Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Chemo-enzymatic Synthesis of Rivastigmine Intermediate by Locally Isolated Soil Fungus Fusarium graminearum

Author(s): Suneelkumar Muragesh M. Basingi* and Siddesh Matadh

Volume 10, Issue 2, 2023

Published on: 22 May, 2023

Page: [160 - 164] Pages: 5

DOI: 10.2174/2213346110666230330105603

Price: $65

Abstract

Background: Biocatalytic reactions are known as a green technology, capable of delivering highly stereo-, chemo- and regioselective transformations that usually reduce the number of steps in a synthetic route.

Objective: This work describes a process for the production of a key chiral intermediate N-ethyl-Nmethyl- carbamic acid-3-(1S-hydroxy-ethyl)-phenyl ester converted into chiral alcohol which can be further converted into rivastigmine.

Methods: The fungi isolated from different soil samples by the soil dilution plate technique were screened for their ability to convert the selected intermediate. The selected organism is further grown under fermentation for gram scale conversion.

Results: Among the different fungi isolated Fusarium graminearum selected for further study for reaction optimization and gram scale conversion of the ketone substrate.

Conclusion: The reaction under fermentative condition for 48 hours at 30°C, pH 6 with agitation speed of 200rpm found to be optimal condition for the overall bioreduction process of the ketone employed in the study.

Keywords: Bioconversion, asymmetric reduction, chemo-enzymatic process, rivastigmine, fermentation, stereo selective.

Graphical Abstract
[1]
Patel, R.N. Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord. Chem. Rev., 2008, 252(5-7), 659-701.
[http://dx.doi.org/10.1016/j.ccr.2007.10.031]
[2]
García-Granados, A.; Fernández, A.; Gutiérrez, M.C.; Martínez, A.; Quirós, R.; Rivas, F.; Arias, J.M. Biotransformation of ent -13- epi -manoyl oxides difunctionalized at C-3 and C-12 by filamentous fungi. Phytochemistry, 2004, 65(1), 107-115.
[http://dx.doi.org/10.1016/j.phytochem.2003.09.017] [PMID: 14697276]
[3]
Azizi, N.; Batebi, E.; Bagherpour, S.; Ghafuri, H. Natural deep eutectic salt promoted regioselective reduction of epoxides and carbonyl compounds. RSC Adv., 2012, 2(6), 2289-2293.
[http://dx.doi.org/10.1039/c2ra01280d]
[4]
Mekazni, D.S.; Arán-Ais, R.M.; Feliu, J.M.; Herrero, E. Understanding the electrochemical hydrogenation of acetone on Pt single crystal electrodes. J. Electroanal. Chem., 2022, 922, 116697.
[http://dx.doi.org/10.1016/j.jelechem.2022.116697]
[5]
Borges, K.B.; Borges, W.S.; Durán-Patrón, R.; Pupo, M.T.; Bonato, P.S.; Collado, I.G. Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron Asymmetry, 2009, 20(4), 385-397.
[http://dx.doi.org/10.1016/j.tetasy.2009.02.009]
[6]
Patel, R.N.; Banerjee, A.; Chu, L.; Brozozowski, D.; Nanduri, V.; Szarka, L.J. Microbial synthesis of chiral intermediates for β-3-receptor agonists. J. Am. Oil Chem. Soc., 1998, 75(11), 1473-1482.
[http://dx.doi.org/10.1007/s11746-998-0081-0]
[7]
Jothi, S.; Vuppu, S. Taguchi analysis and asymmetric keto-reduction of acetophenone and its derivatives by soil filamentous fungal isolate: Penicillium rubens VIT SS1. Prep. Biochem. Biotechnol., 2020, 50(10), 1042-1052.
[http://dx.doi.org/10.1080/10826068.2020.1786697] [PMID: 32633606]
[8]
Boezio, A.A.; Pytkowicz, J.; Côté, A.; Charette, A.B. Asymmetric, catalytic synthesis of α-chiral amines using a novel bis(phosphine) monoxide chiral ligand. J. Am. Chem. Soc., 2003, 125(47), 14260-14261.
[http://dx.doi.org/10.1021/ja038291+] [PMID: 14624558]
[9]
Petrovičová, T.; Gyuranová, D.; Plž, M.; Myrtollari, K.; Smonou, I.; Rebroš, M. Application of robust ketoreductase from Hansenula polymorpha for the reduction of carbonyl compounds. Mol. Catal., 2021, 502, 111364.
[http://dx.doi.org/10.1016/j.mcat.2020.111364]
[10]
Honda, K.; Inoue, M.; Ono, T.; Okano, K.; Dekishima, Y.; Kawabata, H. Improvement of operational stability of Ogataea minuta carbonyl reductase for chiral alcohol production. J. Biosci. Bioeng., 2017, 123(6), 673-678.
[http://dx.doi.org/10.1016/j.jbiosc.2017.01.016] [PMID: 28214241]
[11]
Meng, H.; Zhang, F.L.; Xie, M.H. Novel convenient synthesis of rivastigmine. Synth. Commun., 2009, 39(9), 1527-1533.
[http://dx.doi.org/10.1080/00397910802531948]
[12]
Arunkumar, K.; Reddy, M.A.; Kumar, T.S.; Kumar, B.V.; Chandrasekhar, K.B.; Kumar, P.R.; Pal, M. Achiral bis-imine in combination with CoCl2: A remarkable effect on enantioselectivity of lipase-mediated acetylation of racemic secondary alcohol. Beilstein J. Org. Chem., 2010, 6, 1174-1179.
[http://dx.doi.org/10.3762/bjoc.6.134] [PMID: 21160565]
[13]
Fuchs, M.; Koszelewski, D.; Tauber, K.; Kroutil, W.; Faber, K. Chemoenzymatic asymmetric total synthesis of (S)-Rivastigmine using ω-transaminases. Chem. Commun., 2010, 46(30), 5500-5502.
[http://dx.doi.org/10.1039/c0cc00585a] [PMID: 20461261]
[14]
Saini, N. Isolation and identification of fungi from soil sample of different localities of a agricultural land in Dehradun. Int. J. Sci. Res., 2016, 5(2)
[15]
Toma, F.; Abdulla, N. Isolation, identification and seasonal distribution of soilborne fungi in different areas of Erbil Governorate. JALRB, 2012, 3, 246-255.
[16]
Sethi, M.K.; Bhandya, S.R.; Kumar, A.; Maddur, N.; Shukla, R.; Jayalakshmi Mittapalli, V.S.N. Chemo-enzymatic synthesis of optically pure rivastigmine intermediate using alcohol dehydrogenase from baker’s yeast. J. Mol. Catal., B Enzym., 2013, 91, 87-92.
[http://dx.doi.org/10.1016/j.molcatb.2013.02.010]
[17]
Han, K.; Kim, C.; Park, J.; Kim, M.J. Chemoenzymatic synthesis of rivastigmine via dynamic kinetic resolution as a key step. J. Org. Chem., 2010, 75(9), 3105-3108.
[http://dx.doi.org/10.1021/jo9027374] [PMID: 20345141]
[18]
Rösler, M.; Anand, R.; Cicin-Sain, A.; Gauthier, S.; Agid, Y.; Dal-Bianco, P.; Stähelin, H.B.; Hartman, R.; Gharabawi, M.; Bayer, T. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial Commentary: Another piece of the Alzheimer’s jigsaw. BMJ, 1999, 318(7184), 633-640.
[http://dx.doi.org/10.1136/bmj.318.7184.633] [PMID: 10066203]
[19]
Yılmaz, D.; Şahin, E.; Dertli, E. Highly enantioselective production of chiral secondary alcohols using Lactobacillus paracasei BD101 as a new whole cell biocatalyst and evaluation of their antimicrobial effects. Chem. Biodivers., 2017, 14(11), e1700269.
[http://dx.doi.org/10.1002/cbdv.201700269] [PMID: 28792667]
[20]
Long, W.S.; Kow, P.C.; Kamaruddin, A.H.; Bhatia, S. Comparison of kinetic resolution between two racemic ibuprofen esters in an enzymic membrane reactor. Process Biochem., 2005, 40(7), 2417-2425.
[http://dx.doi.org/10.1016/j.procbio.2004.09.014]
[21]
Sahin, E. Production of (R)-1-(1,3-benzodioxol-5-yl)ethanol in high enantiomeric purity by Lactobacillus paracasei BD101. Chirality, 2018, 30(2), 189-194.
[http://dx.doi.org/10.1002/chir.22782]
[22]
Jamie, A.; Alshami, A.S.; Maliabari, Z.O.; Ateih, M.A. Development and validation of a kinetic model for enzymatic hydrolysis using Candida rugosa Lipase. J. Bioprocess. Biotech., 2017, 7, 297.
[23]
Wang, S.; Xu, Y.; Zhang, R.; Zhang, B.; Xiao, R. Improvement of (R)-carbonyl reductase-mediated biosynthesis of (R)-1-phenyl-1,2-ethanediol by a novel dual-cosubstrate-coupled system for NADH recycling. Process Biochem., 2012, 47(7), 1060-1065.
[http://dx.doi.org/10.1016/j.procbio.2012.03.007]
[24]
Zilbeyaz, K.; Esabi, B.K. Highly enantiomeric reduction of acetophenone and its derivatives by locally isolated Rhodotorula glutinis. Chirality, 2010, 22(9), 849-854.
[http://dx.doi.org/10.1002/chir.20846]
[25]
Soni, P.; Banerjee, U.C. Enantioselective reduction of acetophenone and its derivatives with a new yeast isolate Candida tropicalis PBR-2 MTCC 5158. Biotechnol. J., 2006, 1, 80-85.
[http://dx.doi.org/10.1002/biot.200500020]
[26]
Zilbeyaz, K.; Taskin, M.; Kurbanoglu, E.B.; Kurbanoglu, N.I.; Kilic, H. Production of (R)-1-phenylethanols through bioreduction of acetophenones by a new fungus isolate Trichothecium roseum. Chirality, 2010, 22(6), 543-547.
[http://dx.doi.org/10.1002/chir.20775]
[27]
Şahin, E; Dertli, E Highly enantioselective production of chiral secondary alcohols with Candida zeylanoides as a new whole cell biocatalyst. Chem Biodive, 2017, 14(9), e1700121.
[http://dx.doi.org/10.1002/cbdv.201700121]
[28]
Rocha, L.C.; Ferreira, H.V.; Pimenta, E.F.; Berlinck, R.G.S.; Seleghim, M.H.R.; Javaroti, D.C.D.; Sette, L.D.; Bonugli, R.C.; Porto, A.L.M. Bioreduction of α-chloroacetophenone by whole cells of marine fungi. Biotechnol. Lett., 2009, 31, 1559-1563.
[http://dx.doi.org/10.1007/s10529-009-0037-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy