Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Electrospinning of Nanofibers Incorporated with Essential Oils: Applications in Food

Author(s): Sayed Mahdi Hossaeini Marashi, Seyed Mohammad Reza Noori, Mohammad Hashemi, Mojtaba Raeisi and Seyyed Mohammad Ali Noori*

Volume 24, Issue 15, 2023

Published on: 03 May, 2023

Page: [1881 - 1897] Pages: 17

DOI: 10.2174/1389201024666230407094527

Price: $65

Abstract

Nowadays, modern food preservation techniques have emerged in the last decade. Recently, a combination of nanotechnology and active packaging has allowed the incorporation of bioactive compounds, such as essential oils, into nanoscale electrospun fibers. This phenomenon provides a new horizon in food safety and preservation. The incorporation of essential oils into electrospun nanofibers can extend the duration of antimicrobial and antioxidant activity of essential oils, which subsequently leads to longer shelf life, better preservation, and superior quality of food. In the current paper, the essential oils incorporated into nanofibers have been reviewed. The fabrication of nanofibers is usually carried out using different substances by applying various manufacturing methods, including needleless and needle-based electrospinning techniques. In this study, an emphasis on the antioxidant and antibacterial effects of electrospun nanofibers loaded with essential oils and their application in food models has been laid. Nevertheless, other challenges associated with using nanofibers incorporated with essential oils, such as their impact on organoleptic properties, cytotoxicity, and durability, have been discussed to achieve a holistic view of applying the electrospinning techniques in the food industry.

Keywords: Functionalized nanofibers, active food packaging, antimicrobial, shelf-life, quality, industry.

Graphical Abstract
[1]
Amit, S.K.; Uddin, M.M.; Rahman, R.; Islam, S.M.R.; Khan, M.S. A review on mechanisms and commercial aspects of food preservation and processing. Agric. Food Secur., 2017, 6(1), 51.
[http://dx.doi.org/10.1186/s40066-017-0130-8]
[2]
Prakasam, M.; Largeteau, A. Modern preservation tools through packaging for high hydrostatic pressure processing. In: Food Safety and Preservation; Elsevier: Cambridge, 2018; pp. 599-619.
[http://dx.doi.org/10.1016/B978-0-12-814956-0.00019-6]
[3]
Wang, M.S.; Wang, L.H.; Bekhit, A.E.D.A.; Yang, J.; Hou, Z.P.; Wang, Y.Z.; Dai, Q.Z.; Zeng, X.A. A review of sublethal effects of pulsed electric field on cells in food processing. J. Food Eng., 2018, 223, 32-41.
[http://dx.doi.org/10.1016/j.jfoodeng.2017.11.035]
[4]
Zehi, Z.B.; Afshari, A.; Noori, S.M.A.; Jannat, B.; Hashemi, M. The effects of X-ray irradiation on safety and nutritional value of food: A systematic review article. Curr. Pharm. Biotechnol., 2020, 21(10), 919-926.
[http://dx.doi.org/10.2174/1389201021666200219093834] [PMID: 32072900]
[5]
Hafsa, J.; Smach, M.; Ben Khedher, M.R.; Charfeddine, B.; Limem, K.; Majdoub, H.; Rouatbi, S. Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. Lebensm. Wiss. Technol., 2016, 68, 356-364.
[http://dx.doi.org/10.1016/j.lwt.2015.12.050]
[6]
Zolfaghari, Z.; Vatanparast, J. Thymol provokes burst of action potentials in neurons of snail Caucasotachea atrolabiata. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2020, 228, 108654.
[http://dx.doi.org/10.1016/j.cbpc.2019.108654] [PMID: 31683013]
[7]
Intirach, J.; Junkum, A.; Lumjuan, N.; Chaithong, U.; Somboon, P.; Jitpakdi, A.; Riyong, D.; Champakaew, D.; Muangmoon, R.; Chansang, A.; Pitasawat, B. Biochemical effects of Petroselinum crispum (Umbellifereae) essential oil on the Pyrethroid resistant strains of Aedes aegypti (Diptera: Culicidae). Insects, 2018, 10(1), 1.
[http://dx.doi.org/10.3390/insects10010001] [PMID: 30586929]
[8]
Mohajer, F.; Khanzadi, S.; Keykhosravy, K.; Noori, S.M.A.; Azizzadeh, M.; Hashemi, M. Impact of gelatin nanogel coating containing thymol and nisin on the microbial quality of rainbow trout fillets and the inoculated Listeria monocytogenes. Aquacult. Res., 2021, 52(8), 3958-3965.
[http://dx.doi.org/10.1111/are.15239]
[9]
Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem., 2020, 330, 127268.
[http://dx.doi.org/10.1016/j.foodchem.2020.127268] [PMID: 32540519]
[10]
Guerrero, A.; Ferrero, S.; Barahona, M.; Boito, B.; Lisbinski, E.; Maggi, F.; Sañudo, C. Effects of active edible coating based on thyme and garlic essential oils on lamb meat shelf life after longterm frozen storage. J. Sci. Food Agric., 2020, 100(2), 656-664.
[http://dx.doi.org/10.1002/jsfa.10061] [PMID: 31577841]
[11]
Majdinasab, M.; Niakousari, M.; Shaghaghian, S.; Dehghani, H. Antimicrobial and antioxidant coating based on basil seed gum incorporated with Shirazi thyme and summer savory essential oils emulsions for shelf-life extension of refrigerated chicken fillets. Food Hydrocoll., 2020, 108, 106011.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106011]
[12]
Esmaeili, H.; Cheraghi, N.; Khanjari, A.; Rezaeigolestani, M.; Basti, A.A.; Kamkar, A.; Aghaee, E.M. Incorporation of nanoencapsulated garlic essential oil into edible films: A novel approach for extending shelf life of vacuum-packed sausages. Meat Sci., 2020, 166, 108135.
[http://dx.doi.org/10.1016/j.meatsci.2020.108135] [PMID: 32259681]
[13]
Liu, X.; Zhang, C.; Liu, S.; Gao, J.; Cui, S.W.; Xia, W. Coating white shrimp (Litopenaeus vannamei) with edible fully deacetylated chitosan incorporated with clove essential oil and kojic acid improves preservation during cold storage. Int. J. Biol. Macromol., 2020, 162, 1276-1282.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.248] [PMID: 32610051]
[14]
Raeisi, M.; Mohammadi, M.A.; Coban, O.E.; Ramezani, S.; Ghorbani, M.; Tabibiazar, M.; Khoshbakht, R.; Noori, S.M.A. Physicochemical and antibacterial effect of Soy Protein Isolate/Gelatin electrospun nanofibres incorporated with Zataria multiflora and Cinnamon zeylanicum essential oils. J. Food Meas. Charact., 2021, 15, 1116-1126.
[http://dx.doi.org/10.1007/s11694-020-00700-0]
[15]
Brandelli, A.; Brum, L.F.W.; dos Santos, J.H.Z. Nanostructured bioactive compounds for ecological food packaging. Environ. Chem. Lett., 2017, 15(2), 193-204.
[http://dx.doi.org/10.1007/s10311-017-0621-7]
[16]
Brandelli, A.; Brum, L.F.W.; dos Santos, J.H.Z. Nanobiotechnology methods to incorporate bioactive compounds in food packaging. In: Nanoscience in Food and Agriculture 2; Springer: Switzerland, 2016; pp. 27-58.
[http://dx.doi.org/10.1007/978-3-319-39306-3_2]
[17]
Brandelli, A. Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev. Med. Chem., 2012, 12(8), 731-741.
[http://dx.doi.org/10.2174/138955712801264774] [PMID: 22512554]
[18]
Deng, L.; Li, Y.; Zhang, A.; Zhang, H. Characterization and physical properties of electrospun gelatin nanofibrous films by incorporation of nano-hydroxyapatite. Food Hydrocoll., 2020, 103, 105640.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105640]
[19]
Jhuang, J.R.; Lin, S.B.; Chen, L.C.; Lou, S.N.; Chen, S.H.; Chen, H.H. Development of immobilized laccase-based time temperature indicator by electrospinning zein fiber. Food Packag. Shelf Life, 2020, 23, 100436.
[http://dx.doi.org/10.1016/j.fpsl.2019.100436]
[20]
Zou, P.; Lee, W.H.; Gao, Z.; Qin, D.; Wang, Y.; Liu, J.; Sun, T.; Gao, Y. Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH-CATH30 nanoparticles. Carbohydr. Polym., 2020, 232, 115786.
[http://dx.doi.org/10.1016/j.carbpol.2019.115786] [PMID: 31952594]
[21]
Kutzli, I.; Griener, D.; Gibis, M.; Schmid, C.; Dawid, C.; Baier, S.K.; Hofmann, T.; Weiss, J. Influence of Maillard reaction conditions on the formation and solubility of pea protein isolatemaltodextrin conjugates in electrospun fibers. Food Hydrocoll., 2020, 101, 105535.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105535]
[22]
Celebioglu, A.; Yildiz, Z.I.; Uyar, T. Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res. Int., 2018, 106, 280-290.
[http://dx.doi.org/10.1016/j.foodres.2017.12.062] [PMID: 29579928]
[23]
Beikzadeh, S.; Hosseini, S.M.; Mofid, V.; Ramezani, S.; Ghorbani, M.; Ehsani, A.; Mortazavian, A.M. Electrospun ethyl cellulose/poly caprolactone/gelatin nanofibers: The investigation of mechanical, antioxidant, and antifungal properties for food packaging. Int. J. Biol. Macromol., 2021, 191, 457-464.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.065] [PMID: 34536473]
[24]
Zhang, C.; Li, Y.; Wang, P.; Zhang, A.; Feng, F.; Zhang, H. Electrospinning of bilayer emulsions: The role of gum Arabic as a coating layer in the gelatin-stabilized emulsions. Food Hydrocoll., 2019, 94, 38-47.
[http://dx.doi.org/10.1016/j.foodhyd.2019.03.013]
[25]
Zamani, M.; Prabhakaran, M.P.; Ramakrishna, S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int. J. Nanomedicine, 2013, 8, 2997-3017.
[PMID: 23976851]
[26]
Ataei, S.; Azari, P.; Hassan, A.; Pingguan-Murphy, B.; Yahya, R.; Muhamad, F. Essential oils-loaded electrospun biopolymers: A future perspective for active food packaging. Adv. Poly. Technol., 2020, 2020(1), 1-21.
[http://dx.doi.org/10.1155/2020/9040535]
[27]
Zhang, C.; Li, Y.; Wang, P.; Zhang, H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr. Rev. Food Sci. Food Saf., 2020, 19(2), 479-502.
[http://dx.doi.org/10.1111/1541-4337.12536] [PMID: 33325166]
[28]
Feng, C.; Khulbe, K.C.; Matsuura, T.; Tabe, S.; Ismail, A.F. Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Separ. Purif. Tech., 2013, 102, 118-135.
[http://dx.doi.org/10.1016/j.seppur.2012.09.037]
[29]
de Oliveira Mori, C.L.S.; dos Passos, N.A.; Oliveira, J.E.; Mattoso, L.H.C.; Mori, F.A.; Carvalho, A.G.; de Souza Fonseca, A.; Tonoli, G.H.D. Electrospinning of zein/tannin bio-nanofibers. Ind. Crops Prod., 2014, 52, 298-304.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.047]
[30]
Oliveira, J.E.; Medeiros, E.S.; Cardozo, L.; Voll, F.; Madureira, E.H.; Mattoso, L.H.C.; Assis, O.B.G. Development of poly(lactic acid) nanostructured membranes for the controlled delivery of progesterone to livestock animals. Mater. Sci. Eng. C, 2013, 33(2), 844-849.
[http://dx.doi.org/10.1016/j.msec.2012.10.032] [PMID: 25427496]
[31]
Sun, J.; Bubel, K.; Chen, F.; Kissel, T.; Agarwal, S.; Greiner, A. Nanofibers by green electrospinning of aqueous suspensions of biodegradable block copolyesters for applications in medicine, pharmacy and agriculture. Macromol. Rapid Commun., 2010, 31(23), 2077-2083.
[http://dx.doi.org/10.1002/marc.201000379] [PMID: 21567634]
[32]
Chen, D.W.C.; Lee, F.Y.; Liao, J.Y.; Liu, S.J.; Hsiao, C.Y.; Chen, J.K. Preclinical experiments on the release behavior of biodegradable nanofibrous multipharmaceutical membranes in a model of four-wall intrabony defect. Antimicrob. Agents Chemother., 2013, 57(1), 9-14.
[http://dx.doi.org/10.1128/AAC.00506-12] [PMID: 22948881]
[33]
Lowe, C.R. Nanobiotechnology: The fabrication and applications of chemical and biological nanostructures. Curr. Opin. Struct. Biol., 2000, 10(4), 428-434.
[http://dx.doi.org/10.1016/S0959-440X(00)00110-X] [PMID: 10981630]
[34]
Drosou, C.G.; Krokida, M.K.; Biliaderis, C.G. Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Dry. Technol., 2017, 35(2), 139-162.
[http://dx.doi.org/10.1080/07373937.2016.1162797]
[35]
Reneker, D.H.; Yarin, A.L.; Fong, H.; Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys., 2000, 87(9), 4531-4547.
[http://dx.doi.org/10.1063/1.373532]
[36]
Wang, S.; Marcone, M.F.; Barbut, S.; Lim, L.T. Electrospun soy protein isolate-based fiber fortified with anthocyanin-rich red raspberry (Rubus strigosus) extracts. Food Res. Int., 2013, 52(2), 467-472.
[http://dx.doi.org/10.1016/j.foodres.2012.12.036]
[37]
Dorati, R.; Pisani, S.; Maffeis, G.; Conti, B.; Modena, T.; Chiesa, E.; Bruni, G.; Musazzi, U.M.; Genta, I. Study on hydrophilicity and degradability of chitosan/polylactide-co-polycaprolactone nanofibre blend electrospun membrane. Carbohydr. Polym., 2018, 199, 150-160.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.050] [PMID: 30143115]
[38]
Szentivanyi, A.; Chakradeo, T.; Zernetsch, H.; Glasmacher, B. Electrospun cellular microenvironments: Understanding controlled release and scaffold structure. Adv. Drug Deliv. Rev., 2011, 63(4-5), 209-220.
[http://dx.doi.org/10.1016/j.addr.2010.12.002] [PMID: 21145932]
[39]
Schoolaert, E.; Steyaert, I.; Vancoillie, G.; Geltmeyer, J.; Lava, K.; Hoogenboom, R.; De Clerck, K. Blend electrospinning of dyefunctionalized chitosan and poly(ε-caprolactone): Towards biocompatible pH-sensors. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(26), 4507-4516.
[http://dx.doi.org/10.1039/C6TB00639F] [PMID: 32263393]
[40]
Yang, Y.; Li, X.; Qi, M.; Zhou, S.; Weng, J. Release pattern and structural integrity of lysozyme encapsulated in core–sheath structured poly(dl-lactide) ultrafine fibers prepared by emulsion electrospinning. Eur. J. Pharm. Biopharm., 2008, 69(1), 106-116.
[http://dx.doi.org/10.1016/j.ejpb.2007.10.016] [PMID: 18078743]
[41]
Hu, J.; Li, H.Y.; Williams, G.R.; Yang, H.H.; Tao, L.; Zhu, L.M. Electrospun poly (N-isopropylacrylamide)/ethyl cellulose nanofibers as thermoresponsive drug delivery systems. J. Pharm. Sci., 2016, 105(3), 1104-1112.
[http://dx.doi.org/10.1016/S0022-3549(15)00191-4] [PMID: 26886332]
[42]
Chakraborty, S.; Liao, I.C.; Adler, A.; Leong, K.W. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv. Drug Deliv. Rev., 2009, 61(12), 1043-1054.
[http://dx.doi.org/10.1016/j.addr.2009.07.013] [PMID: 19651167]
[43]
Torkamani, A.E.; Syahariza, Z.A.; Norziah, M.H.; Wan, A.K.M.; Juliano, P. Encapsulation of polyphenolic antioxidants obtained from Momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning. Food Biosci., 2018, 21, 60-71.
[http://dx.doi.org/10.1016/j.fbio.2017.12.001]
[44]
Vysloužilová, L.; Buzgo, M.; Pokorný, P.; Chvojka, J.; Míčková, A.; Rampichová, M.; Kula, J.; Pejchar, K.; Bílek, M.; Lukáš, D.; Amler, E. Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers. Int. J. Pharm., 2017, 516(1-2), 293-300.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.034] [PMID: 27851978]
[45]
Yu, D.G.; Chian, W.; Wang, X.; Li, X.Y.; Li, Y.; Liao, Y.Z. Linear drug release membrane prepared by a modified coaxial electrospinning process. J. Membr. Sci., 2013, 428, 150-156.
[http://dx.doi.org/10.1016/j.memsci.2012.09.062]
[46]
Kai, D.; Liow, S.S.; Loh, X.J. Biodegradable polymers for electrospinning: Towards biomedical applications. Mater. Sci. Eng. C, 2014, 45, 659-670.
[http://dx.doi.org/10.1016/j.msec.2014.04.051] [PMID: 25491875]
[47]
Liao, I.; Chew, S.; Leong, K. Aligned core–shell nanofibers delivering bioactive proteins. Nanomedicine, 2006, 1(4), 465-471.
[http://dx.doi.org/10.2217/17435889.1.4.465]
[48]
Nikmaram, N.; Roohinejad, S.; Hashemi, S.; Koubaa, M.; Barba, F.J.; Abbaspourrad, A.; Greiner, R. Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. RSC Advances, 2017, 7(46), 28951-28964.
[http://dx.doi.org/10.1039/C7RA00179G]
[49]
Barhoum, A.; Bechelany, M.; Makhlouf, A.S.H. Handbook of Nanofibers; Springer: Switzerland, 2019.
[http://dx.doi.org/10.1007/978-3-319-53655-2]
[50]
Wen, P.; Wen, Y.; Zong, M.H.; Linhardt, R.J.; Wu, H. Encapsulation of bioactive compound in electrospun fibers and its potential application. J. Agric. Food Chem., 2017, 65(42), 9161-9179.
[http://dx.doi.org/10.1021/acs.jafc.7b02956] [PMID: 28949530]
[51]
Jalaja, K.; Naskar, D.; Kundu, S.C.; James, N.R. Potential of electrospun core–shell structured gelatin–chitosan nanofibers for biomedical applications. Carbohydr. Polym., 2016, 136, 1098-1107.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.014] [PMID: 26572452]
[52]
Zhao, Q.; Wang, M. Strategies to incorporate polyelectrolyte in emulsion electrospun nanofibrous tissue engineering scaffolds for modulating growth factor release from the scaffolds. Mater. Lett., 2016, 162, 48-52.
[http://dx.doi.org/10.1016/j.matlet.2015.09.120]
[53]
Li, X.; Su, Y.; Liu, S.; Tan, L.; Mo, X.; Ramakrishna, S. Encapsulation of proteins in poly(l-lactide-co-caprolactone) fibers by emulsion electrospinning. Colloids Surf. B Biointerfaces, 2010, 75(2), 418-424.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.014] [PMID: 19836931]
[54]
Arecchi, A.; Mannino, S.; Weiss, J. Electrospinning of poly(vinyl alcohol) nanofibers loaded with hexadecane nanodroplets. J. Food Sci., 2010, 75(6), N80-N88.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01680.x] [PMID: 20722944]
[55]
Camerlo, A.; Bühlmann-Popa, A.M.; Vebert-Nardin, C.; Rossi, R.M.; Fortunato, G. Environmentally controlled emulsion electrospinning for the encapsulation of temperature-sensitive compounds. J. Mater. Sci., 2014, 49(23), 8154-8162.
[http://dx.doi.org/10.1007/s10853-014-8524-5]
[56]
Pal, J.; Skrifvars, M.; Nandan, B.; Srivastava, R.K. Electrospun composite matrices from tenside-free poly(ε-caprolactone)-grafted acrylic acid/hydroxyapatite oil-in-water emulsions. J. Mater. Sci., 2017, 52(4), 2254-2262.
[http://dx.doi.org/10.1007/s10853-016-0518-z]
[57]
Jiang, Y.N.; Mo, H.Y.; Yu, D.G. Electrospun drug-loaded core–sheath PVP/zein nanofibers for biphasic drug release. Int. J. Pharm., 2012, 438(1-2), 232-239.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.053] [PMID: 22981688]
[58]
Huang, W.; Zou, T.; Li, S.; Jing, J.; Xia, X.; Liu, X. Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. AAPS PharmSciTech, 2013, 14(2), 675-681.
[http://dx.doi.org/10.1208/s12249-013-9953-1] [PMID: 23516111]
[59]
Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv., 2010, 28(3), 325-347.
[http://dx.doi.org/10.1016/j.biotechadv.2010.01.004] [PMID: 20100560]
[60]
Kumar, M.R. Handbook of polyester drug delivery systems; CRC Press: Boca Raton, 2017.
[61]
Wang, C.; Tong, S.N.; Tse, Y.H.; Wang, M. Conventional electrospinning vs. emulsion electrospinning: A comparative study on the development of nanofibrous drug/biomolecule delivery vehicles. Adv. Mat. Res., 2012, 410, 118-121.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.410.118]
[62]
Qi, H.; Hu, P.; Xu, J.; Wang, A. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: Morphology characterization and preliminary release assessment. Biomacromolecules, 2006, 7(8), 2327-2330.
[http://dx.doi.org/10.1021/bm060264z] [PMID: 16903678]
[63]
Zhang, C.; Zhang, H. Formation and stability of core–shell nanofibers by electrospinning of gel-like corn oil-in-water emulsions stabilized by gelatin. J. Agric. Food Chem., 2018, 66(44), 11681-11690.
[http://dx.doi.org/10.1021/acs.jafc.8b04270] [PMID: 30296080]
[64]
Gupta, P.; Elkins, C.; Long, T.E.; Wilkes, G.L. Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 2005, 46(13), 4799-4810.
[http://dx.doi.org/10.1016/j.polymer.2005.04.021]
[65]
Niu, H.; Lin, T.; Wang, X. Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J. Appl. Polym. Sci., 2009, 114(6), 3524-3530.
[http://dx.doi.org/10.1002/app.30891]
[66]
Thoppey, N.M.; Bochinski, J.R.; Clarke, L.I.; Gorga, R.E. Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer, 2010, 51(21), 4928-4936.
[http://dx.doi.org/10.1016/j.polymer.2010.07.046]
[67]
Thoppey, N.M.; Gorga, R.E.; Clarke, L.I.; Bochinski, J.R. Control of the electric field–polymer solution interaction by utilizing ultraconductive fluids. Polymer, 2014, 55(24), 6390-6398.
[http://dx.doi.org/10.1016/j.polymer.2014.10.007]
[68]
Thoppey, N.M.; Bochinski, J.R.; Clarke, L.I.; Gorga, R.E. Edge electrospinning for high throughput production of quality nanofibers. Nanotechnology, 2011, 22(34), 345301.
[http://dx.doi.org/10.1088/0957-4484/22/34/345301] [PMID: 21799242]
[69]
Lin, L.; Zhu, Y.; Cui, H. Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken. Lebensm. Wiss. Technol., 2018, 97, 711-718.
[http://dx.doi.org/10.1016/j.lwt.2018.08.015]
[70]
Lin, L.; Liao, X.; Cui, H. Cold plasma treated thyme essential oil/silk fibroin nanofibers against Salmonella typhimurium in poultry meat. Food Packag. Shelf Life, 2019, 21, 100337.
[http://dx.doi.org/10.1016/j.fpsl.2019.100337]
[71]
Vafania, B.; Fathi, M.; Soleimanian-Zad, S. Nanoencapsulation of thyme essential oil in chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to reduce nitrite in sausages. Food Bioprod. Process., 2019, 116, 240-248.
[http://dx.doi.org/10.1016/j.fbp.2019.06.001]
[72]
Cengiz Çallıoğlu, F.; Kesici Güler, H.; Sesli Çetin, E. Emulsion electrospinning of bicomponent poly (vinyl pyrrolidone)/gelatin nanofibers with thyme essential oil. Mater. Res. Express, 2019, 6(12), 125013.
[http://dx.doi.org/10.1088/2053-1591/ab5387]
[73]
Kamrudi, N.; Akbari, S.; Haghighat Kish, M. Enhanced control release of thyme essential oils from electrospun nanofiber/polyamidoamine dendritic polymer for antibacterial platforms. Polym. Adv. Technol., 2020, 31(8), 1719-1731.
[http://dx.doi.org/10.1002/pat.4899]
[74]
Göksen, G.; Fabra, M.J.; Ekiz, H.I.; López-Rubio, A. Phytochemical-loaded electrospun nanofibers as novel active edible films: Characterization and antibacterial efficiency in cheese slices. Food Control, 2020, 112, 107133.
[http://dx.doi.org/10.1016/j.foodcont.2020.107133]
[75]
Amjadi, S.; Almasi, H.; Ghorbani, M.; Ramazani, S. Reinforced ZnONPs/ rosemary essential oil-incorporated zein electrospun nanofibers by κ-carrageenan. Carbohydr. Polym., 2020, 232, 115800.
[http://dx.doi.org/10.1016/j.carbpol.2019.115800] [PMID: 31952599]
[76]
Pan, J.; Ai, F.; Shao, P.; Chen, H.; Gao, H. Development of polyvinyl alcohol/β-cyclodextrin antimicrobial nanofibers for fresh mushroom packaging. Food Chem., 2019, 300, 125249.
[http://dx.doi.org/10.1016/j.foodchem.2019.125249] [PMID: 31352291]
[77]
Nazari, M.; Majdi, H.; Milani, M.; Abbaspour-Ravasjani, S.; Hamishehkar, H.; Lim, L.T. Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging. Food Packag. Shelf Life, 2019, 21, 100349.
[http://dx.doi.org/10.1016/j.fpsl.2019.100349]
[78]
Lin, L.; Dai, Y.; Cui, H. Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/betacyclodextrin proteoliposomes. Carbohydr. Polym., 2017, 178, 131-140.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.043] [PMID: 29050578]
[79]
Kesici Güler, H.; Cengiz Çallıoğlu, F.; Sesli Çetin, E. Antibacterial PVP/cinnamon essential oil nanofibers by emulsion electrospinning. J. Textil. Inst., 2019, 110(2), 302-310.
[http://dx.doi.org/10.1080/00405000.2018.1477237]
[80]
Rieger, K.A.; Schiffman, J.D. Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr. Polym., 2014, 113, 561-568.
[http://dx.doi.org/10.1016/j.carbpol.2014.06.075] [PMID: 25256519]
[81]
Hasanpour Ardekani-Zadeh, A.; Hosseini, S.F. Electrospun essential oil-doped chitosan/poly(ε-caprolactone) hybrid nanofibrous mats for antimicrobial food biopackaging exploits. Carbohydr. Polym., 2019, 223, 115108.
[http://dx.doi.org/10.1016/j.carbpol.2019.115108] [PMID: 31426968]
[82]
Khan, A.R.; Nadeem, M.; Bhutto, M.A.; Yu, F.; Xie, X.; El-Hamshary, H.; El-Faham, A.; Ibrahim, U.A.; Mo, X. Physicochemical and biological evaluation of PLCL/SF nanofibers loaded with oregano essential oil. Pharmaceutics, 2019, 11(8), 386.
[http://dx.doi.org/10.3390/pharmaceutics11080386] [PMID: 31382396]
[83]
Figueroa-Lopez, K.J.; Vicente, A.A.; Reis, M.A.M.; Torres-Giner, S.; Lagaron, J.M. Antimicrobial and antioxidant performance of various essential oils and natural extracts and their incorporation into biowaste derived poly (3-hydroxybutyrate-co-3-hydroxyvalerate) layers made from electrospun ultrathin fibers. Nanomaterials, 2019, 9(2), 144.
[http://dx.doi.org/10.3390/nano9020144] [PMID: 30678126]
[84]
Liakos, I.; Holban, A.; Carzino, R.; Lauciello, S.; Grumezescu, A. Electrospun fiber pads of cellulose acetate and essential oils with antimicrobial activity. Nanomaterials, 2017, 7(4), 84.
[http://dx.doi.org/10.3390/nano7040084] [PMID: 28417912]
[85]
Lee, J.Y.; Lee, J.; Ko, S.W.; Son, B.C.; Lee, J.H.; Kim, C.S.; Park, C.H. Fabrication of antibacterial nanofibrous membrane infused with essential oil extracted from tea tree for packaging applications. Polymers, 2020, 12(1), 125.
[http://dx.doi.org/10.3390/polym12010125] [PMID: 31948088]
[86]
Lin, L.; Mao, X.; Sun, Y.; Rajivgandhi, G.; Cui, H. Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging. Int. J. Food Microbiol., 2019, 292, 21-30.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.12.007] [PMID: 30553179]
[87]
Zhou, Y.; Miao, X.; Lan, X.; Luo, J.; Luo, T.; Zhong, Z.; Gao, X.; Mafang, Z.; Ji, J.; Wang, H.; Tang, Y. Angelica essential oil loaded electrospun gelatin nanofibers for active food packaging application. Polymers, 2020, 12(2), 299.
[http://dx.doi.org/10.3390/polym12020299] [PMID: 32024290]
[88]
Cui, H.; Zhang, C.; Li, C.; Lin, L. Preparation and antibacterial activity of Litsea cubeba essential oil/dandelion polysaccharide nanofiber. Ind. Crops Prod., 2019, 140, 111739.
[http://dx.doi.org/10.1016/j.indcrop.2019.111739]
[89]
Tang, Y.; Zhou, Y.; Lan, X.; Huang, D.; Luo, T.; Ji, J.; Mafang, Z.; Miao, X.; Wang, H.; Wang, W. Electrospun gelatin nanofibers encapsulated with peppermint and chamomile essential oils as potential edible packaging. J. Agric. Food Chem., 2019, 67(8), 2227-2234.
[http://dx.doi.org/10.1021/acs.jafc.8b06226] [PMID: 30715872]
[90]
Celebioglu, A.; Yildiz, Z.I.; Uyar, T. Fabrication of electrospun eugenol/cyclodextrin inclusion complex nanofibrous webs for enhanced antioxidant property, water solubility, and high temperature stability. J. Agric. Food Chem., 2018, 66(2), 457-466.
[http://dx.doi.org/10.1021/acs.jafc.7b04312] [PMID: 29251511]
[91]
Celebioglu, A.; Kayaci-Senirmak, F.; İpek, S.; Durgun, E.; Uyar, T. Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: High thermal stability, enhanced solubility and antioxidant property. Food Funct., 2016, 7(7), 3141-3153.
[http://dx.doi.org/10.1039/C6FO00569A] [PMID: 27353870]
[92]
Kriegel, C.; Kit, K.M.; McClements, D.J.; Weiss, J. Nanofibers as carrier systems for antimicrobial microemulsions. II. Release characteristics and antimicrobial activity. J. Appl. Polym. Sci., 2010, 118(5), 2859-2868.
[http://dx.doi.org/10.1002/app.32563]
[93]
Aytac, Z.; Yildiz, Z.I.; Kayaci-Senirmak, F.; San Keskin, N.O.; Kusku, S.I.; Durgun, E.; Tekinay, T.; Uyar, T. Fast-dissolving, prolonged release, and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning. J. Agric. Food Chem., 2016, 64(39), 7325-7334.
[http://dx.doi.org/10.1021/acs.jafc.6b02632] [PMID: 27616160]
[94]
Aytac, Z.; Yildiz, Z.I.; Kayaci-Senirmak, F.; San Keskin, N.O.; Tekinay, T.; Uyar, T. Electrospinning of polymer-free cyclodextrin/geraniol–inclusion complex nanofibers: Enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Advances, 2016, 6(52), 46089-46099.
[http://dx.doi.org/10.1039/C6RA07088D]
[95]
Shao, P.; Liu, Y.; Ritzoulis, C.; Niu, B. Preparation of zein nanofibers with cinnamaldehyde encapsulated in surfactants at critical micelle concentration for active food packaging. Food Packag. Shelf Life, 2019, 22, 100385.
[http://dx.doi.org/10.1016/j.fpsl.2019.100385]
[96]
Sekar, A.D.; Kumar, V.; Muthukumar, H.; Gopinath, P.; Matheswaran, M. Electrospinning of Fe-doped ZnO nanoparticles incorporated polyvinyl alcohol nanofibers for its antibacterial treatment and cytotoxic studies. Eur. Polym. J., 2019, 118, 27-35.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.05.038]
[97]
Huang, Z.M.; Zhang, Y.Z.; Ramakrishna, S.; Lim, C.T. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer, 2004, 45(15), 5361-5368.
[http://dx.doi.org/10.1016/j.polymer.2004.04.005]
[98]
Félix, M.; Jiménez, C.; Romero, A.; Guerrero, A. PVA-based electrospun nanofiber mats of potential use in active packaging. Int. J. Environ. Agric. Res., 2016, 2(8), 7-14.
[99]
Sanches-Silva, A.; Costa, D.; Albuquerque, T.G.; Buonocore, G.G.; Ramos, F.; Castilho, M.C.; Machado, A.V.; Costa, H.S. Trends in the use of natural antioxidants in active food packaging: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2014, 31(3), 374-395.
[http://dx.doi.org/10.1080/19440049.2013.879215] [PMID: 24405324]
[100]
Martínez-Abad, A.; Ocio, M.J.; Lagaron, J.M. Morphology, physical properties, silver release, and antimicrobial capacity of ionic silver-loaded poly (L -lactide) films of interest in food-coating applications. J. Appl. Polym. Sci., 2014, 131(21), 1-11.
[http://dx.doi.org/10.1002/app.41001]
[101]
Hwang, S.W.; Shim, J.K.; Selke, S.; Soto-Valdez, H.; Matuana, L.; Rubino, M.; Auras, R. Migration of α-tocopherol and resveratrol from poly(L-lactic acid)/starch blends films into ethanol. J. Food Eng., 2013, 116(4), 814-828.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.032]
[102]
Aceituno-Medina, M.; Mendoza, S.; Lagaron, J.M.; López-Rubio, A. Photoprotection of folic acid upon encapsulation in food-grade amaranth (Amaranthus hypochondriacus L.) protein isolate – Pullulan electrospun fibers. Lebensm. Wiss. Technol., 2015, 62(2), 970-975.
[http://dx.doi.org/10.1016/j.lwt.2015.02.025]
[103]
Fuenmayora, C.A.; Mascheronia, E.; Cosioa, M.S.; Piergiovannia, L.; Benedettia, S.; Ortenzic, M.; Schiraldia, A.; Manninoa, S. Encapsulation of R-(+)-limonene in edible electrospun nanofibers. Chem. Eng., 2013, 32, 1771-6.
[104]
Paramita, V.; Iida, K.; Yoshii, H.; Furuta, T. Effect of feed liquid temperature on the structural morphologies of d-limonene microencapsulated powder and its preservation. J. Food Sci., 2010, 75(1), E39-E45.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01406.x] [PMID: 20492164]
[105]
Neo, Y.P.; Swift, S.; Ray, S.; Gizdavic-Nikolaidis, M.; Jin, J.; Perera, C.O. Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials. Food Chem., 2013, 141(3), 3192-3200.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.018] [PMID: 23871077]
[106]
Babapoor, A.; Karimi, G.; Khorram, M. Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning. Appl. Therm. Eng., 2016, 99, 1225-1235.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.02.026]
[107]
Cai, Y.; Sun, G.; Liu, M.; Zhang, J.; Wang, Q.; Wei, Q. Fabrication and characterization of capric–lauric–palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval. Sol. Energy, 2015, 118, 87-95.
[http://dx.doi.org/10.1016/j.solener.2015.04.042]
[108]
Ilyas, R.A.; Sapuan, S.M.; Ishak, M.R.; Zainudin, E.S.; Atikah, M.S.; Huzaifah, M.R. Water barrier properties of biodegradable films reinforced with nanocellulose for food packaging application: A review. In: 6th Postgraduate Seminar on Natural Fiber Reinforced Polymer Composites; Serdang: Selangor, 2018; pp. 55-59.
[109]
Tipduangta, P.; Belton, P.; Fábián, L.; Wang, L.Y.; Tang, H.; Eddleston, M.; Qi, S. Electrospun polymer blend nanofibers for tunable drug delivery: The role of transformative phase separation on controlling the release rate. Mol. Pharm., 2016, 13(1), 25-39.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00359] [PMID: 26655957]
[110]
Anu Bhushani, J.; Anandharamakrishnan, C. Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci. Technol., 2014, 38(1), 21-33.
[http://dx.doi.org/10.1016/j.tifs.2014.03.004]
[111]
Rafiq, M.; Hussain, T.; Abid, S.; Nazir, A.; Masood, R. Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils. Mater. Res. Express, 2018, 5(3), 035007.
[http://dx.doi.org/10.1088/2053-1591/aab0b4]
[112]
Balasubramanian, K.; Kodam, K.M. Encapsulation of therapeutic lavender oil in an electrolyte assisted polyacrylonitrile nanofibres for antibacterial applications. RSC Advances, 2014, 4(97), 54892-54901.
[http://dx.doi.org/10.1039/C4RA09425E]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy