Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Case Report

High-throughput Second-generation Sequencing Technology Assisted Diagnosis of Familial Partial Lipodystrophy (Type 2 Kobberling-Dunnigan Syndrome): A Case Report

Author(s): Mingling Deng, Wen Chen and Yan Qi*

Volume 27, Issue 2, 2024

Published on: 12 June, 2023

Page: [346 - 351] Pages: 6

DOI: 10.2174/1386207326666230523112454

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Whole exome sequencing (WES) provides support for clinical diagnosis and treatment of genetically related diseases based on specific probe capture and high-throughput second-generation sequencing technology. Familial partial lipodystrophy 2 (FPLD2; OMIM # 151660) or type 2 Köbberling-Dunnigan syndrome with insulin resistance syndrome is uncommon in mainland China and elsewhere.

Aims: We report the case in order to have a further understanding of FPLD2 or type 2 Kobberling- Dunnigan syndrome) with the assistance of WES and improve the clinical and genetic understanding and diagnosis of this disease.

Case Report: A 30-year-old woman was admitted to the cadre department of our hospital at 14:00 on July 11, 2021, because of hyperglycemia, a rapid heart rate, and excessive sweating during pregnancy. An oral glucose tolerance test (OGTT) showed that insulin and C-peptide increased slowly after glucose stimulation, and the peak value was extended backward (Table 1). It was suggested that the patient had developed insulin antibodies, resulting in insulin resistance. Her clinical features and familial inheritance were consistent with FPLD2 (type 2 Kobberling-Dunnigan syndrome). The results of WES indicated that a heterozygous mutation occurred in exon 8 of the LMNA gene, because the base C at position 1444 was mutated into T during transcription. This mutation changed the amino acid position 482 of the encoded protein from Arg to Trp. Type 2 Kobberling- Dunnigan syndrome is associated with an LMNA gene mutation. According to the patient's clinical manifestations, hypoglycemic and lipid-lowering therapy is recommended.

Conclusion: WES can assist in the simultaneous clinical investigation or confirmation of FPLD2 and help identify diseases with similar clinical phenotypes. This case demonstrates that familial partial lipodystrophy is associated with an LMNA gene mutation on chromosome 1q21-22. This is one of the few cases of familial partial lipodystrophy diagnosed by WES.

Keywords: Lipoatrophic diabetes mellitus, familial partial lipodystrophy type 2, FPLD2, Kobberling-Dunnigan syndrome, LMNA gene, whole exome sequencing.

« Previous
Graphical Abstract
[1]
Aggarwal, S. Role of whole exome sequencing for unidentified genetic syndromes. Curr. Opin. Obstet. Gynecol., 2021, 33(2), 112-122.
[http://dx.doi.org/10.1097/GCO.0000000000000688] [PMID: 33620889]
[2]
Zehravi, M.; Wahid, M.; Ashraf, J.; Fatima, T. Whole-Exome sequencing identifies small mutations in Pakistani muscular dystrophy patients. Genet. Test. Mol. Biomarkers, 2021, 25(3), 218-226.
[http://dx.doi.org/10.1089/gtmb.2020.0246] [PMID: 33734897]
[3]
Marsili, L.; Duque, K.R.; Bode, R.L.; Kauffman, M.A.; Espay, A.J. Uncovering essential tremor genetics: The promise of long-read sequencing. Front. Neurol., 2022, 13, 821189.
[http://dx.doi.org/10.3389/fneur.2022.821189] [PMID: 35401394]
[4]
Hobeika, C.; Rached, G.; Chebly, A.; Chouery, E.; Kourie, H.R. Whole-exome and whole-genome sequencing in chronic lymphocytic leukemia: New biomarkers to target. Pharmacogenomics, 2020, 21(13), 957-962.
[http://dx.doi.org/10.2217/pgs-2020-0022] [PMID: 32799640]
[5]
Vinkšel, M.; Writzl, K.; Maver, A.; Peterlin, B. Improving diagnostics of rare genetic diseases with NGS approaches. J. Community Genet., 2021, 12(2), 247-256.
[http://dx.doi.org/10.1007/s12687-020-00500-5] [PMID: 33452619]
[6]
Babalola, F.; Ng, D.; Bulic, A.; Curtis, J. Successful treatment of severe hypertriglyceridemia with icosapent ethyl in a case of congenital generalized lipodystrophy type 4. J. Pediatr. Endocrinol. Metab., 2022, 35(7), 968-972.
[http://dx.doi.org/10.1515/jpem-2021-0718]
[7]
Unger, R.H.; Zhou, Y.T.; Orci, L. Regulation of fatty acid homeostasis in cells: Novel role of leptin. Proc. Natl. Acad. Sci. USA, 1999, 96(5), 2327-2332.
[http://dx.doi.org/10.1073/pnas.96.5.2327] [PMID: 10051641]
[8]
Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; Voelkerding, K.; Rehm, H.L. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med., 2015, 17(5), 405-424.
[http://dx.doi.org/10.1038/gim.2015.30] [PMID: 25741868]
[9]
Trakadis, Y.J.; Buote, C.; Therriault, J.F.; Jacques, P.É.; Larochelle, H.; Lévesque, S. PhenoVar: A phenotype-driven approach in clinical genomics for the diagnosis of polymalformative syndromes. BMC Med. Genomics, 2014, 7(1), 22.
[http://dx.doi.org/10.1186/1755-8794-7-22] [PMID: 24884844]
[10]
Lightbourne, M.; Brown, R.J. Genetics of Lipodystrophy. Endocrinol. Metab. Clin. North Am., 2017, 46(2), 539-554.
[http://dx.doi.org/10.1016/j.ecl.2017.01.012] [PMID: 28476236]
[11]
Ceccarini, G.; Magno, S.; Pelosini, C.; Ferrari, F.; Sessa, M.R.; Scabia, G.; Maffei, M.; Jéru, I.; Lascols, O.; Vigouroux, C.; Santini, F. Congenital Generalized Lipoatrophy (Berardinelli-Seip Syndrome) Type 1: Description of novel AGPAT2 homozygous variants showing the highly heterogeneous presentation of the disease. Front. Endocrinol., 2020, 11, 39.
[http://dx.doi.org/10.3389/fendo.2020.00039] [PMID: 32117065]
[12]
Arshad Cheema, H.; Suleman Malik, H.; Waheed, N.; Mushtaq, I.; Fayyaz, Z.; Nadeem Anjum, M. Berardinelli-seip Congenital Generalised Lipodystrophy. J. Coll. Physicians Surg. Pak., 2018, 28(5), 406-408.
[http://dx.doi.org/10.29271/jcpsp.2018.05.406] [PMID: 29690976]
[13]
Wildermuth, S.; Spranger, S.; Spranger, M.; Raue, F.; Meinck, H.M. Köbberling-Dunnigan syndrome: A rare cause of generalized muscular hypertrophy. Muscle Nerve, 1996, 19(7), 843-847.
[http://dx.doi.org/10.1002/(SICI)1097-4598(199607)19:7<843:AID-MUS5>3.0.CO;2-9] [PMID: 8965837]
[14]
Jackson, S.N.J.; Howlett, T.A.; McNally, P.C.; O’Rahilly, S.; Trembath, R.C. Dunnigan-Köbberling syndrome: An autosomal dominant form of partial lipodystrophy. QJM, 1997, 90(1), 27-36.
[http://dx.doi.org/10.1093/qjmed/90.1.27] [PMID: 9093586]
[15]
Morse, A.N.; Whitaker, M.D. Successful pregnancy in a woman with lipoatrophic diabetes mellitus. A case report. J. Reprod. Med., 2000, 45(10), 850-852.
[PMID: 11077638]
[16]
Corvillo, F.; Akinci, B. An overview of lipodystrophy and the role of the complement system. Mol. Immunol., 2019, 112, 223-232.
[http://dx.doi.org/10.1016/j.molimm.2019.05.011] [PMID: 31177059]
[17]
Hübler, A.; Abendroth, K.; Keiner, T.; Stöcker, W.; Kauf, E.; Hein, G. Dysregulation of insulin-like growth factors in a case of generalized acquired lipoatrophic diabetes mellitus (Lawrence Syndrome) connected with autoantibodies against adipocyte membranes. Experimental and clinical endocrinology & diabetes: Official journal, German Society of Endocrinology. German Diabet Associat., 1998, 106, 79-84.
[18]
Morel, C.F.; Thomas, M.A.; Cao, H.; O’Neil, C.H.; Pickering, J.G.; Foulkes, W.D.; Hegele, R.A. A LMNA splicing mutation in two sisters with severe Dunnigan-type familial partial lipodystrophy type 2. J. Clin. Endocrinol. Metab., 2006, 91(7), 2689-2695.
[http://dx.doi.org/10.1210/jc.2005-2746] [PMID: 16636128]
[19]
Nabrdalik, K.; Strózik, A. Minkina-Pędras, M.; Jarosz-Chobot, P.; MMłynarski, W.; Grzeszczak, W.; Gumprecht, J. Dunnigan-type familial partial lipodystrophy associated with the heterozygous R482W mutation in LMNA gene - case study of three women from one family. Endokrynol. Pol., 2013, 64(4), 306-311.
[http://dx.doi.org/10.5603/EP.2013.0010] [PMID: 24002959]
[20]
Dušková, L. Kopečková, L.; Jansová, E.; Tichý, L.; Freiberger, T.; Zapletalová, P.; Soška, V.; Ravčuková, B.; Fajkusová, L. An APEX-based genotyping microarray for the screening of 168 mutations associated with familial hypercholesterolemia. Atherosclerosis, 2011, 216(1), 139-145.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.01.023] [PMID: 21310417]
[21]
Radhakrishnan, Y.; Duriseti, P.; Chebib, F.T. Management of autosomal dominant polycystic kidney disease in the era of disease-modifying treatment options. Kidney Res. Clin. Pract., 2022, 41(4), 422-431.
[http://dx.doi.org/10.23876/j.krcp.21.309] [PMID: 35354242]
[22]
Park, J.; Levin, M.G.; Haggerty, C.M.; Hartzel, D.N.; Judy, R.; Kember, R.L.; Reza, N.; Ritchie, M.D.; Owens, A.T.; Damrauer, S.M.; Rader, D.J. A genome-first approach to aggregating rare genetic variants in LMNA for association with electronic health record phenotypes. Genet. Med., 2020, 22(1), 102-111.
[http://dx.doi.org/10.1038/s41436-019-0625-8] [PMID: 31383942]
[23]
Yanachkova, V.; Staynova, R. Insulin-induced lipoatrophy in a patient on insulin analogue therapy: A case report. Folia Med., 2020, 62(3), 597-600.
[http://dx.doi.org/10.3897/folmed.62.e50166] [PMID: 33009748]
[24]
Sekizkardes, H.; Cochran, E.; Malandrino, N.; Garg, A.; Brown, R.J. Efficacy of metreleptin treatment in familial partial lipodystrophy due to PPARG vs. LMNA pathogenic variants. J. Clin. Endocrinol. Metab., 2019, 104(8), 3068-3076.
[http://dx.doi.org/10.1210/jc.2018-02787] [PMID: 31194872]
[25]
Briand, N.; Guénantin, A.C.; Jeziorowska, D.; Shah, A.; Mantecon, M.; Capel, E.; Garcia, M.; Oldenburg, A.; Paulsen, J.; Hulot, J.S.; Vigouroux, C.; Collas, P. The lipodystrophic hotspot lamin A p.R482W mutation deregulates the mesodermal inducer T/Brachyury and early vascular differentiation gene networks. Hum. Mol. Genet., 2018, 27(8), 1447-1459.
[http://dx.doi.org/10.1093/hmg/ddy055] [PMID: 29438482]
[26]
Oldenburg, A.; Briand, N.; Sørensen, A.L.; Cahyani, I.; Shah, A.; Moskaug, J.Ø.; Collas, P. A lipodystrophy-causing lamin A mutant alters conformation and epigenetic regulation of the anti-adipogenic MIR335 locus. J. Cell Biol., 2017, 216(9), 2731-2743.
[http://dx.doi.org/10.1083/jcb.201701043] [PMID: 28751304]
[27]
Gautheron, J.; Morisseau, C.; Chung, W.K.; Zammouri, J.; Auclair, M.; Baujat, G.; Capel, E.; Moulin, C.; Wang, Y.; Yang, J.; Hammock, B.D.; Cerame, B.; Phan, F.; Fève, B.; Vigouroux, C.; Andreelli, F.; Jeru, I. EPHX1 mutations cause a lipoatrophic diabetes syndrome due to impaired epoxide hydrolysis and increased cellular senescence. eLife, 2021, 10, e68445.
[http://dx.doi.org/10.7554/eLife.68445] [PMID: 34342583]
[28]
Tain, M.M.; Berger, P. Partial face-sparing lipodystrophy (Köbberling-Dunnigan syndrome): Report of a sporadic case. Australas. J. Dermatol., 1998, 39(2), 100-105.
[http://dx.doi.org/10.1111/j.1440-0960.1998.tb01258.x] [PMID: 9611380]
[29]
Ursich, M.J.M.; Fukui, R.T.; Galvão, M.S.A.; Marcondes, J.A.M.; Santomauro, A.T.M.G.; Silva, M.E.R.; Rocha, D.M.; Wajchenberg, B.L. Insulin resistance in limb and trunk partial lipodystrophy (type 2 Köbberling-Dunnigan syndrome). Metabolism, 1997, 46(2), 159-163.
[http://dx.doi.org/10.1016/S0026-0495(97)90295-X] [PMID: 9030822]
[30]
Ebihara, K.; Masuzaki, H.; Nakao, K. Long-term leptin-replacement therapy for lipoatrophic diabetes. N. Engl. J. Med., 2004, 351(6), 615-616.
[http://dx.doi.org/10.1056/NEJM200408053510623] [PMID: 15295061]
[31]
Diker-Cohen, T.; Cochran, E.; Gorden, P.; Brown, R.J. Partial and generalized lipodystrophy: Comparison of baseline characteristics and response to metreleptin. J. Clin. Endocrinol. Metab., 2015, 100(5), 1802-1810.
[http://dx.doi.org/10.1210/jc.2014-4491] [PMID: 25734254]
[32]
Aschner, P. Insulin therapy in Type 2 Diabetes. Am. J. Ther., 2020, 27(1), e79-e90.
[http://dx.doi.org/10.1097/MJT.0000000000001088] [PMID: 31567175]
[33]
Sharma, S.; Rehman Ansari, M.H.; Sharma, K.; Singh, R.K.; Ali, S.; Alam, M.M.; Zaman, M.S.; Alam, P.; Akhter, M. Pyrazoline scaffold: Hit identification to lead synthesis and biological evaluation as antidiabetic agents. Future Med. Chem., 2023, 15(1), 9-24.
[http://dx.doi.org/10.4155/fmc-2022-0141] [PMID: 36655571]
[34]
Hartono, C.; Muthukumar, T.; Suthanthiran, M. Immunosuppressive drug therapy. Cold Spring Harb. Perspect. Med., 2013, 3(9), a015487.
[http://dx.doi.org/10.1101/cshperspect.a015487] [PMID: 24003247]
[35]
Sethi, N.S.; Prasad, D.N.; Singh, R.K. An insight into the synthesis and SAR of 2,4-Thiazolidinediones (2,4-TZD) as Multifunctional scaffold: A review. Mini Rev. Med. Chem., 2020, 20(4), 308-330.
[http://dx.doi.org/10.2174/1389557519666191029102838] [PMID: 31660809]
[36]
Chang, E.; Park, C.Y.; Park, S.W. Role of thiazolidinediones, insulin sensitizers, in non-alcoholic fatty liver disease. J. Diabetes Investig., 2013, 4(6), 517-524.
[http://dx.doi.org/10.1111/jdi.12107] [PMID: 24843703]
[37]
Araújo-Vilar, D.; Santini, F. Diagnosis and treatment of lipodystrophy: A step-by-step approach. J. Endocrinol. Invest., 2019, 42(1), 61-73.
[http://dx.doi.org/10.1007/s40618-018-0887-z] [PMID: 29704234]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy