Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

APOE4等位基因和性别对阿尔茨海默病海马体、内嗅皮层和梭形回腿萎缩率的影响

卷 19, 期 14, 2022

发表于: 15 March, 2023

页: [943 - 953] 页: 11

弟呕挨: 10.2174/1567205020666230309113749

价格: $65

摘要

背景:海马体、内嗅皮质和梭状回是在早期阿尔茨海默病 (AD) 期间恶化的大脑区域。 ApoE4 等位基因已被确定为 AD 发展的危险因素,与大脑中淀粉样蛋白 β (Aβ) 斑块聚集的增加有关,并导致海马区萎缩。然而,据我们所知,尚未研究 AD 患者随时间恶化的速度,无论是否有 ApoE4 等位基因。 方法:在这项研究中,我们首次使用阿尔茨海默氏病神经影像学倡议 (ADNI) 数据集分析有和没有 ApoE4 的 AD 患者的这些脑结构萎缩。 结果:发现这些脑区体积在 12 个月内的减少率与 ApoE4 的存在有关。此外,与之前的研究不同,我们发现女性和男性患者的神经萎缩没有差异,这表明 ApoE4 的存在与 AD 中的性别差异无关。 结论:我们的结果证实并扩展了之前的发现,表明 ApoE4 等位基因逐渐影响受 AD 影响的大脑区域。

关键词: 阿尔茨海默病,海马体,APOE基因,内嗅皮层,梭状回,疾病进展,性别差异。

[1]
Velayudhan, L.; Proitsi, P.; Westman, E.; Muehlboeck, J.S.; Mecocci, P.; Vellas, B.; Tsolaki, M. Kłoszewska, I.; Soininen, H.; Spenger, C.; Hodges, A.; Powell, J.; Lovestone, S.; Simmons, A. Entorhinal cortex thickness predicts cognitive decline in Alzheimer’s disease. J. Alzheimers Dis., 2013, 33(3), 755-766.
[http://dx.doi.org/10.3233/JAD-2012-121408] [PMID: 23047370]
[2]
Cao, L.; Wang, H.F.; Tan, L.; Sun, F.R.; Tan, M.S.; Tan, C.C.; Jiang, T.; Yu, J.T.; Tan, L. Effect of HMGCR genetic variation on neuroim-aging biomarkers in healthy, mild cognitive impairment and Alzheimer’s disease cohorts. Oncotarget, 2016, 7(12), 13319-13327.
[http://dx.doi.org/10.18632/oncotarget.7797] [PMID: 26950278]
[3]
Pensalfini, A.; Albay, R., III; Rasool, S.; Wu, J.W.; Hatami, A.; Arai, H.; Margol, L.; Milton, S.; Poon, W.W.; Corrada, M.M.; Kawas, C.H.; Glabe, C.G. Intracellular amyloid and the neuronal origin of Alzheimer neuritic plaques. Neurobiol. Dis., 2014, 71, 53-61.
[http://dx.doi.org/10.1016/j.nbd.2014.07.011] [PMID: 25092575]
[4]
Moustafa, A.A.; Hassan, M.; Hewedi, D.H.; Hewedi, I.; Garami, J.K.; Al Ashwal, H.; Zaki, N.; Seo, S.Y.; Cutsuridis, V.; Angulo, S.L.; Natesh, J.Y.; Herzallah, M.M.; Frydecka, D.; Misiak, B.; Salama, M.; Mohamed, W.; El Haj, M.; Hornberger, M. Genetic underpinnings in Alzheimer’s disease-a review. Rev. Neurosci., 2017, 29(1), 21-38.
[http://dx.doi.org/10.1515/revneuro-2017-0036] [PMID: 28949931]
[5]
Moustafa, A.A. Alzheimer’s Disease: Understanding Biomarkers, Big Data, and Therapy; Elsevier: Amsterdam, 2021.
[6]
Fiorilli, J.; Bos, J.J.; Grande, X.; Lim, J.; Düzel, E.; Pennartz, C.M.A. Reconciling the object and spatial processing views of the perirhinal cortex through task‐relevant unitization. Hippocampus, 2021, 31(7), 737-755.
[http://dx.doi.org/10.1002/hipo.23304] [PMID: 33523577]
[7]
Ito, R.; Robbins, T.W.; Pennartz, C.M.; Everitt, B.J. Functional interaction between the hippocampus and nucleus accumbens shell is nec-essary for the acquisition of appetitive spatial context conditioning. J. Neurosci., 2008, 28(27), 6950-6959.
[http://dx.doi.org/10.1523/JNEUROSCI.1615-08.2008] [PMID: 18596169]
[8]
Jankowski, M.M.; Ronnqvist, K.C.; Tsanov, M.; Vann, S.D.; Wright, N.F.; Erichsen, J.T.; Aggleton, J.P.; O’Mara, S.M. The anterior thala-mus provides a subcortical circuit supporting memory and spatial navigation. Front. Syst. Neurosci., 2013, 7, 45.
[http://dx.doi.org/10.3389/fnsys.2013.00045] [PMID: 24009563]
[9]
Yoo, H.B.; Umbach, G.; Lega, B. Neurons in the human medial temporal lobe track multiple temporal contexts during episodic memory processing. Neuroimage, 2021, 245, 118689.
[http://dx.doi.org/10.1016/j.neuroimage.2021.118689] [PMID: 34742943]
[10]
Zheng, J.; Schjetnan, A.G.P.; Yebra, M.; Mosher, C.; Kalia, S.; Valiante, T.A. Cognitive boundary signals in the human medial temporal lobe shape episodic memory representation. 2021. Nat. Neurosci., 2022, 25, 358-368.
[http://dx.doi.org/10.1101/2021.01.16.426538]
[11]
Zheng, J.; Schjetnan, A.G.; Yebra, M.; Gomes, B.A.; Mosher, C.P.; Kalia, S.K. Neurons detect cognitive boundaries to structure episodic memo-ries in humans. Nat. Neurosci., 2022, 25, 358-368.
[12]
Mulders, P; Jaarsveld, S; Tendolkar, I; Eijndhoven, P Electroconvulsive therapy for depression: Neurobiological mechanisms. Neurobiol. Depress., 2019, 361-73. INCOMPLETE
[13]
Eriksson, P. Nerve Cells and Memory. Encyclopedia of the brain; Elsevier: Amsterdam, 2002.
[http://dx.doi.org/10.1016/B0-12-227210-2/00232-6]
[14]
Bellgowan, P.S.F.; Buffalo, E.A.; Bodurka, J.; Martin, A. Lateralized spatial and object memory encoding in entorhinal and perirhinal corti-ces. Learn. Mem., 2009, 16(7), 433-438.
[http://dx.doi.org/10.1101/lm.1357309] [PMID: 19553381]
[15]
Takehara-Nishiuchi, K. Entorhinal cortex and consolidated memory. Neurosci. Res., 2014, 84, 27-33.
[http://dx.doi.org/10.1016/j.neures.2014.02.012] [PMID: 24642278]
[16]
Suter, E.E.; Weiss, C.; Disterhoft, J.F. Differential responsivity of neurons in perirhinal cortex, lateral entorhinal cortex, and dentate gyrus during time‐bridging learning. Hippocampus, 2019, 29(6), 511-526.
[http://dx.doi.org/10.1002/hipo.23041] [PMID: 30311282]
[17]
Olajide, O.J.; Suvanto, M.E. Chapman, CAJBO Molecular mechanisms of neurodegeneration in the entorhinal cortex that underlie its selec-tive vulnerability during the pathogenesis of Alzheimer’s disease. Biol. Open, 2021, 10(1), bio056796.
[18]
Yeung, J.H.Y.; Walby, J.L.; Palpagama, T.H.; Turner, C.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. Glutamatergic receptor expres-sion changes in the Alzheimer’s disease hippocampus and entorhinal cortex. Brain Pathol., 2021, 31(6), e13005.
[http://dx.doi.org/10.1111/bpa.13005] [PMID: 34269494]
[19]
Delhaye, E.; Bahri, M.A.; Salmon, E.; Bastin, C. Impaired perceptual integration and memory for unitized representations are associated with perirhinal cortex atrophy in Alzheimer’s disease. Neurobiol. Aging, 2019, 73, 135-144.
[20]
Fogwe, L.A.; Reddy, V.; Mesfin, F.B. Neuroanatomy, Hippocampus. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
[21]
Dhikav, V.; Anand, K.S. Hippocampus in health and disease: An overview. Ann. Indian Acad. Neurol., 2012, 15(4), 239-246.
[http://dx.doi.org/10.4103/0972-2327.104323] [PMID: 23349586]
[22]
Khalid, M.; Wu, J.M.; Ali, T.; Moustafa, A.A.; Zhu, Q.; Xiong, R. Green model to adapt classical conditioning learning in the hippocam-pus. Neuroscience, 2020, 426, 201-219.
[http://dx.doi.org/10.1016/j.neuroscience.2019.11.021] [PMID: 31812493]
[23]
Jaroudi, W.; Garami, J.; Garrido, S.; Hornberger, M.; Keri, S.; Moustafa, A.A. Factors underlying cognitive decline in old age and Alz-heimer’s disease: Tarticlehe role of the hippocampus. Rev. Neurosci., 2017, 28(7), 705-714.
[http://dx.doi.org/10.1515/revneuro-2016-0086] [PMID: 28422707]
[24]
O’Keefe, J.; Nadel, L. The hippocampus as a cognitive M.01: UK Oxford University Press. Taube, JS, Ranck, JB. Description and quanti-tative analysis. J. Neurosci., 1978, 10, 420-435.
[25]
Eichenbaum, H. The hippocampus as a cognitive map of social space. Neuron, 2015, 87(1), 9-11.
[http://dx.doi.org/10.1016/j.neuron.2015.06.013] [PMID: 26139366]
[26]
Rao, Y.L.; Ganaraja, B.; Murlimanju, B.V.; Joy, T.; Krishnamurthy, A.; Agrawal, A. Hippocampus and its involvement in Alzheimer’s disease: A review. 3 Biotech, 2022, 12(2), 55.
[http://dx.doi.org/10.1007/s13205-022-03123-4] [PMID: 35116217]
[27]
Spoleti, E.; Krashia, P.; La Barbera, L.; Nobili, A.; Lupascu, C.A.; Giacalone, E.; Keller, F.; Migliore, M.; Renzi, M.; D’Amelio, M. Early derailment of firing properties in CA1 pyramidal cells of the ventral hippocampus in an Alzheimer’s disease mouse model. Exp. Neurol., 2022, 350, 113969.
[http://dx.doi.org/10.1016/j.expneurol.2021.113969] [PMID: 34973962]
[28]
Vijayakumar, A.; Vijayakumar, A. Comparison of hippocampal volume in dementia subtypes. ISRN Radiol., 2012, 2013, 174524.
[PMID: 24959551]
[29]
van Hoesen, G.W.; Hyman, B.T.; Damasio, A.R. Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus, 1991, 1(1), 1-8.
[http://dx.doi.org/10.1002/hipo.450010102] [PMID: 1669339]
[30]
Juottonen, K.; Lehtovirta, M.; Helisalmi, S.; Sr, P.J.R.; Soininen, H. Major decrease in the volume of the entorhinal cortex in patients with Alzheimer’s disease carrying the apolipoprotein E epsilon 4 allele. J. Neurol. Neurosurg. Psychiatry, 1998, 65(3), 322-327.
[http://dx.doi.org/10.1136/jnnp.65.3.322] [PMID: 9728943]
[31]
Leandrou, S.; Lamnisos, D.; Mamais, I.; Kyriacou, P.A.; Pattichis, C.S. Alzheimer’s, D. Assessment of Alzheimer’s disease based on texture analysis of the entorhinal cortex. Front. Aging Neurosci., 2020, 12, 176.
[http://dx.doi.org/10.3389/fnagi.2020.00176] [PMID: 32714177]
[32]
Leandrou, S.; Petroudi, S.; Kyriacou, P.A.; Reyes-Aldasoro, C.C.; Pattichis, C.S. Quantitative MRI brain studies in mild cognitive impair-ment and Alzheimer’s Disease: A methodological review. IEEE Rev. Biomed. Eng., 2018, 11, 97-111.
[http://dx.doi.org/10.1109/RBME.2018.2796598] [PMID: 29994606]
[33]
Kulason, S.; Xu, E.; Tward, D.J.; Bakker, A.; Albert, M.; Younes, L.; Miller, M.I. Entorhinal and transentorhinal atrophy in preclinical Alzheimer’s Disease. Front. Neurosci., 2020, 14, 804.
[http://dx.doi.org/10.3389/fnins.2020.00804] [PMID: 32973425]
[34]
Khan, U.A.; Liu, L.; Provenzano, F.A.; Berman, D.E.; Profaci, C.P.; Sloan, R.; Mayeux, R.; Duff, K.E.; Small, S.A. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat. Neurosci., 2014, 17(2), 304-311.
[http://dx.doi.org/10.1038/nn.3606] [PMID: 24362760]
[35]
Fjell, A.M.; McEvoy, L.; Holland, D.; Dale, A.M.; Walhovd, K.B. What is normal in normal aging? Effects of aging, amyloid and Alz-heimer’s disease on the cerebral cortex and the hippocampus. Prog. Neurobiol., 2014, 117, 20-40.
[http://dx.doi.org/10.1016/j.pneurobio.2014.02.004] [PMID: 24548606]
[36]
Kobro-Flatmoen, A.; Lagartos-Donate, M.J.; Aman, Y.; Edison, P.; Witter, M.P.; Fang, E.F. Re-emphasizing early Alzheimer’s disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Res. Rev., 2021, 67, 101307.
[http://dx.doi.org/10.1016/j.arr.2021.101307] [PMID: 33621703]
[37]
Chrobak, J.J.; Lörincz, A.; Buzsáki, G. Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus, 2000, 10(4), 457-465.
[http://dx.doi.org/10.1002/1098-1063(2000)10:4<457::AIDHIPO12>3.0.CO;2-Z] [PMID: 10985285]
[38]
Zhang, S.J.; Ye, J.; Couey, J.J.; Witter, M.; Moser, E.I.; Moser, M.B. Functional connectivity of the entorhinal–hippocampal space circuit. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1635), 20120516.
[http://dx.doi.org/10.1098/rstb.2012.0516] [PMID: 24366130]
[39]
Devanand, D.P.; Bansal, R.; Liu, J.; Hao, X.; Pradhaban, G.; Peterson, B.S. MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer’s disease. Neuroimage, 2012, 60(3), 1622-1629.
[http://dx.doi.org/10.1016/j.neuroimage.2012.01.075] [PMID: 22289801]
[40]
Ma, D.; Fetahu, I.S.; Wang, M.; Fang, R.; Li, J.; Liu, H.; Gramyk, T.; Iwanicki, I.; Gu, S.; Xu, W.; Tan, L.; Wu, F.; Shi, Y.G. The fusiform gyrus exhibits an epigenetic signature for Alzheimer’s disease. Clin. Epigenetics, 2020, 12(1), 129.
[http://dx.doi.org/10.1186/s13148-020-00916-3] [PMID: 32854783]
[41]
Friedman, B.A.; Srinivasan, K.; Ayalon, G.; Meilandt, W.J.; Lin, H.; Huntley, M.A.; Cao, Y.; Lee, S.H.; Haddick, P.C.G.; Ngu, H.; Modru-san, Z.; Larson, J.L.; Kaminker, J.S.; van der Brug, M.P.; Hansen, D.V. Diverse brain myeloid expression profiles reveal distinct microgli-al activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep., 2018, 22(3), 832-847.
[http://dx.doi.org/10.1016/j.celrep.2017.12.066] [PMID: 29346778]
[42]
Huang, Y; Mahley, RW polipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol. dis., 2014, 72(Pt A), 3-12.
[43]
Uddin, M.S.; Kabir, M.T.; Al Mamun, A.; Abdel-Daim, M.M.; Barreto, G.E.; Ashraf, G.M. APOE and Alzheimer’s Disease: Evidence mounts that targeting APOE4 may combat Alzheimer’s Pathogenesis. Mol. Neurobiol., 2019, 56(4), 2450-2465.
[http://dx.doi.org/10.1007/s12035-018-1237-z] [PMID: 30032423]
[44]
Mahley, R.W.; Weisgraber, K.H.; Huang, Y. Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2006, 103(15), 5644-5651.
[http://dx.doi.org/10.1073/pnas.0600549103] [PMID: 16567625]
[45]
Wisniewski, T.; Drummond, E. APOE-amyloid interaction: Therapeutic targets. Neurobiol. Dis., 2020, 138, 104784.
[http://dx.doi.org/10.1016/j.nbd.2020.104784] [PMID: 32027932]
[46]
Montagne, A.; Nikolakopoulou, A.M.; Huuskonen, M.T.; Sagare, A.P.; Lawson, E.J.; Lazic, D.; Rege, S.V.; Grond, A.; Zuniga, E.; Barnes, S.R.; Prince, J.; Sagare, M.; Hsu, C.J.; LaDu, M.J.; Jacobs, R.E.; Zlokovic, B.V. APOE4 accelerates advanced-stage vascular and neuro-degenerative disorder in old Alzheimer’s mice via cyclophilin A independently of amyloid-β. Nature Aging, 2021, 1(6), 506-520.
[http://dx.doi.org/10.1038/s43587-021-00073-z] [PMID: 35291561]
[47]
La Joie, R.; Visani, A.V.; Lesman-Segev, O.H.; Baker, S.L.; Edwards, L.; Iaccarino, L.; Soleimani-Meigooni, D.N.; Mellinger, T.; Janabi, M.; Miller, Z.A.; Perry, D.C.; Pham, J.; Strom, A.; Gorno-Tempini, M.L.; Rosen, H.J.; Miller, B.L.; Jagust, W.J.; Rabinovici, G.D. Associa-tion of APOE4 and clinical variability in Alzheimer disease with the pattern of tau- and amyloid-PET. Neurology, 2021, 96(5), e650-e661.
[http://dx.doi.org/10.1212/WNL.0000000000011270] [PMID: 33262228]
[48]
Konishi, K.; Joober, R.; Poirier, J.; MacDonald, K.; Chakravarty, M.; Patel, R.; Breitner, J.; Bohbot, V.D. Healthy versus entorhinal cortical atrophy identification in asymptomatic apoe4 carriers at risk for Alzheimer’s Disease. J. Alzheimers Dis., 2018, 61(4), 1493-1507.
[http://dx.doi.org/10.3233/JAD-170540] [PMID: 29278888]
[49]
Litvinchuk, A.; Huynh, T.P.V.; Shi, Y.; Jackson, R.J.; Finn, M.B.; Manis, M.; Francis, C.M.; Tran, A.C.; Sullivan, P.M.; Ulrich, J.D.; Hy-man, B.T.; Cole, T.; Holtzman, D.M. Apolipoprotein E4 reduction with antisense oligonucleotides decreases neurodegeneration in a tauopathy model. Ann. Neurol., 2021, 89(5), 952-966.
[http://dx.doi.org/10.1002/ana.26043] [PMID: 33550655]
[50]
Gillespie, A.K.; Jones, E.A.; Lin, Y.H.; Karlsson, M.P.; Kay, K.; Yoon, S.Y.; Tong, L.M.; Nova, P.; Carr, J.S.; Frank, L.M.; Huang, Y. Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples. Neuron, 2016, 90(4), 740-751.
[http://dx.doi.org/10.1016/j.neuron.2016.04.009] [PMID: 27161522]
[51]
Holcomb, L.; Gordon, M.N.; McGowan, E.; Yu, X.; Benkovic, S.; Jantzen, P.; Wright, K.; Saad, I.; Mueller, R.; Morgan, D.; Sanders, S.; Zehr, C.; O’Campo, K.; Hardy, J.; Prada, C.M.; Eckman, C.; Younkin, S.; Hsiao, K.; Duff, K. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med., 1998, 4(1), 97-100.
[http://dx.doi.org/10.1038/nm0198-097] [PMID: 9427614]
[52]
Nagy, Z.S.; Esiri, M.M.; Jobst, K.A.; Johnston, C.; Litchfield, S.; Sim, E.; Smith, A.D. Influence of the apolipoprotein E genotype on amy-loid deposition and neurofibrillary tangle formation in Alzheimer’s disease. Neuroscience, 1995, 69(3), 757-761.
[http://dx.doi.org/10.1016/0306-4522(95)00331-C] [PMID: 8596645]
[53]
Emrani, S.; Arain, H.A.; DeMarshall, C.; Nuriel, T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: a systematic review. Alzheimers Res. Ther., 2020, 12(1), 141.
[http://dx.doi.org/10.1186/s13195-020-00712-4] [PMID: 33148345]
[54]
Soininen, H.; Kosunen, O.; Helisalmi, S.; Mannermaa, A.; Paljärvi, L.; Talasniemi, S.; Ryynänen, M.; Riekkinen, P. Sr A severe loss of choline acetyltransferase in the frontal cortex of Alzheimer patients carrying apolipoprotein ε4 allele. Neurosci. Lett., 1995, 187(2), 79-82.
[http://dx.doi.org/10.1016/0304-3940(95)11343-6] [PMID: 7783963]
[55]
Buttini, M.; Yu, G.Q.; Shockley, K.; Huang, Y.; Jones, B.; Masliah, E.; Mallory, M.; Yeo, T.; Longo, F.M.; Mucke, L. Modulation of Alz-heimer-like synaptic and cholinergic deficits in transgenic mice by human apolipoprotein E depends on isoform, aging, and overexpres-sion of amyloid beta peptides but not on plaque formation. J. Neurosci., 2002, 22(24), 10539-10548.
[http://dx.doi.org/10.1523/JNEUROSCI.22-24-10539.2002] [PMID: 12486146]
[56]
Dolejší, E.; Liraz, O.; Rudajev, V.; Zimčík, P.; Doležal, V.; Michaelson, D.M. Apolipoprotein E4 reduces evoked hippocampal acetylcho-line release in adult mice. J. Neurochem., 2016, 136(3), 503-509.
[http://dx.doi.org/10.1111/jnc.13417] [PMID: 26526158]
[57]
Giacobini, E.; Pepeu, G. Sex and gender differences in the brain cholinergic system and in the response to therapy of Alzheimer disease with cholinesterase inhibitors. Curr. Alzheimer Res., 2018, 15(11), 1077-1084.
[http://dx.doi.org/10.2174/1567205015666180613111504] [PMID: 29895246]
[58]
Giacobini, E.; Cuello, A.C.; Fisher, A. Reimagining cholinergic therapy for Alzheimer’s disease. Brain, 2022, 145(7), 2250-2275.
[http://dx.doi.org/10.1093/brain/awac096] [PMID: 35289363]
[59]
Tang, X.; Holland, D.; Dale, A.M.; Miller, M.I. APOE affects the volume and shape of the amygdala and the hippocampus in mild cogni-tive impairment and Alzheimer’s Disease: Age matters. J. Alzheimers Dis., 2015, 47(3), 645-660.
[http://dx.doi.org/10.3233/JAD-150262] [PMID: 26401700]
[60]
Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[61]
Wattmo, C.; Wallin, Å.K.; Londos, E.; Minthon, L. Long-term outcome and prediction models of activities of daily living in Alzheimer disease with cholinesterase inhibitor treatment. Alzheimer Dis. Assoc. Disord., 2011, 25(1), 63-72.
[http://dx.doi.org/10.1097/WAD.0b013e3181f5dd97] [PMID: 20847636]
[62]
Wang, R.H.; Bejar, C.; Weinstock, M. Gender differences in the effect of rivastigmine on brain cholinesterase activity and cognitive func-tion in rats. Neuropharmacology, 2000, 39(3), 497-506.
[http://dx.doi.org/10.1016/S0028-3908(99)00157-4] [PMID: 10698015]
[63]
van Beijsterveldt, L.; Geerts, R.; Verhaeghe, T.; Willems, B.; Bode, W.; Lavrijsen, K.; Meuldermans, W. Pharmacokinetics and tissue dis-tribution of galantamine and galantamine-related radioactivity after single intravenous and oral administration in the rat. Arzneimittelforschung, 2004, 54(2), 85-94.
[PMID: 15038457]
[64]
Macgowan, S.H.; Wilcock, G.K.; Scott, M. Effect of gender and apolipoprotein E genotype on response to anticholinesterase therapy in Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 1998, 13(9), 625-630.
[http://dx.doi.org/10.1002/(SICI)1099-1166(199809)13:9<625::AID-GPS835>3.0.CO;2-2] [PMID: 9777427]
[65]
Moustafa, A.A.; Tindle, R.; Alashwal, H.; Diallo, T.M.O. A longitudinal study using latent curve models of groups with mild cognitive impairment and Alzheimer’s disease. J. Neurosci. Methods, 2021, 350, 109040.
[http://dx.doi.org/10.1016/j.jneumeth.2020.109040] [PMID: 33345945]
[66]
Alashwal, H.; Diallo, T.M.O.; Tindle, R.; Moustafa, A.A. Latent class and transition analysis of Alzheimer’s disease data. Front. Comput. Sci., 2020, 2, 551481.
[http://dx.doi.org/10.3389/fcomp.2020.551481]
[67]
Warren, S.L.; Moustafa, A.A.; Alashwal, H. Alzheimer’s Disease Neuroimaging I. Harnessing forgetfulness: Can episodic-memory tests pre-dict early Alzheimer’s disease. Exp. Brain Res., 2021, 239(9), 2925-2937.
[68]
Venugopalan, J.; Tong, L.; Hassanzadeh, H.R.; Wang, M.D. Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci. Rep., 2021, 11(1), 3254.
[http://dx.doi.org/10.1038/s41598-020-74399-w] [PMID: 33547343]
[69]
Qiu, S.; Joshi, P.S.; Miller, M.I.; Xue, C.; Zhou, X.; Karjadi, C.; Chang, G.H.; Joshi, A.S.; Dwyer, B.; Zhu, S.; Kaku, M.; Zhou, Y.; Aldera-zi, Y.J.; Swaminathan, A.; Kedar, S.; Saint-Hilaire, M.H.; Auerbach, S.H.; Yuan, J.; Sartor, E.A.; Au, R.; Kolachalama, V.B. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain, 2020, 143(6), 1920-1933.
[http://dx.doi.org/10.1093/brain/awaa137] [PMID: 32357201]
[70]
Oh, K.; Chung, Y.C.; Kim, K.W.; Kim, W.S.; Oh, I.S. Classification and visualization of Alzheimer’s Disease using volumetric convolu-tional neural network and transfer learning. Sci. Rep., 2019, 9(1), 18150.
[http://dx.doi.org/10.1038/s41598-019-54548-6] [PMID: 31796817]
[71]
El Haj, M.; Moustafa, A.A. Alzheimer’s disease in the pupil: Pupillometry as a biomarker of cognitive processing in Alzheimer’s disease. Alzheimer’s Disease: Understanding Biomarkers, Big Data. Therapy, 2022, 77-85.
[72]
El Haj, M.; Moustafa, A.A.; Gallouj, K.; Robin, F. Visual imagery: The past and future as seen by patients with Alzheimer’s disease. Conscious. Cogn., 2019, 68, 12-22.
[http://dx.doi.org/10.1016/j.concog.2018.12.003] [PMID: 30593998]
[73]
Pike, C.J. Sex and the development of Alzheimer’s disease. J. Neurosci. Res., 2017, 95(1-2), 671-680.
[http://dx.doi.org/10.1002/jnr.23827] [PMID: 27870425]
[74]
Hauser, P.S.; Narayanaswami, V.; Ryan, R.O.; Apolipoprotein, E.; Apolipoprotein, E. From lipid transport to neurobiology. Prog. Lipid Res., 2011, 50(1), 62-74.
[http://dx.doi.org/10.1016/j.plipres.2010.09.001] [PMID: 20854843]
[75]
Nuriel, T.; Angulo, S.L.; Khan, U.; Ashok, A.; Chen, Q.; Figueroa, H.Y.; Emrani, S.; Liu, L.; Herman, M.; Barrett, G.; Savage, V.; Buitrago, L.; Cepeda-Prado, E.; Fung, C.; Goldberg, E.; Gross, S.S.; Hussaini, S.A.; Moreno, H.; Small, S.A.; Duff, K.E. Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer’s disease-like pathology. Nat. Commun., 2017, 8(1), 1464.
[http://dx.doi.org/10.1038/s41467-017-01444-0] [PMID: 29133888]
[76]
Sohn, H.Y.; Kim, S.I.; Park, J.Y.; Park, S.H.; Koh, Y.H.; Kim, J.; Jo, C. ApoE4 attenuates autophagy via FoxO3a repression in the brain. Sci. Rep., 2021, 11(1), 17604.
[http://dx.doi.org/10.1038/s41598-021-97117-6] [PMID: 34475505]
[77]
Moon, W.J.; Lim, C.; Ha, I.H.; Kim, Y.; Moon, Y.; Kim, H.J.; Han, S.H. Hippocampal blood–brain barrier permeability is related to the APOE4 mutation status of elderly individuals without dementia. J. Cereb. Blood Flow Metab., 2021, 41(6), 1351-1361.
[http://dx.doi.org/10.1177/0271678X20952012] [PMID: 32936729]
[78]
Régy, M.; Dugravot, A.; Sabia, S.; Fayosse, A.; Mangin, J.F.; Chupin, M.; Fischer, C.; Bouteloup, V.; Dufouil, C.; Chêne, G.; Paquet, C.; Hanseeuw, B.; Singh-Manoux, A.; Dumurgier, J. Association of APOE ε4 with cerebral gray matter volumes in non-demented older adults: The MEMENTO cohort study. Neuroimage, 2022, 250, 118966.
[http://dx.doi.org/10.1016/j.neuroimage.2022.118966] [PMID: 35122970]
[79]
Du, A.T.; Schuff, N.; Kramer, J.H.; Ganzer, S.; Zhu, X.P.; Jagust, W.J.; Miller, B.L.; Reed, B.R.; Mungas, D.; Yaffe, K.; Chui, H.C.; Weiner, M.W. Higher atrophy rate of entorhinal cortex than hippocampus in AD. Neurology, 2004, 62(3), 422-427.
[http://dx.doi.org/10.1212/01.WNL.0000106462.72282.90] [PMID: 14872024]
[80]
Du, A.T.; Schuff, N.; Amend, D.; Laakso, M.P.; Hsu, Y.Y.; Jagust, W.J.; Yaffe, K.; Kramer, J.H.; Reed, B.; Norman, D.; Chui, H.C.; Weiner, M.W. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s dis-ease. J. Neurol. Neurosurg. Psychiatry, 2001, 71(4), 441-447.
[http://dx.doi.org/10.1136/jnnp.71.4.441] [PMID: 11561025]
[81]
Varon, D.; Loewenstein, D.A.; Potter, E.; Greig, M.T.; Agron, J.; Shen, Q.; Zhao, W.; Celeste Ramirez, M.; Santos, I.; Barker, W.; Potter, H.; Duara, R. Minimal atrophy of the entorhinal cortex and hippocampus: Progression of cognitive impairment. Dement. Geriatr. Cogn. Disord., 2011, 31(4), 276-283.
[http://dx.doi.org/10.1159/000324711] [PMID: 21494034]
[82]
Zhou, M.; Zhang, F.; Zhao, L.; Qian, J.; Dong, C. Entorhinal cortex: A good biomarker of mild cognitive impairment and mild Alzheimer’s disease. Rev. Neurosci., 2016, 27(2), 185-195.
[http://dx.doi.org/10.1515/revneuro-2015-0019] [PMID: 26444348]
[83]
Mecca, A.P.; Chen, M.K.; O’Dell, R.S.; Naganawa, M.; Toyonaga, T.; Godek, T.A.; Harris, J.E.; Bartlett, H.H.; Zhao, W.; Banks, E.R.; Ni, G.S.; Rogers, K.; Gallezot, J.D.; Ropchan, J.; Emery, P.R.; Nabulsi, N.B.; Vander Wyk, B.C.; Arnsten, A.F.T.; Huang, Y.; Carson, R.E.; van Dyck, C.H. Association of entorhinal cortical tau deposition and hippocampal synaptic density in older individuals with normal cognition and early Alzheimer’s disease. Neurobiol. Aging, 2022, 111, 44-53.
[http://dx.doi.org/10.1016/j.neurobiolaging.2021.11.004] [PMID: 34963063]
[84]
Shaw, P.; Lerch, J.P.; Pruessner, J.C.; Taylor, K.N.; Rose, A.B.; Greenstein, D.; Clasen, L.; Evans, A.; Rapoport, J.L.; Giedd, J.N. Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study. Lancet Neurol., 2007, 6(6), 494-500.
[http://dx.doi.org/10.1016/S1474-4422(07)70106-0] [PMID: 17509484]
[85]
Lehtovirta, M.; Laakso, M.P.; Soininen, H.; Helisalmi, S.; Mannermaa, A.; Helkala, E.L.; Partanen, K.; Ryynänen, M.; Vainio, P.; Hartikainen, P.; Riekkinen, P.J., Sr Volumes of hippocampus, amygdala and frontal lobe in Alzheimer patients with different apolipopro-tein E genotypes. Neuroscience, 1995, 67(1), 65-72.
[http://dx.doi.org/10.1016/0306-4522(95)00014-A] [PMID: 7477910]
[86]
Hsu, M.; Dedhia, M.; Crusio, W.E. Delprato, A Sex differences in gene expression patterns associated with the APOE4 allele. F1000 Res., 2019, 8, 387.
[87]
Li, X.; Zhou, S.; Zhu, W.; Li, X.; Gao, Z.; Li, M.; Luo, S.; Wu, X.; Tian, Y.; Yu, Y. Sex difference in network topology and education correlated with sex difference in cognition during the disease process of Alzheimer. Front. Aging Neurosci., 2021, 13, 639529.
[http://dx.doi.org/10.3389/fnagi.2021.639529] [PMID: 34149392]
[88]
Wang, Z.T.; Li, K.Y.; Tan, C.C.; Xu, W.; Shen, X.N.; Cao, X.P.; Wang, P.; Bi, Y.L.; Dong, Q.; Tan, L.; Yu, J.T. Associations of alcohol consumption with cerebrospinal fluid biomarkers of Alzheimer’s disease pathology in cognitively intact older adults: The CABLE Study. J. Alzheimers Dis., 2021, 82(3), 1045-1054.
[http://dx.doi.org/10.3233/JAD-210140] [PMID: 34151793]
[89]
Linnemann, C.; Lang, U.E. Pathways connecting late-life depression and dementia. Front. Pharmacol., 2020, 11, 279.
[http://dx.doi.org/10.3389/fphar.2020.00279] [PMID: 32231570]
[90]
Nebel, R.A.; Aggarwal, N.T.; Barnes, L.L.; Gallagher, A.; Goldstein, J.M.; Kantarci, K.; Mallampalli, M.P.; Mormino, E.C.; Scott, L.; Yu, W.H.; Maki, P.M.; Mielke, M.M. Understanding the impact of sex and gender in Alzheimer’s disease: A call to action. Alzheimers Dement., 2018, 14(9), 1171-1183.
[http://dx.doi.org/10.1016/j.jalz.2018.04.008] [PMID: 29907423]
[91]
Ferretti, M.T.; Iulita, M.F.; Cavedo, E.; Chiesa, P.A.; Schumacher Dimech, A.; Santuccione Chadha, A.; Baracchi, F.; Girouard, H.; Misoch, S.; Giacobini, E.; Depypere, H.; Hampel, H. Sex differences in Alzheimer disease-the gateway to precision medicine. Nat. Rev. Neurol., 2018, 14(8), 457-469.
[http://dx.doi.org/10.1038/s41582-018-0032-9] [PMID: 29985474]
[92]
Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA, 1997, 278(16), 1349-1356.
[http://dx.doi.org/10.1001/jama.1997.03550160069041] [PMID: 9343467]
[93]
Shen, S.; Zhou, W.; Chen, X.; Zhang, J. Sex differences in the association ofAPOE ε4 genotype with longitudinal hippocampal atrophy in cognitively normal older people. Eur. J. Neurol., 2019, 26(11), 1362-1369.
[http://dx.doi.org/10.1111/ene.13987] [PMID: 31102429]
[94]
Wang, X.; Zhou, W.; Ye, T.; Lin, X.; Zhang, J. Sex Difference in the association of APOE4 with memory decline in mild cognitive impair-ment. J. Alzheimers Dis., 2019, 69(4), 1161-1169.
[http://dx.doi.org/10.3233/JAD-181234] [PMID: 31127771]
[95]
Andrew, M.K.; Tierney, M.C. The puzzle of sex, gender and Alzheimer’s disease: Why are women more often affected than men? Womens Health, 2018, 14.
[http://dx.doi.org/10.1177/1745506518817995]
[96]
Podcasy, J.L.; Epperson, C.N. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin. Neurosci., 2022, 18(4), 437-446.
[PMID: 28179815]
[97]
Subramaniapillai, S.; Almey, A.; Natasha Rajah, M.; Einstein, G. Sex and gender differences in cognitive and brain reserve: Implications for Alzheimer’s disease in women. Front. Neuroendocrinol., 2021, 60, 100879.
[http://dx.doi.org/10.1016/j.yfrne.2020.100879] [PMID: 33137359]
[98]
Rahman, A.; Jackson, H.; Hristov, H.; Isaacson, R.S.; Saif, N.; Shetty, T.; Etingin, O.; Henchcliffe, C.; Brinton, R.D.; Mosconi, L. Sex and gender driven modifiers of Alzheimer’s: The role for estrogenic control across age, race, medical, and lifestyle risks. Front. Aging Neurosci., 2019, 11, 315.
[http://dx.doi.org/10.3389/fnagi.2019.00315] [PMID: 31803046]
[99]
Russell-Williams, J.; Jaroudi, W.; Perich, T.; Hoscheidt, S.; El Haj, M.; Moustafa, A.A. Mindfulness and meditation: Treating cognitive impairment and reducing stress in dementia. Rev. Neurosci., 2018, 29(7), 791-804.
[http://dx.doi.org/10.1515/revneuro-2017-0066] [PMID: 29466242]
[100]
Filon, J.R.; Intorcia, A.J.; Sue, L.I.; Vazquez Arreola, E.; Wilson, J.; Davis, K.J.; Sabbagh, M.N.; Belden, C.M.; Caselli, R.J.; Adler, C.H.; Woodruff, B.K.; Rapscak, S.Z.; Ahern, G.L.; Burke, A.D.; Jacobson, S.; Shill, H.A.; Driver-Dunckley, E.; Chen, K.; Reiman, E.M.; Beach, T.G.; Serrano, G.E. Gender Differences in Alzheimer Disease: Brain atrophy, histopathology burden, and cognition. J. Neuropathol. Exp. Neurol., 2016, 75(8), 748-754.
[http://dx.doi.org/10.1093/jnen/nlw047] [PMID: 27297671]
[101]
Sampedro, F.; Vilaplana, E.; de Leon, M.J.; Alcolea, D.; Pegueroles, J.; Montal, V.; Carmona-Iragui, M.; Sala, I.; Sánchez-Saudinos, M.B.; Antón-Aguirre, S.; Morenas-Rodríguez, E.; Camacho, V.; Falcón, C.; Pavía, J.; Ros, D.; Clarimón, J.; Blesa, R.; Lleó, A.; Fortea, J. APOE -by-sex interactions on brain structure and metabolism in healthy elderly controls. Oncotarget, 2015, 6(29), 26663-26674.
[http://dx.doi.org/10.18632/oncotarget.5185] [PMID: 26397226]
[102]
Barrett-Connor, E.; Kritz-Silverstein, D. Estrogen replacement therapy and cognitive function in older women. JAMA, 1993, 269(20), 2637-2641.
[http://dx.doi.org/10.1001/jama.1993.03500200051032] [PMID: 8487446]
[103]
Reilly, S.L.; Ferrell, R.E.; Sing, C.F. The gender-specific apolipoprotein E genotype influence on the distribution of plasma lipids and apolipoproteins in the population of Rochester, MN. III. Correlations and covariances. Am. J. Hum. Genet., 1994, 55(5), 1001-1018.
[PMID: 7977338]
[104]
Sundermann, E.E.; Maki, P.M.; Reddy, S.; Bondi, M.W.; Biegon, A. Women’s higher brain metabolic rate compensates for early Alz-heimer’s pathology. Alzheimers Dement., 2020, 12(1), e12121.
[http://dx.doi.org/10.1002/dad2.12121] [PMID: 33251322]
[105]
Sundermann, E.E.; Maki, P.M.; Rubin, L.H.; Lipton, R.B.; Landau, S.; Biegon, A. Female advantage in verbal memory. Neurology, 2016, 87(18), 1916-1924.
[http://dx.doi.org/10.1212/WNL.0000000000003288] [PMID: 27708128]
[106]
Sundermann, E.E.; Biegon, A.; Rubin, L.H.; Lipton, R.B.; Mowrey, W.; Landau, S.; Maki, P.M. Better verbal memory in women than men in MCI despite similar levels of hippocampal atrophy. Neurology, 2016, 86(15), 1368-1376.
[http://dx.doi.org/10.1212/WNL.0000000000002570] [PMID: 26984945]
[107]
Sundermann, E.E.; Biegon, A.; Rubin, L.H.; Lipton, R.B.; Landau, S.; Maki, P.M. Does the female advantage in verbal memory contribute to underestimating Alzheimer’s disease pathology in women versus men? J. Alzheimers Dis., 2017, 56(3), 947-957.
[http://dx.doi.org/10.3233/JAD-160716] [PMID: 28106548]
[108]
Edland, S.D.; Rocca, W.A.; Petersen, R.C.; Cha, R.H.; Kokmen, E. Dementia and Alzheimer disease incidence rates do not vary by sex in Rochester, Minn. Arch. Neurol., 2002, 59(10), 1589-1593.
[http://dx.doi.org/10.1001/archneur.59.10.1589] [PMID: 12374497]
[109]
Wolff, J.R.; Missler, M. Synaptic remodelling and elimination as integral processes of synaptogenesis. APMIS, 1993(Suppl. 40), 9-23.
[110]
Faghihi, F.; Alashwal, H.; Moustafa, A.A. A synaptic pruning-based spiking neural network for hand-written digits classification. Front. Artif. Intell., 2022, 5, 680165.
[http://dx.doi.org/10.3389/frai.2022.680165] [PMID: 35280233]
[111]
Brucato, F.H.; Benjamin, D.E. Synaptic pruning in Alzheimer’s disease: Role of the complement system. Glob. J. Med. Res., 2020, 20(6), 1-20.
[http://dx.doi.org/10.34257/GJMRFVOL20IS6PG1] [PMID: 32982106]
[112]
Masliah, E.; Crews, L.; Hansen, L. Synaptic remodeling during aging and in Alzheimer’s disease. J. Alzheimers Dis., 2006, 9(s3), 91-99.
[http://dx.doi.org/10.3233/JAD-2006-9S311] [PMID: 16914848]
[113]
Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352(6286), 712-716.
[http://dx.doi.org/10.1126/science.aad8373]
[114]
Ghebremedhin, E.; Schultz, C.; Braak, E.; Braak, H. High frequency of apolipoprotein E epsilon4 allele in young individuals with very mild Alzheimer’s disease-related neurofibrillary changes. Exp. Neurol., 1998, 153(1), 152-155.
[http://dx.doi.org/10.1006/exnr.1998.6860] [PMID: 9743577]
[115]
Haier, R.J.; Alkire, M.T.; White, N.S.; Uncapher, M.R.; Head, E.; Lott, I.T.; Cotman, C.W. Temporal cortex hypermetabolism in Down syndrome prior to the onset of dementia. Neurology, 2003, 61(12), 1673-1679.
[http://dx.doi.org/10.1212/01.WNL.0000098935.36984.25] [PMID: 14694028]
[116]
DiBattista, A.M.; Dumanis, S.B.; Newman, J.; Rebeck, G.W. Identification and modification of amyloid-independent phenotypes of AP-OE4 mice. Exp. Neurol., 2016, 280, 97-105.
[http://dx.doi.org/10.1016/j.expneurol.2016.04.014] [PMID: 27085394]
[117]
Obenhaus, H.A.; Zong, W.; Jacobsen, R.I.; Rose, T.; Donato, F.; Chen, L.; Cheng, H.; Bonhoeffer, T.; Moser, M.B.; Moser, E.I. Functional network topography of the medial entorhinal cortex. Proc. Natl. Acad. Sci., 2022, 119(7), e2121655119.
[http://dx.doi.org/10.1073/pnas.2121655119] [PMID: 35135885]
[118]
Tukker, J.J.; Beed, P.; Brecht, M.; Kempter, R.; Moser, E.I.; Schmitz, D. Microcircuits for spatial coding in the medial entorhinal cortex. Physiol. Rev., 2022, 102(2), 653-688.
[http://dx.doi.org/10.1152/physrev.00042.2020] [PMID: 34254836]
[119]
Kunz, L.; Schroder, T.N.; Lee, H.; Montag, C.; Lachmann, B.; Sariyska, R. Reduced grid-cell-like representations in adults at genetic risk for Alzheimer’s disease. Science, 2015, 350(6259), 430-433.
[http://dx.doi.org/10.1126/science.aac8128]
[120]
Faghihi, F.; Moustafa, A.A. A computational model of pattern separation efficiency in the dentate gyrus with implications in schizophre-nia. Front. Syst. Neurosci., 2015, 9, 42.
[http://dx.doi.org/10.3389/fnsys.2015.00042] [PMID: 25859189]
[121]
Moustafa, A.A.; Wufong, E.; Servatius, R.J.; Pang, K.C.H.; Gluck, M.A.; Myers, C.E. Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: A computational model. Brain Res., 2013, 1493, 48-67.
[http://dx.doi.org/10.1016/j.brainres.2012.11.020] [PMID: 23178699]
[122]
Moustafa, A.A.; Gluck, M.A. Computational cognitive models of prefrontal-striatal-hippocampal interactions in Parkinson’s disease and schizophrenia. Neural Netw., 2011, 24(6), 575-591.
[http://dx.doi.org/10.1016/j.neunet.2011.02.006] [PMID: 21411277]
[123]
Khalid, M.; Wu, J.; Ali, T.M.; Ameen, T.; Altaher, A.S.; Moustafa, A.A.; Zhu, Q.; Xiong, R. Cortico-Hippocampal computational modeling using quantum-inspired neural networks. Front. Comput. Neurosci., 2020, 14, 80.
[http://dx.doi.org/10.3389/fncom.2020.00080] [PMID: 33224031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy