Research Article

恶性腹水代谢组谱鉴定肝细胞癌候选代谢生物标志物

卷 31, 期 13, 2024

发表于: 12 June, 2023

页: [1769 - 1780] 页: 12

弟呕挨: 10.2174/0929867330666230324153552

价格: $65

摘要

背景:恶性腹水是肝细胞癌的严重并发症之一,是肝细胞癌特有的肿瘤微环境。在恶性腹水中鉴定新的生物标志物可能对区分肝细胞癌和肝硬化腹水患者至关重要。 目的:本研究旨在区分肝癌患者恶性腹水与非恶性腹水(肝硬化腹水)的代谢组学特征。 方法:采用液相色谱-质谱法分析恶性腹水患者(n = 39)和肝癌患者(n = 36)以及肝硬化腹水患者(n = 36)中生物标志物的差异分布。 结果:共鉴定出20种与恶性腹水相关的差异代谢物,其中8种代谢物上调,12种代谢物下调(比值分别< 0.5或> 1.5)。此外,途径和富集分析显示,氮代谢、尿素循环、苯丙氨酸和酪氨酸代谢与肝细胞癌患者恶性腹水的形成有关。 结论:与花生四烯酸、苯丙氨酸和谷氨酸通路相关的关键因子是鉴别肝癌与肝硬化腹水的潜在腹水生物标志物;该结果还提供了与疾病状态相关的生物标志物和代谢途径的临床病理生理学解释。

关键词: 恶性腹水,UPLC-MS/MS,代谢,肝细胞癌,生物标志物,肿瘤。

« Previous
[1]
Zheng, L.; Xu, M.; Xu, J.; Wu, K.; Fang, Q.; Liang, Y.; Zhou, S.; Cen, D.; Ji, L.; Han, W.; Cai, X. ELF3 promotes epithelial–mesenchymal transition by protecting ZEB1 from miR-141-3p-mediated silencing in hepatocellular carcinoma. Cell Death Dis., 2018, 9(3), 387.
[http://dx.doi.org/10.1038/s41419-018-0399-y] [PMID: 29523781]
[2]
El-Serag, H.B. Hepatocellular carcinoma. N. Engl. J. Med., 2011, 365(12), 1118-1127.
[http://dx.doi.org/10.1056/NEJMra1001683] [PMID: 21992124]
[3]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[4]
Cavazzoni, E.; Bugiantella, W.; Graziosi, L.; Franceschini, M.S.; Donini, A. Malignant ascites: Pathophysiology and treatment. Int. J. Clin. Oncol., 2013, 18(1), 1-9.
[http://dx.doi.org/10.1007/s10147-012-0396-6] [PMID: 22460778]
[5]
Watala, C.; Karolczak, K.; Kassassir, H.; Talar, M.; Przygodzki, T.; Maczynska, K.; Labieniec-Watala, M. How do the full-generation poly(amido)amine (PAMAM) dendrimers activate blood platelets? Activation of circulating platelets and formation of “fibrinogen aggregates” in the presence of polycations. Int. J. Pharm., 2016, 503(1-2), 247-261.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.073] [PMID: 26319628]
[6]
Pillai, R.C.; Fraser, J.F.; Ziegenfuss, M.; Bhaskar, B. Influence of circulating levels of fibrinogen and perioperative coagulation parameters on predicting postoperative blood loss in cardiac surgery: A prospective observational study. J. Card. Surg., 2014, 29(2), 189-195.
[http://dx.doi.org/10.1111/jocs.12255] [PMID: 24734282]
[7]
Moore, C.M.; Van Thiel, D.H. Cirrhotic ascites review: Pathophysiology, diagnosis and management. World J. Hepatol., 2013, 5(5), 251-263.
[http://dx.doi.org/10.4254/wjh.v5.i5.251] [PMID: 23717736]
[8]
Oberg, A.L.; Mahoney, D.W. Statistical methods for quantitative mass spectrometry proteomic experiments with labeling. BMC Bioinformatics, 2012, 13(S16), 7.
[http://dx.doi.org/10.1186/1471-2105-13-S16-S7]
[9]
Thompson, J.W.; Forrester, M.T.; Moseley, M.A.; Foster, M.W. Solid-phase capture for the detection and relative quantification of S-nitrosoproteins by mass spectrometry. Methods, 2013, 62(2), 130-137.
[http://dx.doi.org/10.1016/j.ymeth.2012.10.001] [PMID: 23064468]
[10]
Mehrotra, S.; Goyal, V. Evaluation of designer crops for biosafety-A scientist’s perspective. Gene, 2013, 515(2), 241-248.
[http://dx.doi.org/10.1016/j.gene.2012.12.029] [PMID: 23266812]
[11]
Sauzay, C.; Petit, A.; Bourgeois, A.M.; Barbare, J.C.; Chauffert, B.; Galmiche, A.; Houessinon, A. Alpha-foetoprotein (AFP): A multi-purpose marker in hepatocellular carcinoma. Clin Chim Acta, 2016, 463, 39-44.
[12]
Lindon, J.C.; Holmes, E.; Nicholson, J.K. Metabonomics in pharmaceutical R & D. FEBS J., 2007, 274(5), 1140-1151.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05673.x] [PMID: 17298438]
[13]
Zhang, J.; Liang, R.; Wei, J.; Ye, J.; He, Q.; ChunlingYuan; Ye, J.; Li, Y.; Liu, Z.; Lin, Y. Identification of candidate biomarkers in malignant ascites from patients with hepatocellular carcinoma by iTRAQ-based quantitative proteomic analysis. BioMed Res. Int., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/5484976] [PMID: 30345303]
[14]
Lee, S.S.; Min, H.J.; Choi, J.Y.; Cho, H.C.; Kim, J.J.; Lee, J.M.; Kim, H.J.; Ha, C.Y.; Kim, H.J.; Kim, T.H.; Kim, J.H.; Lee, O.J. Usefulness of ascitic fluid lactoferrin levels in patients with liver cirrhosis. BMC Gastroenterol., 2016, 16(1), 132.
[http://dx.doi.org/10.1186/s12876-016-0546-9] [PMID: 27733127]
[15]
Sui, Z.; Li, Q.; Zhu, L.; Wang, Z.; Lv, C.; Liu, R.; Xu, H.; He, B.; Li, Z.; Bi, K. An integrative investigation of the toxicity of Aconiti kusnezoffii radix and the attenuation effect of its processed drug using a UHPLC-Q-TOF based rat serum and urine metabolomics strategy. J. Pharm. Biomed. Anal., 2017, 145, 240-247.
[http://dx.doi.org/10.1016/j.jpba.2017.06.049] [PMID: 28668652]
[16]
Wang, X.; Zhang, A.; Sun, H. Power of metabolomics in diagnosis and biomarker discovery of hepatocellular carcinoma. Hepatology, 2013, 57(5), 2072-2077.
[http://dx.doi.org/10.1002/hep.26130] [PMID: 23150189]
[17]
Jiang, M.; Lu, C.; Zhang, C.; Yang, J.; Tan, Y.; Lu, A.; Chan, K. Syndrome differentiation in modern research of traditional Chinese medicine. J. Ethnopharmacol., 2012, 140(3), 634-642.
[http://dx.doi.org/10.1016/j.jep.2012.01.033] [PMID: 22322251]
[18]
Zira, A.N.; Theocharis, S.E.; Mitropoulos, D.; Migdalis, V.; Mikros, E. (1)H NMR metabonomic analysis in renal cell carcinoma: A possible diagnostic tool. J. Proteome Res., 2010, 9(8), 4038-4044.
[http://dx.doi.org/10.1021/pr100226m] [PMID: 20527959]
[19]
Lu, X.; Zhao, X.; Bai, C.; Zhao, C.; Lu, G.; Xu, G. LC–MS-based metabonomics analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 866(1-2), 64-76.
[http://dx.doi.org/10.1016/j.jchromb.2007.10.022] [PMID: 17983864]
[20]
Jiang, W.; Qiu, Y.; Ni, Y.; Su, M.; Jia, W.; Du, X. An automated data analysis pipeline for GC-TOF-MS metabonomics studies. J. Proteome Res., 2010, 9(11), 5974-5981.
[http://dx.doi.org/10.1021/pr1007703] [PMID: 20825247]
[21]
Safaei, A.; Arefi Oskouie, A.; Mohebbi, S.R.; Rezaei-Tavirani, M.; Mahboubi, M.; Peyvandi, M.; Okhovatian, F.; Zamanian-Azodi, M. Metabolomic analysis of human cirrhosis, hepatocellular carcinoma, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis diseases. Gastroenterol. Hepatol. Bed Bench, 2016, 9(3), 158-173.
[PMID: 27458508]
[22]
Cui, W.; Zhang, J.; Wu, D.; Zhang, J.; Zhou, H.; Rong, Y.; Liu, F.; Wei, B.; Xu, X. Ponicidin suppresses pancreatic cancer growth by inducing ferroptosis: Insight gained by mass spectrometry-based metabolomics. Phytomedicine, 2022, 98, 153943.
[http://dx.doi.org/10.1016/j.phymed.2022.153943] [PMID: 35104766]
[23]
Zhang, H.; Bian, S.; Xu, Z.; Gao, M.; Wang, H.; Zhang, J.; Zhang, M.; Ke, Y.; Wang, W.; Chen, Z.S.; Xu, H. The effect and mechanistic study of encequidar on reversing the resistance of SW620/AD300 cells to doxorubicin. Biochem. Pharmacol., 2022, 205, 115258.
[http://dx.doi.org/10.1016/j.bcp.2022.115258] [PMID: 36179932]
[24]
Jha, V.K.; Shenoy, G.; Borpujari, P.J.; Banerjee, M. Biomarkers of malignant ascites-a myth or reality. Med. J. Armed Forces India, 2011, 67(4), 398.
[http://dx.doi.org/10.1016/S0377-1237(11)60100-7] [PMID: 27365864]
[25]
Coloff, J.L.; Murphy, J.P.; Braun, C.R.; Harris, I.S.; Shelton, L.M.; Kami, K.; Gygi, S.P.; Selfors, L.M.; Brugge, J.S. Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells. Cell Metab., 2016, 23(5), 867-880.
[http://dx.doi.org/10.1016/j.cmet.2016.03.016] [PMID: 27133130]
[26]
Prickett, T.D.; Samuels, Y. Molecular pathways: Dysregulated glutamatergic signaling pathways in cancer. Clin. Cancer Res., 2012, 18(16), 4240-4246.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1217] [PMID: 22648273]
[27]
Matsuda, K. Novel susceptibility loci for hepatocellular carcinoma in chronic HBV carriers. Hepatobiliary Surg. Nutr., 2012, 1(1), 59-60.
[PMID: 24570905]
[28]
Nahon, P.; Amathieu, R.; Triba, M.N.; Bouchemal, N.; Nault, J.C.; Ziol, M.; Seror, O.; Dhonneur, G.; Trinchet, J.C.; Beaugrand, M.; Le Moyec, L. Identification of serum proton NMR metabolomic fingerprints associated with hepatocellular carcinoma in patients with alcoholic cirrhosis. Clin. Cancer Res., 2012, 18(24), 6714-6722.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1099] [PMID: 23136190]
[29]
Han, M.; Xie, M.; Han, J.; Yuan, D.; Yang, T.; Xie, Y. Development and validation of a rapid, selective, and sensitive LC–MS/MS method for simultaneous determination of d- and l-amino acids in human serum: application to the study of hepatocellular carcinoma. Anal. Bioanal. Chem., 2018, 410(10), 2517-2531.
[http://dx.doi.org/10.1007/s00216-018-0883-3] [PMID: 29492623]
[30]
Keshet, R.; Szlosarek, P.; Carracedo, A.; Erez, A. Rewiring urea cycle metabolism in cancer to support anabolism. Nat. Rev. Cancer, 2018, 18(10), 634-645.
[http://dx.doi.org/10.1038/s41568-018-0054-z] [PMID: 30194362]
[31]
Kim, D.; Cho, E.; Yu, K.S.; Jang, I.J.; Yoon, J.H.; Park, T.; Cho, J.Y. Comprehensive metabolomic search for biomarkers to differentiate early stage hepatocellular carcinoma from cirrhosis. Cancers, 2019, 11(10), 1497.
[http://dx.doi.org/10.3390/cancers11101497] [PMID: 31590436]
[32]
Spinelli, J.B.; Yoon, H.; Ringel, A.E.; Jeanfavre, S.; Clish, C.B.; Haigis, M.C. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science, 2017, 358(6365), 941-946.
[http://dx.doi.org/10.1126/science.aam9305] [PMID: 29025995]
[33]
Brosnan, M.E.; Brosnan, J.T. Hepatic glutamate metabolism: A tale of 2 hepatocytes. Am. J. Clin. Nutr., 2009, 90(3), 857S-861S.
[http://dx.doi.org/10.3945/ajcn.2009.27462Z] [PMID: 19625684]
[34]
Mian, A.; Lee, B. Urea-cycle disorders as a paradigm for inborn errors of hepatocyte metabolism. Trends Mol. Med., 2002, 8(12), 583-589.
[http://dx.doi.org/10.1016/S1471-4914(02)02437-1] [PMID: 12470992]
[35]
Gong, Z.G.; Zhao, W.; Zhang, J.; Wu, X.; Hu, J.; Yin, G.C.; Xu, Y.J. Metabolomics and eicosanoid analysis identified serum biomarkers for distinguishing hepatocellular carcinoma from hepatitis B virus-related cirrhosis. Oncotarget, 2017, 8(38), 63890-63900.
[http://dx.doi.org/10.18632/oncotarget.19173] [PMID: 28969038]
[36]
Yang, F.; Li, J.; Deng, H.; Wang, Y.; Lei, C.; Wang, Q.; Xiang, J.; Liang, L.; Xia, J.; Pan, X.; Li, X.; Long, Q.; Chang, L.; Xu, P.; Huang, A.; Wang, K.; Tang, N. GSTZ 1-1 deficiency activates NRF 2/ IGF 1R Axis in HCC via accumulation of oncometabolite succinylacetone. EMBO J., 2019, 38(15), e101964.
[http://dx.doi.org/10.15252/embj.2019101964] [PMID: 31267557]
[37]
Linkous, A.G.; Yazlovitskaya, E.M.; Hallahan, D.E. Cytosolic phospholipase A2 and lysophospholipids in tumor angiogenesis. J. Natl. Cancer Inst., 2010, 102(18), 1398-1412.
[http://dx.doi.org/10.1093/jnci/djq290] [PMID: 20729478]
[38]
Jee, S.H.; Kim, M.; Kim, M.; Yoo, H.J.; Kim, H.; Jung, K.J.; Hong, S.; Lee, J.H. Metabolomics profiles of hepatocellular carcinoma in a Korean prospective cohort: The Korean cancer prevention study-II. Cancer Prev. Res. (Phila.), 2018, 11(5), 303-312.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0249] [PMID: 29500188]
[39]
Sun, X.M.; Dong, W.G.; Yu, B.P.; Luo, H.S.; Yu, J.P. Detection of type IV collagenase activity in malignant ascites. World J. Gastroenterol., 2003, 9(11), 2592-2595.
[http://dx.doi.org/10.3748/wjg.v9.i11.2592] [PMID: 14606104]
[40]
Kountouras, J.; Boura, P.; Tsapas, G.; Charisis, K.; Magoula, I.; Tsakiri, I. Value of ascitic fluid ferritin in the differential diagnosis of malignant ascites. Anticancer Res., 1993, 13(6B), 2441-2445.
[PMID: 8135481]
[41]
Wang, X.; Lin, G.; Huang, Y. Study on biomarkers of serum and ascites in patients with liver cirrhosis or liver cancer. World Chin. Digestion J., 1999, 7, 642-643.
[42]
Xu, P.; Zhu, B. Clinical significance of serum and ascites α-L-fucosylase in liver cancer. Jiangsu Med., 1990, 16(2), 91-92.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy