; Brazeau, DA; Morris, ME Dietary phenethyl isothiocyanate alters gene expression in human breast cancer cells. Evid Based Compl Altern Med., 2010, 2011.
[139]
Ramirez, M.C.; Singletary, K. Regulation of estrogen receptor α expression in human breast cancer cells by sulforaphane. J. Nutr. Biochem., 2009, 20(3), 195-201.
[http://dx.doi.org/10.1016/j.jnutbio.2008.02.002] [PMID: 18602823]
[140]
Jo, E.H.; Kim, S.H.; Ahn, N.S.; Park, J.S.; Hwang, J.W.; Lee, Y.S.; Kang, K.S. Efficacy of sulforaphane is mediated by p38 MAP kinase and caspase-7 activations in ER-positive and COX-2-expressed human breast cancer cells. Eur. J. Cancer Prev., 2007, 16(6), 505-510.
[http://dx.doi.org/10.1097/01.cej.0000243856.97479.3b] [PMID: 18090122]
[141]
Meng, Q.; Qi, M.; Chen, D.Z.; Yuan, R.; Goldberg, I.D.; Rosen, E.; Auborn, K.; Fan, S. Suppression of breast cancer invasion and migration by indole-3-carbinol: associated with up-regulation of BRCA1 and E-cadherin/catenin complexes. J. Mol. Med., 2000, 78(3), 155-165.
[http://dx.doi.org/10.1007/s001090000088] [PMID: 10868478]
[142]
Hung, W.C.; Chang, H.C. Indole-3-carbinol inhibits Sp1-induced matrix metalloproteinase-2 expression to attenuate migration and invasion of breast cancer cells. J. Agric. Food Chem., 2009, 57(1), 76-82.
[http://dx.doi.org/10.1021/jf802881d] [PMID: 19061309]
[143]
Garcia, H.H.; Brar, G.A.; Nguyen, D.H.H.; Bjeldanes, L.F.; Firestone, G.L. Indole-3-carbinol (I3C) inhibits cyclin-dependent kinase-2 function in human breast cancer cells by regulating the size distribution, associated cyclin E forms, and subcellular localization of the CDK2 protein complex. J. Biol. Chem., 2005, 280(10), 8756-8764.
[http://dx.doi.org/10.1074/jbc.M407957200] [PMID: 15611077]
[144]
Marconett, C.N.; Singhal, A.K.; Sundar, S.N.; Firestone, G.L. Indole-3-Carbinol disrupts Estrogen Receptor-alpha dependent expression of Insulin-like Growth Factor-1 Receptor and Insulin Receptor Substrate-1 and proliferation of human breast cancer cells. Mol. Cell. Endocrinol., 2012, 363(1-2), 74-84.
[http://dx.doi.org/10.1016/j.mce.2012.07.008] [PMID: 22835548]
[145]
Rahman, K.M.W.; Sarkar, F.H. Inhibition of nuclear translocation of nuclear factor-κB contributes to 3,3′-diindolylmethane-induced apoptosis in breast cancer cells. Cancer Res., 2005, 65(1), 364-371.
[http://dx.doi.org/10.1158/0008-5472.364.65.1] [PMID: 15665315]
[146]
Hong, C.; Kim, H.A.; Firestone, G.L.; Bjeldanes, L.F. 3,3′-Diindolylmethane (DIM) induces a G1 cell cycle arrest in human breast cancer cells that is accompanied by Sp1-mediated activation of p21WAF1/CIP1 expression. Carcinogenesis, 2002, 23(8), 1297-1305.
[http://dx.doi.org/10.1093/carcin/23.8.1297] [PMID: 12151347]
[147]
Gong, Y.; Sohn, H.; Xue, L.; Firestone, G.L.; Bjeldanes, L.F. 3,3′-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells. Cancer Res., 2006, 66(9), 4880-4887.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4162] [PMID: 16651444]
[148]
Ansari, J.A.; Ahmad, M.K.; Khan, A.R.; Fatima, N.; Khan, H.J.; Rastogi, N.; Mishra, D.P.; Mahdi, A.A. Anticancer and Antioxidant activity of Zingiber officinale Roscoe rhizome. Indian J. Exp. Biol., 2016, 54(11), 767-773.
[PMID: 30179422]
[149]
Joo, J.H.; Hong, S.S.; Cho, Y.R.; Seo, D.W. 10-Gingerol inhibits proliferation and invasion of MDA-MB-231 breast cancer cells through suppression of Akt and p38MAPK activity. Oncol. Rep., 2016, 35(2), 779-784.
[http://dx.doi.org/10.3892/or.2015.4405] [PMID: 26554741]
[150]
Ling, H.; Yang, H.; Tan, S-H.; Chui, W-K.; Chew, E-H. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation. Br. J. Pharmacol., 2010, 161(8), 1763-1777.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00991.x] [PMID: 20718733]
[151]
Arslan, M.; Ozdemir, L. Oral intake of ginger for chemotherapy-induced nausea and vomiting among women with breast cancer. Clin. J. Oncol. Nurs., 2015, 19(5), E92-E97.
[http://dx.doi.org/10.1188/15.CJON.E92-E97] [PMID: 26414587]
[152]
Lua, P.L.; Salihah, N.; Mazlan, N. Effects of inhaled ginger aromatherapy on chemotherapy-induced nausea and vomiting and health-related quality of life in women with breast cancer. Complement. Ther. Med., 2015, 23(3), 396-404.
[http://dx.doi.org/10.1016/j.ctim.2015.03.009] [PMID: 26051575]
[153]
Pourzand, A.; Tajaddini, A.; Pirouzpanah, S.; Asghari-Jafarabadi, M.; Samadi, N.; Ostadrahimi, A.R.; Sanaat, Z. Associations between dietary allium vegetables and risk of breast cancer: A hospital-based matched case-control study. J. Breast Cancer, 2016, 19(3), 292-300.
[http://dx.doi.org/10.4048/jbc.2016.19.3.292] [PMID: 27721879]
[154]
Altonsy, M.O.; Habib, T.N.; Andrews, S.C. Diallyl disulfide-induced apoptosis in a breast-cancer cell line (MCF-7) may be caused by inhibition of histone deacetylation. Nutr. Cancer, 2012, 64(8), 1251-1260.
[http://dx.doi.org/10.1080/01635581.2012.721156] [PMID: 23163853]
[155]
Xiao, X.; Chen, B.; Liu, X.; Liu, P.; Zheng, G.; Ye, F.; Tang, H.; Xie, X. Diallyl disulfide suppresses SRC/Ras/ERK signaling-mediated proliferation and metastasis in human breast cancer by up-regulating miR-34a. PLoS One, 2014, 9(11), e112720.
[http://dx.doi.org/10.1371/journal.pone.0112720] [PMID: 25396727]
[156]
Huang, J.; Yang, B.; Xiang, T.; Peng, W.; Qiu, Z.; Wan, J.; Zhang, L.; Li, H.; Li, H.; Ren, G. Diallyl disulfide inhibits growth and metastatic potential of human triple-negative breast cancer cells through inactivation of the β-catenin signaling pathway. Mol. Nutr. Food Res., 2015, 59(6), 1063-1075.
[http://dx.doi.org/10.1002/mnfr.201400668] [PMID: 25755089]
[157]
Na, H.K.; Kim, E.H.; Choi, M.A.; Park, J.M.; Kim, D.H.; Surh, Y.J. Diallyl trisulfide induces apoptosis in human breast cancer cells through ROS-mediated activation of JNK and AP-1. Biochem. Pharmacol., 2012, 84(10), 1241-1250.
[http://dx.doi.org/10.1016/j.bcp.2012.08.024] [PMID: 22981381]
[158]
Alhazmi, M.I.; Hasan, T.N.; Shafi, G.; Al-Assaf, A.H.; Alfawaz, M.A.; Alshatwi, A.A. Roles of p53 and caspases in induction of apoptosis in MCF- 7 breast cancer cells treated with a methanolic extract of Nigella sativa seeds. Asian Pac. J. Cancer Prev., 2014, 15(22), 9655-9660.
[http://dx.doi.org/10.7314/APJCP.2014.15.22.9655] [PMID: 25520084]
[159]
Yu, S.M.; Kim, S.J. Thymoquinone (TQ) regulates cyclooxygenase-2 expression and prostaglandin E2 production through PI3kinase (PI3K)/p38 kinase pathway in human breast cancer cell line, MDA-MB-231. Anim. Cells Syst., 2012, 16(4), 274-279.
[http://dx.doi.org/10.1080/19768354.2011.647834]
[160]
Chou, C.C.; Wu, Y.C.; Wang, Y.F.; Chou, M.J.; Kuo, S.J.; Chen, D.R. Capsaicin-induced apoptosis in human breast cancer MCF-7 cells through caspase-independent pathway. Oncol. Rep., 2009, 21(3), 665-671.
[PMID: 19212624]
[161]
Chang, H.C.; Chen, S.T.; Chien, S.Y.; Kuo, S.J.; Tsai, H.T.; Chen, D.R. Capsaicin may induce breast cancer cell death through apoptosis-inducing factor involving mitochondrial dysfunction. Hum. Exp. Toxicol., 2011, 30(10), 1657-1665.
[http://dx.doi.org/10.1177/0960327110396530] [PMID: 21300690]
[162]
Greenshields, A.L.; Doucette, C.D.; Sutton, K.M.; Madera, L.; Annan, H.; Yaffe, P.B.; Knickle, A.F.; Dong, Z.; Hoskin, D.W. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett., 2015, 357(1), 129-140.
[http://dx.doi.org/10.1016/j.canlet.2014.11.017] [PMID: 25444919]
[163]
Do, M.T.; Kim, H.G.; Choi, J.H.; Khanal, T.; Park, B.H.; Tran, T.P.; Jeong, T.C.; Jeong, H.G. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem., 2013, 141(3), 2591-2599.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.125] [PMID: 23870999]
[164]
Lai, L.; Fu, Q.; Liu, Y.; Jiang, K.; Guo, Q.; Chen, Q.; Yan, B.; Wang, Q.; Shen, J. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol. Sin., 2012, 33(4), 523-530.
[http://dx.doi.org/10.1038/aps.2011.209] [PMID: 22388073]
[165]
Chryssanthi, D.G.; Lamari, F.N.; Iatrou, G.; Pylara, A.; Karamanos, N.K.; Cordopatis, P. Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res., 2007, 27(1A), 357-362.
[PMID: 17352254]
[166]
Sajjadi, M.; Bathaie, Z. Comparative study on the preventive effect of saffron carotenoids, crocin and crocetin, in NMU-induced breast cancer in rats. Cell J., 2017, 19(1), 94-101.
[PMID: 28367420]
[167]
Al-Sharif, I.; Remmal, A.; Aboussekhra, A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer, 2013, 13(1), 600.
[http://dx.doi.org/10.1186/1471-2407-13-600] [PMID: 24330704]
[168]
González-Vallinas, M.; Molina, S.; Vicente, G.; Sánchez-Martínez, R.; Vargas, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Ramírez de Molina, A. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells. Electrophoresis, 2014, 35(11), 1719-1727.
[http://dx.doi.org/10.1002/elps.201400011] [PMID: 24615943]
[169]
Fuke, Y.; Hishinuma, M.; Namikawa, M.; Oishi, Y.; Matsuzaki, T. Wasabi-derived 6-(methylsulfinyl)hexyl isothiocyanate induces apoptosis in human breast cancer by possible involvement of the NF-κB pathways. Nutr. Cancer, 2014, 66(5), 879-887.
[http://dx.doi.org/10.1080/01635581.2014.916322] [PMID: 24895898]
[170]
Tang, E.L.H.; Rajarajeswaran, J.; Fung, S.Y.; Kanthimathi, M.S. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement. Altern. Med., 2013, 13(1), 347.
[http://dx.doi.org/10.1186/1472-6882-13-347] [PMID: 24517259]
[171]
Hong, S.A.; Kim, K.; Nam, S.J.; Kong, G.; Kim, M.K. A case–control study on the dietary intake of mushrooms and breast cancer risk among Korean women. Int. J. Cancer, 2008, 122(4), 919-923.
[http://dx.doi.org/10.1002/ijc.23134] [PMID: 17943725]
[172]
Li, J.; Zou, L.; Chen, W.; Zhu, B.; Shen, N.; Ke, J.; Lou, J.; Song, R.; Zhong, R.; Miao, X. Dietary mushroom intake may reduce the risk of breast cancer: evidence from a meta-analysis of observational studies. PLoS One, 2014, 9(4), e93437.
[http://dx.doi.org/10.1371/journal.pone.0093437] [PMID: 24691133]
[173]
Shi, X.; Zhao, Y.; Jiao, Y.; Shi, T.; Yang, X. ROS-dependent mitochondria molecular mechanisms underlying antitumor activity of Pleurotus abalonus acidic polysaccharides in human breast cancer MCF-7 cells. PLoS One, 2013, 8(5), e64266.
[http://dx.doi.org/10.1371/journal.pone.0064266] [PMID: 23691187]
[174]
Sliva, D.; Labarrere, C.; Slivova, V.; Sedlak, M.; Lloyd, F.P., Jr; Ho, N.W.Y. Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochem. Biophys. Res. Commun., 2002, 298(4), 603-612.
[http://dx.doi.org/10.1016/S0006-291X(02)02496-8] [PMID: 12408995]
[175]
Choong, Y.K.; Noordin, M.M.; Mohamed, S.; Ali, A.M.; Umar, N.A.B.; Tong, C.C. The nature of apoptosis of human breast cancer cells induced by three species of genus Ganoderma P. Karst.(Aphyllophoromycetideae) crude extracts. Int. J. Med. Mushrooms, 2008, 10(2), 115-125.
[http://dx.doi.org/10.1615/IntJMedMushr.v10.i2.20]
[176]
Grube, B.J.; Eng, E.T.; Kao, Y.C.; Kwon, A.; Chen, S. White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation. J. Nutr., 2001, 131(12), 3288-3293.
[http://dx.doi.org/10.1093/jn/131.12.3288] [PMID: 11739882]
[177]
Aune, D.; Chan, D.S.M.; Greenwood, D.C.; Vieira, A.R.; Rosenblatt, D.A.N.; Vieira, R.; Norat, T. Dietary fiber and breast cancer risk: a systematic review and meta-analysis of prospective studies. Ann. Oncol., 2012, 23(6), 1394-1402.
[http://dx.doi.org/10.1093/annonc/mdr589] [PMID: 22234738]
[178]
Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 2004, 65(9), 1199-1221.
[http://dx.doi.org/10.1016/j.phytochem.2004.04.001] [PMID: 15184005]
[179]
Park, J.H.; Darvin, P.; Lim, E.J.; Joung, Y.H.; Hong, D.Y.; Park, E.U.; Park, S.H.; Choi, S.K.; Moon, E.S.; Cho, B.W.; Park, K.D.; Lee, H.K.; Kim, M.J.; Park, D.S.; Chung, I.M.; Yang, Y.M. Hwanggeumchal sorghum induces cell cycle arrest, and suppresses tumor growth and metastasis through Jak2/STAT pathways in breast cancer xenografts. PLoS One, 2012, 7(7), e40531.
[http://dx.doi.org/10.1371/journal.pone.0040531] [PMID: 22792362]
[180]
Nagata, C. Factors to consider in the association between soy isoflavone intake and breast cancer risk. J. Epidemiol., 2010, 20(2), 83-89.
[http://dx.doi.org/10.2188/jea.JE20090181] [PMID: 20173308]
[181]
Wada, K.; Nakamura, K.; Tamai, Y.; Tsuji, M.; Kawachi, T.; Hori, A.; Takeyama, N.; Tanabashi, S.; Matsushita, S.; Tokimitsu, N.; Nagata, C. Soy isoflavone intake and breast cancer risk in Japan: From the Takayama study. Int. J. Cancer, 2013, 133(4), 952-960.
[http://dx.doi.org/10.1002/ijc.28088] [PMID: 23389819]
[182]
Conroy, S.M.; Maskarinec, G.; Park, S.Y.; Wilkens, L.R.; Henderson, B.E.; Kolonel, L.N. The effects of soy consumption before diagnosis on breast cancer survival: the Multiethnic Cohort Study. Nutr. Cancer, 2013, 65(4), 527-537.
[http://dx.doi.org/10.1080/01635581.2013.776694] [PMID: 23659444]
[183]
Morimoto, Y.; Maskarinec, G.; Park, S.Y.; Ettienne, R.; Matsuno, R.K.; Long, C.; Steffen, A.D.; Henderson, B.E.; Kolonel, L.N.; Le Marchand, L.; Wilkens, L.R. Dietary isoflavone intake is not statistically significantly associated with breast cancer risk in the Multiethnic Cohort. Br. J. Nutr., 2014, 112(6), 976-983.
[http://dx.doi.org/10.1017/S0007114514001780] [PMID: 25201305]
[184]
Kuiper, G.G.J.M.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.Å. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology, 1998, 139(10), 4252-4263.
[http://dx.doi.org/10.1210/endo.139.10.6216] [PMID: 9751507]
[185]
Nadal-Serrano, M.; Pons, D.G.; Sastre-Serra, J.; Blanquer-Rosselló, M.M.; Roca, P.; Oliver, J. Genistein modulates oxidative stress in breast cancer cell lines according to ERα/ERβ ratio: Effects on mitochondrial functionality, sirtuins, uncoupling protein 2 and antioxidant enzymes. Int. J. Biochem. Cell Biol., 2013, 45(9), 2045-2051.
[http://dx.doi.org/10.1016/j.biocel.2013.07.002] [PMID: 23871935]
[186]
Pons, D.G.; Nadal-Serrano, M.; Torrens-Mas, M.; Oliver, J.; Roca, P. The phytoestrogen genistein affects breast cancer cells treatment depending on the ERα/ERβ ratio. J. Cell. Biochem., 2016, 117(1), 218-229.
[http://dx.doi.org/10.1002/jcb.25268] [PMID: 26100284]
[187]
Pan, H.; Zhou, W.; He, W.; Liu, X.; Ding, Q.; Ling, L.; Zha, X.; Wang, S. Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway. Int. J. Mol. Med., 2012, 30(2), 337-343.
[http://dx.doi.org/10.3892/ijmm.2012.990] [PMID: 22580499]
[188]
Fang, Y.; Zhang, Q.; Wang, X.; Yang, X.; Wang, X.; Huang, Z.; Jiao, Y.; Wang, J. Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells. Int. J. Oncol., 2016, 48(3), 1016-1028.
[http://dx.doi.org/10.3892/ijo.2016.3327] [PMID: 26783066]
[189]
Johnson, K.A.; Vemuri, S.; Alsahafi, S.; Castillo, R.; Cheriyath, V. Glycone-rich soy isoflavone extracts promote estrogen receptor positive breast cancer cell growth. Nutr. Cancer, 2016, 68(4), 622-633.
[http://dx.doi.org/10.1080/01635581.2016.1154578] [PMID: 27043076]
[190]
Lang, K.; Huang, H.; Sasane, M.; Federico Paly, V.; Hao, Y.; Menzin, J. Survival, healthcare resource use and costs among stage IV ER + breast cancer patients not receiving HER2 targeted therapy: a retrospective analysis of linked SEER-Medicare data. BMC Health Serv. Res., 2014, 14(1), 298.
[http://dx.doi.org/10.1186/1472-6963-14-298] [PMID: 25008431]
[191]
Hart, C.D.; Migliaccio, I.; Malorni, L.; Guarducci, C.; Biganzoli, L.; Di Leo, A. Challenges in the management of advanced, ER-positive, HER2-negative breast cancer. Nat. Rev. Clin. Oncol., 2015, 12(9), 541-552.
[http://dx.doi.org/10.1038/nrclinonc.2015.99] [PMID: 26011489]
[192]
Lim, B.; Hortobagyi, G.N. Current challenges of metastatic breast cancer. Cancer Metastasis Rev., 2016, 35(4), 495-514.
[http://dx.doi.org/10.1007/s10555-016-9636-y] [PMID: 27933405]
[193]
Nedeljković, M.; Damjanović, A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge. Cells, 2019, 8(9), 957.
[http://dx.doi.org/10.3390/cells8090957] [PMID: 31443516]
[194]
Hanker, A.B.; Sudhan, D.R.; Arteaga, C.L. Overcoming endocrine resistance in breast cancer. Cancer Cell, 2020, 37(4), 496-513.
[http://dx.doi.org/10.1016/j.ccell.2020.03.009] [PMID: 32289273]
[195]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[196]
Meyskens, F.L., Jr; Mukhtar, H.; Rock, C.L.; Cuzick, J.; Kensler, T.W.; Yang, C.S.; Ramsey, S.D.; Lippman, S.M.; Alberts, D.S. Cancer prevention: Obstacles, challenges, and the road ahead. J. Natl. Cancer Inst., 2015, 108(2), djv309.
[PMID: 26547931]
[197]
Shaikh, J.; Ankola, D.D.; Beniwal, V.; Singh, D.; Kumar, M.N.V.R. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci., 2009, 37(3-4), 223-230.
[http://dx.doi.org/10.1016/j.ejps.2009.02.019] [PMID: 19491009]
[198]
Siviero, A.; Gallo, E.; Maggini, V.; Gori, L.; Mugelli, A.; Firenzuoli, F.; Vannacci, A. Curcumin, a golden spice with a low bioavailability. J. Herb. Med., 2015, 5(2), 57-70.
[http://dx.doi.org/10.1016/j.hermed.2015.03.001]
[199]
Gee, J.R.; Saltzstein, D.R.; Messing, E.; Kim, K.; Kolesar, J.; Huang, W.; Havighurst, T.C.; Harris, L.; Wollmer, B.W.; Jarrard, D.; House, M.; Parnes, H.; Bailey, H.H. Phase Ib placebo-controlled, tissue biomarker trial of diindolylmethane (BR-DIMNG) in patients with prostate cancer who are undergoing prostatectomy. Eur. J. Cancer Prev., 2016, 25(4), 312-320.
[http://dx.doi.org/10.1097/CEJ.0000000000000189] [PMID: 26313229]
[200]
Habli, Z.; Toumieh, G.; Fatfat, M.; Rahal, O.; Gali-Muhtasib, H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules, 2017, 22(2), 250.
[http://dx.doi.org/10.3390/molecules22020250] [PMID: 28208712]
[201]
Nikoletopoulou, V.; Markaki, M.; Palikaras, K.; Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(12), 3448-3459.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.001] [PMID: 23770045]
[202]
Grosso, G. Effects of polyphenol-rich foods on human health. Nutrients, 2018, 10(8), 1089.
[http://dx.doi.org/10.3390/nu10081089] [PMID: 30110959]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy