Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Synthesis and Electrochemical Applications of Carbon Nano-onions

Author(s): Jorge A. Castaño, Jolaine G. Betancourth, Dahiana L. Caicedo, Renso Visbal and Manuel N. Chaur*

Volume 20, Issue 1, 2024

Published on: 24 May, 2023

Page: [47 - 73] Pages: 27

DOI: 10.2174/1573413719666230329134840

Price: $65

Abstract

Carbon nano-onions, a family of carbon nanomaterials, consist of multiple concentric fullerene- like carbon shells which are highly defective and disordered. Due to their unique physicochemical properties, such as high conductivity, high surface area, biocompatibility, thermal stability, and others, they are promising nanomaterials for different electrochemical applications. In this sense, this review outlines the synthetic methods available to afford carbon nano-onions in their pristine, functionalized (covalent and non covalent) and doped forms and their use in energy storage, electrocatalysis and sensing. Particularly, we review the performance and properties of carbon nano-onions as electrode materials for supercapacitors, electrocatalysts in different reactions for fuel cells, and electrode materials for sensors. In the last decade, as we will discuss, scientists have found that functionalized and doped carbon nano-onions have better electrochemical properties than pristine carbon nanoonions, such as specific capacitance, surface wettability, energy power, adsorption on an electrode surface, and charge delocalization, among others.

Keywords: Carbon nano-onion, doped nanomaterial, supercapacitor, electrocatalyst, electrochemical sensor, HR-TEM.

Graphical Abstract
[1]
Iijima, S. Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J. Cryst. Growth, 1980, 50(3), 675-683.
[http://dx.doi.org/10.1016/0022-0248(80)90013-5]
[2]
Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation. Nature, 1992, 359(6397), 707-709.
[http://dx.doi.org/10.1038/359707a0] [PMID: 11536508]
[3]
Bartelmess, J.; Giordani, S. Carbon nano-onions (multi-layer fullerenes): Chemistry and applications. Beilstein J. Nanotechnol., 2014, 5(1), 1980-1998.
[http://dx.doi.org/10.3762/bjnano.5.207] [PMID: 25383308]
[4]
Ghalkhani, M.; Khosrowshahi, E.M.; Sohouli, E. Carbon nano-onions: Synthesis, characterization, and application. Handbook of Carbon-Based Nanomaterials; Elsevier: Amsterdam, 2021, pp. 159-207.
[http://dx.doi.org/10.1016/B978-0-12-821996-6.00006-3]
[5]
Kuznetsov, V.L.; Chuvilin, A.L.; Butenko, Y.V.; Mal’kov, I.Y.; Titov, V.M. Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett., 1994, 222(4), 343-348.
[http://dx.doi.org/10.1016/0009-2614(94)87072-1]
[6]
He, C.; Zhao, N.; Shi, C.; Du, X.; Li, J. Carbon nanotubes and onions from methane decomposition using Ni/Al catalysts. Mater. Chem. Phys., 2006, 97(1), 109-115.
[http://dx.doi.org/10.1016/j.matchemphys.2005.07.059]
[7]
Bystrzejewski, M.; Rummeli, M.H.; Gemming, T.; Lange, H.; Huczko, A. Catalyst-free synthesis of onion-like carbon nanoparticles. N. Carbon Mater., 2010, 25(1), 1-8.
[http://dx.doi.org/10.1016/S1872-5805(09)60011-1]
[8]
Rettenbacher, A.S.; Elliott, B.; Hudson, J.S.; Amirkhanian, A.; Echegoyen, L. Preparation and functionalization of multilayer fullerenes (carbon nano-onions). Chemistry, 2006, 12(2), 376-387.
[http://dx.doi.org/10.1002/chem.200500517] [PMID: 16189840]
[9]
Palkar, A.; Melin, F.; Cardona, C.M.; Elliott, B.; Naskar, A.K.; Edie, D.D.; Kumbhar, A.; Echegoyen, L. Reactivity differences between carbon nano onions (CNOs) prepared by different methods. Chem. Asian J., 2007, 2(5), 625-633.
[http://dx.doi.org/10.1002/asia.200600426] [PMID: 17465408]
[10]
Zhou, L.; Gao, C.; Zhu, D.; Xu, W.; Chen, F.F.; Palkar, A.; Echegoyen, L.; Kong, E.S.W.; Zhou, L.; Gao, C.; Xu, W.; Zhu, D.; Chen, F.F.; Palkar, A.; Echegoyen, L.; Kong, S-W. Facile functionalization of multilayer fullerenes (carbon nano-onions) by nitrene chemistry and “grafting from” strategy. Chemistry, 2009, 15(6), 1389-1396.
[http://dx.doi.org/10.1002/chem.200801642] [PMID: 19115308]
[11]
Breczko, J.; Winkler, K.; Plonska-Brzezinska, M.E.; Villalta-Cerdas, A.; Echegoyen, L. Electrochemical properties of composites containing small carbon nano-onions and solid polyelectrolytes. J. Mater. Chem., 2010, 20(36), 7761-7768.
[http://dx.doi.org/10.1039/c0jm01213k]
[12]
Mykhailiv, O.; Imierska, M.; Petelczyc, M.; Echegoyen, L.; Plonska-Brzezinska, M.E. Chemical versus electrochemical synthesis of carbon nano-onion/polypyrrole composites for supercapacitor electrodes. Chemistry, 2015, 21(15), 5783-5793.
[http://dx.doi.org/10.1002/chem.201406126] [PMID: 25736714]
[13]
Muniraj, V.K.A.; Kamaja, C.K.; Shelke, M.V. RuO 2 •nH 2 O nanoparticles anchored on carbon nano-onions: An efficient electrode for solid state flexible electrochemical supercapacitor. ACS Sustain. Chem. Eng., 2016, 4(5), 2528-2534.
[http://dx.doi.org/10.1021/acssuschemeng.5b01627]
[14]
Wu, G.; Dai, C.; Wang, D.; Li, D.; Li, N. Nitrogen-doped magnetic onion-like carbon as support for Pt particles in a hybrid cathode catalyst for fuel cells. J. Mater. Chem., 2010, 20(15), 3059-3068.
[http://dx.doi.org/10.1039/b924010a]
[15]
Lin, Y.; Zhu, Y.; Zhang, B.; Kim, Y.A.; Endo, M.; Su, D.S. Boron-doped onion-like carbon with enriched substitutional boron: The relationship between electronic properties and catalytic performance. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(43), 21805-21814.
[http://dx.doi.org/10.1039/C5TA03141A]
[16]
Mohapatra, D.; Dhakal, G.; Sayed, M.S.; Subramanya, B.; Shim, J.J.; Parida, S. Sulfur doping: Unique strategy to improve the supercapacitive performance of carbon nano-onions. ACS Appl. Mater. Interfaces, 2019, 11(8), 8040-8050.
[http://dx.doi.org/10.1021/acsami.8b21534] [PMID: 30714716]
[17]
Mykhailiv, O.; Zubyk, H.; Plonska-Brzezinska, M.E. Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorg. Chim. Acta, 2017, 468, 49-66.
[http://dx.doi.org/10.1016/j.ica.2017.07.021]
[18]
Jin, H.; Wu, S.; Li, T.; Bai, Y.; Wang, X.; Zhang, H.; Xu, H.; Kong, C.; Wang, H. Synthesis of porous carbon nano-onions derived from rice husk for high-performance supercapacitors. Appl. Surf. Sci., 2019, 488, 593-599.
[http://dx.doi.org/10.1016/j.apsusc.2019.05.308]
[19]
Bhaumik, M.; Raju, K.; Arunachellan, I.; Ludwig, T.; Mathe, M.K.; Maity, A.; Mathur, S. High-performance supercapacitors based on S-doped polyaniline nanotubes decorated with Ni(OH)2 nanosponge and onion-like carbons derived from used car tyres. Electrochim. Acta, 2020, 342, 136111.
[http://dx.doi.org/10.1016/j.electacta.2020.136111]
[20]
Plonska-Brzezinska, M.E.; Echegoyen, L. Carbon nano-onions for supercapacitor electrodes: Recent developments and applications. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(44), 13703-13714.
[http://dx.doi.org/10.1039/c3ta12628e]
[21]
Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P.L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol., 2010, 5(9), 651-654.
[http://dx.doi.org/10.1038/nnano.2010.162] [PMID: 20711179]
[22]
Chatterjee, K.; Ashokkumar, M.; Gullapalli, H.; Gong, Y.; Vajtai, R.; Thanikaivelan, P.; Ajayan, P.M. Nitrogen-rich carbon nano-onions for oxygen reduction reaction. Carbon, 2018, 130, 645-651.
[http://dx.doi.org/10.1016/j.carbon.2018.01.052]
[23]
Camisasca, A.; Sacco, A.; Brescia, R.; Giordani, S. Boron/nitrogen-codoped carbon nano-onion electrocatalysts for the oxygen reduction reaction. ACS Appl. Nano Mater., 2018, 1(10), 5763-5773.
[http://dx.doi.org/10.1021/acsanm.8b01430]
[24]
Zuaznabar-gardona, J.C.; Fragoso, A. Electrochimica acta electrochemistry of redox probes at thin fi lms of carbon nano-onions produced by thermal annealing of nanodiamonds. Electrochim. Acta, 2020, 353, 136495.
[http://dx.doi.org/10.1016/j.electacta.2020.136495]
[25]
Bartolome, J.P.; Echegoyen, L.; Fragoso, A. Reactive carbon nano-onion modified glassy carbon surfaces as dna sensors for human papillomavirus oncogene detection with enhanced sensitivity. Anal. Chem., 2015, 87(13), 6744-6751.
[http://dx.doi.org/10.1021/acs.analchem.5b00924] [PMID: 26067834]
[26]
Zuaznabar-Gardona, J.C.; Fragoso, A. Development of highly sensitive IgA immunosensors based on co-electropolymerized L-DOPA/dopamine carbon nano-onion modified electrodes. Biosens. Bioelectron., 2019, 141, 111357.
[http://dx.doi.org/10.1016/j.bios.2019.111357] [PMID: 31170501]
[27]
Panda, A.; Arumugasamy, S.K.; Lee, J.; Son, Y.; Yun, K.; Venkateswarlu, S.; Yoon, M. Chemical-free sustainable carbon nano-onion as a dual-mode sensor platform for noxious volatile organic compounds. Appl. Surf. Sci., 2021, 537, 147872.
[http://dx.doi.org/10.1016/j.apsusc.2020.147872]
[28]
Zhang, M.; He, D.W.; Ji, L.; Wei, B.Q.; Wu, D.H.; Zhang, X.Y.; Xu, Y.F.; Wang, W.K. Macroscopic synthesis of onion-like graphitic particles. Nanostruct. Mater., 1998, 10(2), 291-297.
[http://dx.doi.org/10.1016/S0965-9773(98)00069-5]
[29]
Zeiger, M.; Jäckel, N.; Mochalin, V.N.; Presser, V. Review: Carbon onions for electrochemical energy storage. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(9), 3172-3196.
[http://dx.doi.org/10.1039/C5TA08295A]
[30]
Kuznetsov, V.L.; Chuvilin, A.L.; Butenko, Y.V.; Mal’kov, I.Y.; Gutakovskii, A.K.; Stankus, S.V.; Khairulin, R.A. Study of onionlike carbon (OLC) formation from ultra disperse diamond (UDD). MRS Proc., 1994, 359, p. 105.
[31]
Cabioc’h, T.; Riviere, J.P.; Delafond, J. A new technique for fullerene onion formation. J. Mater. Sci., 1995, 30(19), 4787-4792.
[http://dx.doi.org/10.1007/BF01154486]
[32]
Cabioc’h, T.; Jaouen, M.; Girard, J.C. Thin film of spherical carbon onions onto silver. Carbon, 1998, 36(5-6), 499-502.
[http://dx.doi.org/10.1016/S0008-6223(98)00013-X]
[33]
Cabioc’h, T.; Jaouen, M.; Thune, E.; Guérin, P.; Fayoux, C.; Denanot, M.F. Carbon onions formation by high-dose carbon ion implantation into copper and silver. Surf. Coat. Tech., 2000, 128-129(1), 43-50.
[http://dx.doi.org/10.1016/S0257-8972(00)00655-1]
[34]
Sano, N.; Wang, H.; Chhowalla, M.; Alexandrou, I.; Amaratunga, G.A.J. Synthesis of carbon ‘onions’ in water. Nature, 2001, 414(6863), 506-507.
[http://dx.doi.org/10.1038/35107141] [PMID: 11734841]
[35]
Sano, N.; Wang, H.; Alexandrou, I.; Chhowalla, M.; Teo, K.B.K.; Amaratunga, G.A.J.; Iimura, K. Properties of carbon onions produced by an arc discharge in water. J. Appl. Phys., 2002, 92(5), 2783-2788.
[http://dx.doi.org/10.1063/1.1498884]
[36]
Zhang, C.; Li, J.; Shi, C.; Liu, E.; Du, X.; Feng, W.; Zhao, N. The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni-Fe alloy catalyst. Carbon, 2011, 49(4), 1151-1158.
[http://dx.doi.org/10.1016/j.carbon.2010.11.030]
[37]
Hou, S.S.; Chung, D.H.; Lin, T.H. High-yield synthesis of carbon nano-onions in counterflow diffusion flames. Carbon, 2009, 47(4), 938-947.
[http://dx.doi.org/10.1016/j.carbon.2008.11.054]
[38]
Chung, D.H.; Lin, T.H.; Hou, S.S. Flame synthesis of carbon nano-onions enhanced by acoustic modulation. Nanotechnology, 2010, 21(43), 435604.
[http://dx.doi.org/10.1088/0957-4484/21/43/435604] [PMID: 20890015]
[39]
Choucair, M.; Stride, J.A. The gram-scale synthesis of carbon onions. Carbon, 2012, 50(3), 1109-1115.
[http://dx.doi.org/10.1016/j.carbon.2011.10.023]
[40]
Han, F.D.; Yao, B.; Bai, Y.J. Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries. J. Phys. Chem. C, 2011, 115(18), 8923-8927.
[http://dx.doi.org/10.1021/jp2007599]
[41]
Bajpai, R.; Rapoport, L.; Amsalem, K.; Wagner, H.D. Rapid growth of onion-like carbon nanospheres in a microwave oven. Cryst. Eng. Comm, 2016, 18(2), 230-239.
[http://dx.doi.org/10.1039/C5CE01785H]
[42]
Sang, S.; Yang, S.; Guo, A.; Gao, X.; Wang, Y.; Zhang, C.; Cui, F.; Yang, X. Hydrothermal synthesis of carbon nano-onions from citric acid. Chem. Asian J., 2020, 15(21), 3428-3431.
[http://dx.doi.org/10.1002/asia.202000983] [PMID: 32954657]
[43]
Krueger, A. Carbon Onions and Related Materials. In: Carbon Materials and Nanotechnology; John Wiley & Sons, Ltd, 2010, pp. 283-327.
[http://dx.doi.org/10.1002/9783527629602.ch4]
[44]
Georgakilas, V.; Guldi, D.M.; Signorini, R.; Bozio, R.; Prato, M. Organic functionalization and optical properties of carbon onions. J. Am. Chem. Soc., 2003, 125(47), 14268-14269.
[http://dx.doi.org/10.1021/ja0342805] [PMID: 14624562]
[45]
Cioffi, C.T.; Palkar, A.; Melin, F.; Kumbhar, A.; Echegoyen, L.; Melle-Franco, M.; Zerbetto, F.; Rahman, G.M.A.; Ehli, C.; Sgobba, V.; Guldi, D.M.; Prato, M. A carbon nano-onion-ferrocene donor-acceptor system: Synthesis, characterization and properties. Chemistry, 2009, 15(17), 4419-4427.
[http://dx.doi.org/10.1002/chem.200801818] [PMID: 19263442]
[46]
Palkar, A.; Kumbhar, A.; Athans, A.J.; Echegoyen, L. Pyridyl-functionalized and water-soluble carbon nano onions: First supramolecular complexes of carbon nano onions. Chem. Mater., 2008, 20(5), 1685-1687.
[http://dx.doi.org/10.1021/cm7035508]
[47]
Sek, S.; Breczko, J.; Plonska-Brzezinska, M.E.; Wilczewska, A.Z.; Echegoyen, L.; Breczko, J.; Plonska-Brzezinska, M.E.; Wilczewska, A.Z.; Echegoyen, L.; Sek, S. STM-based molecular junction of carbon nano-onion. Chem. Phys. Chem., 2013, 14(1), 96-100.
[http://dx.doi.org/10.1002/cphc.201200624] [PMID: 23129103]
[48]
Bingel, C.; Bingel, C. Cyclopropanierung von Fullerenen. Chem. Ber., 1993, 126(8), 1957-1959.
[http://dx.doi.org/10.1002/cber.19931260829]
[49]
Hirsch, A.; Lamparth, I.; Groesser, T.; Karfunkel, H.R. Regiochemistry of multiple additions to the fullerene core: Synthesis of a th-symmetric hexakis adduct of c60 with bis(ethoxycarbonyl)methylene. J. Am. Chem. Soc., 1994, 116(20), 9385-9386.
[http://dx.doi.org/10.1021/ja00099a088]
[50]
Flavin, K.; Chaur, M.N.; Echegoyen, L.; Giordani, S. Functionalization of multilayer fullerenes (carbon nano-onions) using diazonium compounds and “click” chemistry. Org. Lett., 2010, 12(4), 840-843.
[http://dx.doi.org/10.1021/ol902939f] [PMID: 20092266]
[51]
Englert, J.M.; Dotzer, C.; Yang, G.; Schmid, M.; Papp, C.; Gottfried, J.M.; Steinrück, H.P.; Spiecker, E.; Hauke, F.; Hirsch, A. Covalent bulk functionalization of graphene. Nat. Chem., 2011, 3(4), 279-286.
[http://dx.doi.org/10.1038/nchem.1010] [PMID: 21430685]
[52]
Englert, J.M.; Knirsch, K.C.; Dotzer, C.; Butz, B.; Hauke, F.; Spiecker, E.; Hirsch, A. Functionalization of graphene by electrophilic alkylation of reduced graphite. Chem. Commun., 2012, 48(41), 5025-5027.
[http://dx.doi.org/10.1039/c2cc31181j] [PMID: 22511073]
[53]
Molina-Ontoria, A.; Chaur, M.N.; Plonska-Brzezinska, M.E.; Echegoyen, L. Preparation and characterization of soluble carbon nano-onions by covalent functionalization, employing a Na-K alloy. Chem. Commun., 2013, 49(24), 2406-2408.
[http://dx.doi.org/10.1039/c3cc39077b] [PMID: 23411670]
[54]
Pérez-Ojeda, M.E.; Castro, E.; Kröckel, C.; Lucherelli, M.A.; Ludacka, U.; Kotakoski, J.; Werbach, K.; Peterlik, H.; Melle-Franco, M.; Chacón-Torres, J.C.; Hauke, F.; Echegoyen, L.; Hirsch, A.; Abellán, G. Carbon nano-onions: Potassium intercalation and reductive covalent functionalization. J. Am. Chem. Soc., 2021, 143(45), 18997-19007.
[http://dx.doi.org/10.1021/jacs.1c07604] [PMID: 34699723]
[55]
Plonska-Brzezinska, M.E.; Lewandowski, M. Błaszyk, M.; Molina-Ontoria, A.; Luciński, T.; Echegoyen, L. Preparation and characterization of carbon nano-onion/PEDOT:PSS composites. Chem. Phys. Chem, 2012, 13(18), 4134-4141.
[http://dx.doi.org/10.1002/cphc.201200789] [PMID: 23169540]
[56]
Bartolome, J.P.; Fragoso, A. Preparation of stable aqueous dispersions of carbon nano-onions via supramolecular crown ether-ammonium interactions with aminated biocompatible polymers. J. Mol. Liq., 2018, 269, 905-911.
[http://dx.doi.org/10.1016/j.molliq.2018.08.008]
[57]
Borgohain, R.; Li, J.; Selegue, J.P.; Cheng, Y.T. Electrochemical study of functionalized carbon nano-onions for high-performance supercapacitor electrodes. J. Phys. Chem. C, 2012, 116(28), 15068-15075.
[http://dx.doi.org/10.1021/jp301642s]
[58]
Wang, Y.; Yu, S.F.; Sun, C.Y.; Zhu, T.J.; Yang, H.Y. MnO2/onion-like carbon nanocomposites for pseudocapacitors. J. Mater. Chem., 2012, 22(34), 17584-17588.
[http://dx.doi.org/10.1039/c2jm33558a]
[59]
Plonska-Brzezinska, M.E.; Brus, D.M.; Molina-Ontoria, A.; Echegoyen, L. Synthesis of carbon nano-onion and nickel hydroxide/oxide composites as supercapacitor electrodes. RSC Advances, 2013, 3(48), 25891-25901.
[http://dx.doi.org/10.1039/c3ra44249g]
[60]
Mohapatra, D.; Badrayyana, S.; Parida, S. Designing binder-free, flexible electrodes for high-performance supercapacitors based on pristine carbon nano-onions and their composite with CuO nanoparticles. RSC Advances, 2016, 6(18), 14720-14729.
[http://dx.doi.org/10.1039/C5RA23700A]
[61]
Kim, S.M.; Heo, Y.K.; Bae, K.T.; Oh, Y.T.; Lee, M.H.; Lee, S.Y. In situ formation of nitrogen-doped onion-like carbon as catalyst support for enhanced oxygen reduction activity and durability. Carbon, 2016, 101, 420-430.
[http://dx.doi.org/10.1016/j.carbon.2016.02.022]
[62]
Tovar-Martinez, E.; Moreno-Torres, J.A.; Cabrera-Salazar, J.V.; Reyes-Reyes, M.; Chazaro-Ruiz, L.F.; López-Sandoval, R. Synthesis of carbon nano-onions doped with nitrogen using spray pyrolisis. Carbon, 2018, 140, 171-181.
[http://dx.doi.org/10.1016/j.carbon.2018.08.056]
[63]
Mohapatra, D.; Badrayyana, S.; Parida, S. Facile wick-and-oil flame synthesis of high-quality hydrophilic onion-like carbon nanoparticles. Mater. Chem. Phys., 2016, 174, 112-119.
[http://dx.doi.org/10.1016/j.matchemphys.2016.02.057]
[64]
Shaikh, A.; Singh, B.K.; Mohapatra, D.; Parida, S. Nitrogen-doped carbon nano-onions as a metal-free electrocatalyst. Electrocatalysis, 2019, 10(3), 222-231.
[http://dx.doi.org/10.1007/s12678-019-00514-9]
[65]
Mohapatra, D.; Muhammad, O.; Sayed, M.S.; Parida, S.; Shim, J.J. In situ nitrogen-doped carbon nano-onions for ultrahigh-rate asymmetric supercapacitor. Electrochim. Acta, 2020, 331, 135363.
[http://dx.doi.org/10.1016/j.electacta.2019.135363]
[66]
Han, T.H.; Mohapatra, D.; Mahato, N.; Parida, S.; Shim, J.H.; Nguyen, A.T.N.; Nguyen, V.Q.; Cho, M.H.; Shim, J.J. Effect of nitrogen doping on the catalytic activity of carbon nano-onions for the oxygen reduction reaction in microbial fuel cells. J. Ind. Eng. Chem., 2020, 81, 269-277.
[http://dx.doi.org/10.1016/j.jiec.2019.09.014]
[67]
Goclon, J.; Bankiewicz, B.; Kolek, P.; Winkler, K. Role of nitrogen doping in stoichiometric and defective carbon nano-onions: Structural diversity from DFT calculations. Carbon, 2021, 176, 198-208.
[http://dx.doi.org/10.1016/j.carbon.2021.01.131]
[68]
Choi, E.Y.; Kim, C.K. Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci. Rep., 2017, 7(1), 4178.
[http://dx.doi.org/10.1038/s41598-017-04597-6] [PMID: 28646193]
[69]
Zhang, Y.; Reed, A.; Kim, D.Y. Nitrogen doped carbon nano-onions as efficient and robust electrocatalysts for oxygen reduction reactions. Curr. Appl. Phys., 2018, 18(4), 417-423.
[http://dx.doi.org/10.1016/j.cap.2018.02.001]
[70]
Mykhailiv, O.; Brzezinski, K.; Sulikowski, B.; Olejniczak, Z.; Gras, M.; Lota, G.; Molina-Ontoria, A.; Jakubczyk, M.; Echegoyen, L.; Plonska-Brzezinska, M.E. Boron-doped polygonal carbon nano-onions: Synthesis and applications in electrochemical energy storage. Chemistry, 2017, 23(29), 7132-7141.
[http://dx.doi.org/10.1002/chem.201700914] [PMID: 28339126]
[71]
Thomas, M.P.; Wanninayake, N.; De Alwis Goonatilleke, M.; Kim, D.Y.; Guiton, B.S. Direct imaging of heteroatom dopants in catalytic carbon nano-onions. Nanoscale, 2020, 12(10), 6144-6152.
[http://dx.doi.org/10.1039/D0NR00335B] [PMID: 32129785]
[72]
Kar, S.; Bramhaiah, K.; John, N.S.; Bhattacharyya, S. Insight into the multistate emissive n, p-doped carbon nano-onions: Emerging visible-light absorption for photocatalysis. Chem. Asian J., 2021, 16(9), 1138-1149.
[http://dx.doi.org/10.1002/asia.202100137] [PMID: 33734603]
[73]
Martínez-Iniesta, A.D.; Morelos-Gómez, A.; Muñoz-Sandoval, E.; López-Urías, F. Nitrogen-phosphorus doped graphitic nano onion-like structures: Experimental and theoretical studies. RSC Advances, 2021, 11(5), 2793-2803.
[http://dx.doi.org/10.1039/D0RA10019F] [PMID: 35424229]
[74]
Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.W.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev., 2011, 111(5), 3577-3613.
[http://dx.doi.org/10.1021/cr100290v] [PMID: 21375330]
[75]
Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta, 2000, 45(15-16), 2483-2498.
[http://dx.doi.org/10.1016/S0013-4686(00)00354-6]
[76]
Levi, M.D.; Salitra, G.; Levy, N.; Aurbach, D.; Maier, J. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nat. Mater., 2009, 8(11), 872-875.
[http://dx.doi.org/10.1038/nmat2559] [PMID: 19838184]
[77]
Park, S.; Kim, H.C.; Chung, T.D. Electrochemical analysis based on nanoporous structures. Analyst (Lond.), 2012, 137(17), 3891-3903.
[http://dx.doi.org/10.1039/c2an35294j] [PMID: 22774000]
[78]
Bushueva, E.G.; Galkin, P.S.; Okotrub, A.V.; Bulusheva, L.G.; Gavrilov, N.N.; Kuznetsov, V.L.; Moiseekov, S.I. Double layer supercapacitor properties of onion-like carbon materials. Phys. Status Solidi, B Basic Res., 2008, 245(10), 2296-2299.
[http://dx.doi.org/10.1002/pssb.200879608]
[79]
Borgohain, R.; Yang, J.; Selegue, J.P.; Kim, D.Y. Controlled synthesis, efficient purification, and electrochemical characterization of arc-discharge carbon nano-onions. Carbon, 2014, 66, 272-284.
[http://dx.doi.org/10.1016/j.carbon.2013.09.001]
[80]
Gao, Y.; Zhou, Y.S.; Qian, M.; He, X.N.; Redepenning, J.; Goodman, P.; Li, H.M.; Jiang, L.; Lu, Y.F. Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon, 2013, 51(1), 52-58.
[http://dx.doi.org/10.1016/j.carbon.2012.08.009]
[81]
Plonska-Brzezinska, M.E.; Dubis, A.T.; Lapinski, A.; Villalta-Cerdas, A.; Echegoyen, L. Electrochemical properties of oxidized carbon nano-onions: DRIFTS-FTIR and raman spectroscopic analyses. Chem. Phys. Chem., 2011, 12(14), 2659-2668.
[http://dx.doi.org/10.1002/cphc.201100198] [PMID: 21853513]
[82]
Velasquez, J.D.; Rubio, J.C.; Chaur, M.N. Functionalization of multilayer fullerenic nanostructures with l-lysine for supercapacitor applications: Comparing oxidation against diazonium salt methods. Diamond Related Materials, 2020, 105, 107771.
[http://dx.doi.org/10.1016/j.diamond.2020.107771]
[83]
Suryawanshi, S.R.; Kaware, V.; Chakravarty, D.; Walke, P.S.; More, M.A.; Joshi, K.; Rout, C.S.; Late, D.J. Pt-nanoparticle functionalized carbon nano-onions for ultra-high energy supercapacitors and enhanced field emission behaviour. RSC Advances, 2015, 5(99), 80990-80997.
[http://dx.doi.org/10.1039/C5RA12364J]
[84]
Azhagan, M.V.K.; Vaishampayan, M.V.; Shelke, M.V. Synthesis and electrochemistry of pseudocapacitive multilayer fullerenes and MnO 2 nanocomposites. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(7), 2152-2159.
[http://dx.doi.org/10.1039/C3TA14076H]
[85]
Anjos, D.M.; McDonough, J.K.; Perre, E.; Brown, G.M.; Overbury, S.H.; Gogotsi, Y.; Presser, V. Pseudocapacitance and performance stability of quinone-coated carbon onions. Nano Energy, 2013, 2(5), 702-712.
[http://dx.doi.org/10.1016/j.nanoen.2013.08.003]
[86]
Zeiger, M.; Weingarth, D.; Presser, V. Quinone-decorated onion-like carbon/carbon fiber hybrid electrodes for high-rate supercapacitor applications. Chem. Electro. Chem., 2015, 2(8), 1117-1127.
[http://dx.doi.org/10.1002/celc.201500130]
[87]
Plonska-Brzezinska, M.E.; Breczko, J.; Palys, B.; Echegoyen, L. The electrochemical properties of nanocomposite films obtained by chemical in situ polymerization of aniline and carbon nanostructures. Chem. Phys. Chem., 2013, 14(1), 116-124.
[http://dx.doi.org/10.1002/cphc.201200759] [PMID: 23203943]
[88]
Shaku, B.; Mofokeng, T.P.; Mongwe, T.H.; Coville, N.J.; Ozoemena, K.I.; Maubane-Nkadimeng, M.S. Physicochemical properties of nitrogen doped carbon nano-onions grown by flame pyrolysis from grapeseed oil for use in supercapacitors. Electroanalysis, 2020, 32(12), 2946-2957.
[http://dx.doi.org/10.1002/elan.202060383]
[89]
Pallavolu, M.R.; Gaddam, N.; Banerjee, A.N.; Nallapureddy, R.R.; Joo, S.W. Superior energy-power performance of N-doped carbon nano-onions-based asymmetric and symmetric supercapacitor devices. Int. J. Energy Res., 2022, 46(2), 1234-1249.
[http://dx.doi.org/10.1002/er.7242]
[90]
Singh, B.K.; Shaikh, A.; Dusane, R.O.; Parida, S. Nanoporous gold-Nitrogen-doped carbon nano-onions all-solid-state micro-supercapacitor. Nano-Structures Nano-Objects, 2019, 17, 239-247.
[http://dx.doi.org/10.1016/j.nanoso.2019.01.011]
[91]
Sohouli, E.; Adib, K.; Maddah, B.; Najafi, M. Manganese dioxide/cobalt tungstate/nitrogen-doped carbon nano-onions nanocomposite as new supercapacitor electrode. Ceram. Int., 2022, 48(1), 295-303.
[http://dx.doi.org/10.1016/j.ceramint.2021.09.104]
[92]
Yu, J.; Li, X.; Sun, Y.; Liu, X. CoS@sulfur doped onion-like carbon nanocapsules with excellent cycling stability and rate capability for sodium-ion batteries. Ceram. Int., 2018, 44(14), 17113-17117.
[http://dx.doi.org/10.1016/j.ceramint.2018.06.163]
[93]
Zhang, M.; Yu, J.; Ying, T.; Yu, J.; Sun, Y.; Liu, X. P doped onion-like carbon layers coated FeP nanoparticles for anode materials in lithium ion batteries. J. Alloys Compd., 2019, 777, 860-865.
[http://dx.doi.org/10.1016/j.jallcom.2018.11.060]
[94]
Yue, Y.; Hu, G.; Zheng, M.; Guo, Y.; Cao, J.; Shao, S. A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid. Carbon, 2012, 50(1), 107-114.
[http://dx.doi.org/10.1016/j.carbon.2011.08.013]
[95]
Yang, J.; Zhang, Y.; Kim, D.Y. Electrochemical sensing performance of nanodiamond-derived carbon nano-onions: Comparison with multiwalled carbon nanotubes, graphite nanoflakes, and glassy carbon. Carbon, 2016, 98, 74-82.
[http://dx.doi.org/10.1016/j.carbon.2015.10.089]
[96]
Shames, A.I.; Osipov, V.Y.; Vul’, A.Y.; Kaburagi, Y.; Hayashi, T.; Takai, K.; Enoki, T. Spin-spin interactions between π-electronic edge-localized spins and molecular oxygen in defective carbon nano-onions. Carbon, 2013, 61, 173-189.
[http://dx.doi.org/10.1016/j.carbon.2013.04.082]
[97]
Kannari, N.; Itakura, T.; Ozaki, J. Electrochemical oxygen reduction activity of intermediate onion-like carbon produced by the thermal transformation of nanodiamond. Carbon, 2015, 87(C), 415-417.
[http://dx.doi.org/10.1016/j.carbon.2015.02.050]
[98]
Ortiz-Restrepo, J.E.; Loaiza, O.A.; Urresta, J.D.; Velasquez, J.D.; Pastor, E.; Chaur, M.N.; Lizcano-Valbuena, W.H. A comparative study of different carbon materials as metal-free catalysts for oxygen reduction and hydrogen evolution reactions in alkaline media. Diamond Relat. Mater., 2021, 117, 108464.
[http://dx.doi.org/10.1016/j.diamond.2021.108464]
[99]
Yang, J.; Kim, S.H.; Kwak, S.K.; Song, H.K. Curvature-induced metal-support interaction of an Islands-by-Islands composite of platinum catalyst and carbon nano-onion for durable oxygen reduction. ACS Appl. Mater. Interfaces, 2017, 9(28), 23302-23308.
[http://dx.doi.org/10.1021/acsami.7b04410] [PMID: 28665110]
[100]
Liu, D.; Li, X.; Chen, S.; Yan, H.; Wang, C.; Wu, C.; Haleem, Y.A.; Duan, S.; Lu, J.; Ge, B.; Ajayan, P.M.; Luo, Y.; Jiang, J.; Song, L. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy, 2019, 4(6), 512-518.
[http://dx.doi.org/10.1038/s41560-019-0402-6]
[101]
Ogada, J.J.; Ipadeola, A.K.; Mwonga, P.V.; Haruna, A.B.; Nichols, F.; Chen, S.; Miller, H.A.; Pagliaro, M.V.; Vizza, F.; Varcoe, J.R.; Meira, D.M.; Wamwangi, D.M.; Ozoemena, K.I. CeO2 modulates the electronic states of a palladium onion-like carbon interface into a highly active and durable electrocatalyst for hydrogen oxidation in anion-exchange-membrane fuel cells. ACS Catal., 2022, 12(12), 7014-7029.
[http://dx.doi.org/10.1021/acscatal.2c01863]
[102]
Zhang, W.; Wei, G.; Cao, X.; Cao, L.; Gao, Y.; Huo, L. Natural reed-derived nanostructure SiC/CNOs for photocatalytic hydrogen evolution from water. Appl. Surf. Sci., 2021, 570, 151191.
[http://dx.doi.org/10.1016/j.apsusc.2021.151191]
[103]
Zhou, X.; Wang, X.; Feng, X.; Zhang, K.; Peng, X.; Wang, H.; Liu, C.; Han, Y.; Wang, H.; Li, Q. Loading Cd 0.5 Zn 0.5 S quantum dots onto onion-like carbon nanoparticles to boost photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces, 2017, 9(27), 22560-22567.
[http://dx.doi.org/10.1021/acsami.7b05592] [PMID: 28621130]
[104]
Koh, J.; Park, S.H.; Chung, M.W.; Lee, S.Y.; Woo, S.I. Diamond@carbon-onion hybrid nanostructure as a highly promising electrocatalyst for the oxygen reduction reaction. RSC Advances, 2016, 6(33), 27528-27534.
[http://dx.doi.org/10.1039/C5RA28066D]
[105]
Perazzolo, V.; Durante, C.; Pilot, R.; Paduano, A.; Zheng, J.; Rizzi, G.A.; Martucci, A.; Granozzi, G.; Gennaro, A. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon, 2015, 95, 949-963.
[http://dx.doi.org/10.1016/j.carbon.2015.09.002]
[106]
Seredych, M.; Hulicova-Jurcakova, D.; Lu, G.Q.; Bandosz, T.J. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon, 2008, 46(11), 1475-1488.
[http://dx.doi.org/10.1016/j.carbon.2008.06.027]
[107]
Zhang, C.; Hou, L.; Cheng, C.; Zhuang, Z.; Zheng, F.; Chen, W. Nitrogen and phosphorus co-doped hollow carbon spheres as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chem. Electro. Chem., 2018, 5(14), 1891-1898.
[http://dx.doi.org/10.1002/celc.201800045]
[108]
Xiao, M.J.; Ma, B.; Zhang, Z.Q.; Xiao, Q.; Li, X.Y.; Zhang, Z.T.; Wang, Q.; Peng, Y.; Zhang, H.L. Carbon nano-onion encapsulated cobalt nanoparticles for oxygen reduction and lithium-ion batteries. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(11), 7227-7237.
[http://dx.doi.org/10.1039/D0TA12504K]
[109]
Wu, G.; Nelson, M.; Ma, S.; Meng, H.; Cui, G.; Shen, P.K. Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction. Carbon, 2011, 49(12), 3972-3982.
[http://dx.doi.org/10.1016/j.carbon.2011.05.036]
[110]
Liu, G.; Yao, R.; Zhao, Y.; Wang, M.; Li, N.; Li, Y.; Bo, X.; Li, J.; Zhao, C. Encapsulation of Ni/Fe3O4 heterostructures inside onion-like N-doped carbon nanorods enables synergistic electrocatalysis for water oxidation. Nanoscale, 2018, 10(8), 3997-4003.
[http://dx.doi.org/10.1039/C7NR09446A] [PMID: 29424841]
[111]
Ahlawat, J.; Masoudi Asil, S.; Guillama Barroso, G.; Nurunnabi, M.; Narayan, M. Application of carbon nano onions in the biomedical field: Recent advances and challenges. Biomater. Sci., 2021, 9(3), 626-644.
[http://dx.doi.org/10.1039/D0BM01476A] [PMID: 33241797]
[112]
Marchesano, V.; Ambrosone, A.; Bartelmess, J.; Strisciante, F.; Tino, A.; Echegoyen, L.; Tortiglione, C.; Giordani, S. Impact of carbon nano-onions on Hydra vulgaris as a model organism for nanoecotoxicology. Nanomaterials, 2015, 5(3), 1331-1350.
[http://dx.doi.org/10.3390/nano5031331] [PMID: 28347067]
[113]
Sohouli, E.; Keihan, A.H.; Shahdost-fard, F.; Naghian, E.; Plonska-Brzezinska, M.E.; Rahimi-Nasrabadi, M.; Ahmadi, F. A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl. Mater. Sci. Eng. C, 2020, 110, 110684.
[http://dx.doi.org/10.1016/j.msec.2020.110684] [PMID: 32204112]
[114]
Plonska-Brzezinska, M.E. Carbon nano-onions: A review of recent progress in synthesis and applications. ChemNanoMat, 2019, 5(5), 568-580.
[http://dx.doi.org/10.1002/cnma.201800583]
[115]
Ko, Y.J.; Cho, J.M.; Kim, I.; Jeong, D.S.; Lee, K.S.; Park, J.K.; Baik, Y.J.; Choi, H.J.; Lee, S.C.; Lee, W.S. Inherently-forced tensile strain in nanodiamond-derived onion-like carbon: consequences in defect-induced electrochemical activation. Sci. Rep., 2016, 6(1), 23913.
[http://dx.doi.org/10.1038/srep23913] [PMID: 27032957]
[116]
Cumba, L.R.; Camisasca, A.; Giordani, S.; Forster, R.J. Electrochemical properties of screen-printed carbon nano-onion electrodes. Molecules, 2020, 25(17), 3884.
[http://dx.doi.org/10.3390/molecules25173884] [PMID: 32858929]
[117]
Shaikh, A.; Singh, B.K.; Parida, S. Natural oil derived carbon nano-onions as a sensitive electrocatalyst for nitrite determination. Mater. Chem. Phys., 2019, 235, 121744.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121744]
[118]
Luszczyn, J.; Plonska-Brzezinska, M.E.; Palkar, A.; Dubis, A.T.; Simionescu, A.; Simionescu, D.T.; Kalska-Szostko, B.; Winkler, K.; Echegoyen, L. Small noncytotoxic carbon nano-onions: First covalent functionalization with biomolecules. Chemistry, 2010, 16(16), 4870-4880.
[http://dx.doi.org/10.1002/chem.200903277] [PMID: 20340115]
[119]
Breczko, J.; Plonska-Brzezinska, M.E.; Echegoyen, L. Electrochemical oxidation and determination of dopamine in the presence of uric and ascorbic acids using a carbon nano-onion and poly(diallyldimethylammonium chloride) composite. Electrochim. Acta, 2012, 72, 61-67.
[http://dx.doi.org/10.1016/j.electacta.2012.03.177]
[120]
Zuaznabar-Gardona, J.C.; Fragoso, A. A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes. Sens. Actuators B Chem., 2018, 273, 664-671.
[http://dx.doi.org/10.1016/j.snb.2018.06.103]
[121]
Sok, V.; Fragoso, A. Amperometric biosensor for glyphosate based on the inhibition of tyrosinase conjugated to carbon nano-onions in a chitosan matrix on a screen-printed electrode. Mikrochim. Acta, 2019, 186(8), 569.
[http://dx.doi.org/10.1007/s00604-019-3672-6] [PMID: 31338611]
[122]
Bobrowska, D.M.; Brzezinski, K.; Plonska-Brzezinska, M.E. PEGylated carbon nano-onions composite as a carrier of polyphenolic compounds: a promising system for medical applications and biological sensors. Colloid Interface Sci. Commun., 2017, 21, 6-9.
[http://dx.doi.org/10.1016/j.colcom.2017.10.004]
[123]
Rizwan, M.; Elma, S.; Lim, S.A.; Ahmed, M.U. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen. Biosens. Bioelectron., 2018, 107, 211-217.
[http://dx.doi.org/10.1016/j.bios.2018.02.037] [PMID: 29471282]
[124]
Huang, K.J.; Niu, D.J.; Xie, W.Z.; Wang, W. A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes-chitosans nanocomposite film modified glassy carbon electrode. Anal. Chim. Acta, 2010, 659(1-2), 102-108.
[http://dx.doi.org/10.1016/j.aca.2009.11.023] [PMID: 20103110]
[125]
Kaur, A.; Verschraegen, C.F.; Kaur, H. Cervical Cancer.Oncologic Imaging : a Multidisciplinary Approach, 2nd ed; Saunders, W.B., Ed.; Philadelphia, 2023, pp. 438-451.
[http://dx.doi.org/10.1016/B978-0-323-69538-1.00026-4]
[126]
Ghalkhani, M.; Sohouli, E. Synthesis of the decorated carbon nano onions with aminated MCM-41/Fe3O4 NPs: Morphology and electrochemical sensing performance for methotrexate analysis. Microporous Mesoporous Mater., 2022, 331, 111658.
[http://dx.doi.org/10.1016/j.micromeso.2021.111658]
[127]
Bartolome, J.P.; Fragoso, A. Electrochemical detection of nitrite and ascorbic acid at glassy carbon electrodes modified with carbon nano-onions bearing electroactive moieties. Inorg. Chim. Acta, 2017, 468, 223-231.
[http://dx.doi.org/10.1016/j.ica.2017.06.024]
[128]
Olejnik, P.; Gniadek, M.; Echegoyen, L.; Plonska-Brzezinska, M.E. A nanocomposite containing carbon nano-onions and polyaniline nanotubes as a novel electrode material for electrochemical sensing of daidzein. Electroanalysis, 2021, 33(4), 1107-1114.
[http://dx.doi.org/10.1002/elan.202060468]
[129]
Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[130]
Ramya, A.V.; Thomas, R.; Balachandran, M. Ultrasonics sonochemistry mesoporous onion-like carbon nanostructures from natural oil for high-performance supercapacitor and electrochemical sensing applications : Insights into the post-synthesis sonochemical treatment on the electrochemical performanc. Ultrason. Sonochem., 2021, 79, 105767.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105767] [PMID: 34592598]
[131]
Sok, V.; Fragoso, A. Preparation and characterization of alkaline phosphatase, horseradish peroxidase, and glucose oxidase conjugates with carboxylated carbon nano-onions. Prep. Biochem. Biotechnol., 2018, 48(2), 136-143.
[http://dx.doi.org/10.1080/10826068.2017.1405025] [PMID: 29215950]
[132]
Kurbanoglu, S.; Ozkan, S.A.; Merkoçi, A. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosens. Bioelectron., 2017, 89(Pt 2), 886-898.
[http://dx.doi.org/10.1016/j.bios.2016.09.102] [PMID: 27818056]
[133]
Sok, V.; Fragoso, A. Carbon nano-onion peroxidase composite biosensor for electrochemical detection of 2,4-D and 2,4,5-T. Appl. Sci., 2021, 11(15), 6889.
[http://dx.doi.org/10.3390/app11156889]
[134]
Babar, D.G.; Gupta, N.R.; Nandi, G.; Sarkar, S. Carbon nano onions-polystyrene composite for sensing s-containing amino acids. J. Composites Sci., 2020, 4(3), 90.
[http://dx.doi.org/10.3390/jcs4030090]
[135]
Gunture,; Dalal, C.; Kaushik, J.; Garg, A.K.; Sonkar, S.K. Pollutant-soot-based nontoxic water-soluble onion-like nanocarbons for cell imaging and selective sensing of toxic Cr(VI). ACS Appl. Bio Mater., 2020, 3(6), 3906-3913.
[http://dx.doi.org/10.1021/acsabm.0c00456] [PMID: 35025260]
[136]
Park, S.; Boo, H.; Chung, T.D. Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta, 2006, 556(1), 46-57.
[http://dx.doi.org/10.1016/j.aca.2005.05.080] [PMID: 17723330]
[137]
Mohapatra, J.; Ananthoju, B.; Nair, V.; Mitra, A.; Bahadur, D.; Medhekar, N.V.; Aslam, M. Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Appl. Surf. Sci., 2018, 442, 332-341.
[http://dx.doi.org/10.1016/j.apsusc.2018.02.124]
[138]
Ibáñez-Redín, G.; Furuta, R.H.M.; Wilson, D.; Shimizu, F.M.; Materon, E.M.; Arantes, L.M.R.B.; Melendez, M.E.; Carvalho, A.L.; Reis, R.M.; Chaur, M.N.; Gonçalves, D.; Oliveira, O.N. Jr Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9. Mater. Sci. Eng. C, 2019, 99, 1502-1508.
[http://dx.doi.org/10.1016/j.msec.2019.02.065] [PMID: 30889686]
[139]
Mohapatra, D.; Gowthaman, N.S.K.; Sayed, M.S.; Shim, J.J. Simultaneous ultrasensitive determination of dihydroxybenzene isomers using GC electrodes modified with nitrogen-doped carbon nano-onions. Sens. Actuators B Chem., 2020, 304, 127325.
[http://dx.doi.org/10.1016/j.snb.2019.127325]
[140]
Sohouli, E.; Shahdost-Fard, F.; Rahimi-Nasrabadi, M.; Plonska-Brzezinska, M.E.; Ahmadi, F. Introducing a novel nanocomposite consisting of nitrogen-doped carbon nano-onions and gold nanoparticles for the electrochemical sensor to measure acetaminophen. J. Electroanal. Chem., 2020, 871, 114309.
[http://dx.doi.org/10.1016/j.jelechem.2020.114309]
[141]
Ghanbari, M.H.; Norouzi, Z. A new nanostructure consisting of nitrogen-doped carbon nanoonions for an electrochemical sensor to the determination of doxorubicin. Microchem. J., 2020, 157, 105098.
[http://dx.doi.org/10.1016/j.microc.2020.105098]
[142]
Mongwe, T.; Ntuli, T.; Sikeyi, L.; Coville, N.; Mamo, M.; Serbena, J.; Maubane-Nkadimeng, M. The use of ex-situ nitrogen-doped olive oil-derived carbon nano-onions for application in chemi-resistive gas sensors to detect acetone at room temperature. S. Afr. J. Chem., 2022, 76, 38-48.
[http://dx.doi.org/10.17159/0379-4350/2022/v76a07]
[143]
Sohouli, E.; Ghalkhani, M.; Zargar, T.; Joseph, Y.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Plonska-Brzezinska, M.E.; Ehrlich, H. A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of Staphylococcus aureus. Electrochim. Acta, 2022, 403, 139633.
[http://dx.doi.org/10.1016/j.electacta.2021.139633]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy