Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Review on Paclitaxel Derivatization: Enhanced Anticancer Action

Author(s): Nansi Shrivastava, Rakhi Mishra*, Prashant Tiwari and Ayushi Singh

Volume 21, Issue 8, 2024

Published on: 31 March, 2023

Page: [1359 - 1376] Pages: 18

DOI: 10.2174/1570180820666230303112514

Price: $65

conference banner
Abstract

Background: The United States Food and Drug Administration (FDA) has authorized paclitaxel for the treatment of numerous types of cancer, including breast, lung, ovarian, and Kaposi's sarcoma. It possesses all the characteristics of BCS class IV medications, including low bioavailability, low water solubility, poor permeability, unpredictable and poor absorption, and inter- and intrasubject variability.

Objective: The purpose of this research was to evaluate previous efforts done to derivatize paclitaxel for greater effectiveness.

Methods: A systematic literature review was conducted from a variety of sources, including published research, review articles, and patents, that mainly focus on the derivatization of paclitaxel that has been done in the last 10 years to enhance its solubility, permeability, and bioavailability. Different forms of derivatization were done in order to improve the drug's ability to be absorbed by the body, as well as its solubility and bioavailability.

Results: This article explores the current and future strategies for increasing the anti-cancer efficacy of paclitaxel by enhancing its bioavailability, solubility, and penetration efficacy. Some examples are lipidbased delivery systems, polymer-based nanocarriers, crystal engineering (nanocrystals and co-crystals), liquidsolid technologies, and self-emulsifying solid dispersions. Other strategies are also discussed in this article.

Conclusion: It is quite likely that this review article will contain perfect fragments of evidence for building a new model for the application of paclitaxel in the treatment of cancer.

Keywords: Paclitaxel, cytoskeleton, paclitaxel, bioavailability, solubility, permeability.

Graphical Abstract
[1]
Horwitz, S.B. Taxol (paclitaxel): Mechanisms of action. Ann. Oncol., 1994, 5(Suppl. 6), S3-S6.
[PMID: 7865431]
[2]
Alqahtani, F.Y.; Aleanizy, F.S. Paclitaxel. In: Profiles of drug Subst. Excip. Rel. Methodol., Academic Press, 2019, 44, 205-238.
[3]
Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med., 2007, 357(26), 2666-2676.
[http://dx.doi.org/10.1056/NEJMoa072113] [PMID: 18160686]
[4]
Kearns, C.M.; Gianni, L.; Egorin, M.J. Paclitaxel pharmacokinetics and pharmacodynamics. Semin. Oncol., 1995, 22(3)( Suppl. 6), 16-23.
[PMID: 7597430]
[5]
Wiseman, L.R.; Spencer, C.M. Paclitaxel. Drugs Aging, 1998, 12(4), 305-334.
[http://dx.doi.org/10.2165/00002512-199812040-00005] [PMID: 9571394]
[6]
Sofias, A.M.; Dunne, M.; Storm, G.; Allen, C. The battle of “nano” paclitaxel. Adv. Drug Deliv. Rev., 2017, 122, 20-30.
[http://dx.doi.org/10.1016/j.addr.2017.02.003] [PMID: 28257998]
[7]
Spencer, C.M.; Faulds, D. Paclitaxel. Drugs, 1994, 48(5), 794-847.
[http://dx.doi.org/10.2165/00003495-199448050-00009] [PMID: 7530632]
[8]
Moret, F.; Menilli, L.; Battan, M.; Tedesco, D.; Columbaro, M.; Guerrini, A.; Avancini, G.; Ferroni, C.; Varchi, G. Pheophorbide A and paclitaxel bioresponsive nanoparticles as double-punch platform for cancer therapy. Pharmaceutics, 2021, 13(8), 1130.
[http://dx.doi.org/10.3390/pharmaceutics13081130] [PMID: 34452091]
[9]
Münz, F.; Lopez Perez, R.; Trinh, T.; Sisombath, S.; Weber, K.J.; Wuchter, P.; Debus, J.; Saffrich, R.; Huber, P.E.; Nicolay, N.H. Human mesenchymal stem cells lose their functional properties after paclitaxel treatment. Sci. Rep., 2018, 8(1), 312.
[http://dx.doi.org/10.1038/s41598-017-18862-1] [PMID: 29321693]
[10]
Panchagnula, R. Pharmaceutical aspects of paclitaxel. Int. J. Pharm., 1998, 172(1-2), 1-15.
[http://dx.doi.org/10.1016/S0378-5173(98)00188-4] [PMID: 15129967]
[11]
Rowinsky, E.K.; Donehower, R.C. Paclitaxel. N. Engl. J. Med., 1995, 332(15), 1004-1014.
[http://dx.doi.org/10.1056/NEJM199504133321507] [PMID: 7885406]
[12]
Liggins, R.T.; Hunter, W.L.; Burt, H.M. Solid-state characterization of paclitaxel. J. Pharm. Sci., 1997, 86(12), 1458-1463.
[http://dx.doi.org/10.1021/js9605226] [PMID: 9423162]
[13]
Shparik, I.V. Taxenes: A new hope of clinical oncology in the 90-ies. Vopr. Onkol., 1995, 41(1), 7-12.
[PMID: 7667946]
[14]
Castells, M. Drug desensitization in oncology: Chemotherapy agents and monoclonal antibodies. In: Drug hypersensitivity Basel; Karger Publishers, 2007; pp. 413-425.
[15]
Chan, E.W.C.; Wong, S.K.; Tangah, J.; Inoue, T.; Chan, H.T. Phenolic constituents and anticancer properties of Morus alba (white mulberry) leaves. J. Integr. Med., 2020, 18(3), 189-195.
[http://dx.doi.org/10.1016/j.joim.2020.02.006] [PMID: 32115383]
[16]
Dash, SG.; Naik, PK. Evaluation of synergistic effect of Noscapinoids and Docetaxel for management of human breast cancer. International Virtual Conference on Natural Products and Synthetic Biology (ICNSB 2020), 2020.
[17]
Rowinsky, E.K.; Eisenhauer, E.A.; Chaudhry, V.; Arbuck, S.G.; Donehower, R.C. Clinical toxicities encountered with paclitaxel (Taxol). Semin. Oncol., 1993, 20(4)( Suppl. 3), 1-15.
[PMID: 8102012]
[18]
Blagosklonny, M.V.; Fojo, T. Molecular effects of paclitaxel: Myths and reality (a critical review). Int. J. Cancer, 1999, 83(2), 151-156.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19991008)83:2<151:AID-IJC13>.0.CO;2-5] [PMID: 10471519]
[19]
Javeed, A.; Ashraf, M.; Riaz, A.; Ghafoor, A.; Afzal, S.; Mukhtar, M.M. Paclitaxel and immune system. Eur. J. Pharm. Sci., 2009, 38(4), 283-290.
[http://dx.doi.org/10.1016/j.ejps.2009.08.009] [PMID: 19733657]
[20]
Zhang, D.; Yang, R.; Wang, S.; Dong, Z. Paclitaxel: New uses for an old drug. Drug Des. Devel. Ther., 2014, 8, 279-284.
[PMID: 24591817]
[21]
Al-Mahayri, Z.N.; AlAhmad, M.M.; Ali, B.R. Current opinion on the pharmacogenomics of paclitaxel-induced toxicity. Expert Opin. Drug Metab. Toxicol., 2021, 17(7), 785-801.
[http://dx.doi.org/10.1080/17425255.2021.1943358] [PMID: 34128748]
[22]
Howat, S.; Park, B.; Oh, I.S.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Paclitaxel: Biosynthesis, production and future prospects. N. Biotechnol., 2014, 31(3), 242-245.
[http://dx.doi.org/10.1016/j.nbt.2014.02.010] [PMID: 24614567]
[23]
Galic, V.L.; Wright, J.D.; Lewin, S.N.; Herzog, T.J. Paclitaxel poliglumex for ovarian cancer. Expert Opin. Investig. Drugs, 2011, 20(6), 813-821.
[http://dx.doi.org/10.1517/13543784.2011.576666] [PMID: 21470062]
[24]
Choi, K.; Oh, J. Peripheral neuropathy and pain caused by cancer chemotherapy. J. Korean Neurol. Assoc., 2021, 39(1), 1-9.
[http://dx.doi.org/10.17340/jkna.2021.1.1]
[25]
Cragg, G.M. Paclitaxel (Taxol®): A success story with valuable lessons for natural product drug discovery and development. Med. Res. Rev., 1998, 18(5), 315-331.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199809)18:5315:AID-MED33.0.CO;2-W] [PMID: 9735872]
[26]
Baloglu, E.; Kingston, D.G.I. A new semisynthesis of paclitaxel from baccatin III. J. Nat. Prod., 1999, 62(7), 1068-1071.
[http://dx.doi.org/10.1021/np990040k] [PMID: 10425147]
[27]
Kusari, S.; Singh, S.; Jayabaskaran, C. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol., 2014, 32(6), 304-311.
[http://dx.doi.org/10.1016/j.tibtech.2014.03.011] [PMID: 24810040]
[28]
Devi, T.R.; Gayathri, S. FTIR and FT-Raman spectral analysis of paclitaxel drugs. Int. J. Pharm. Sci. Rev. Res., 2010, 2(2), 106-110.
[29]
Gibson, J.D.; Khanal, B.P.; Zubarev, E.R. Paclitaxel-functionalized gold nanoparticles. J. Am. Chem. Soc., 2007, 129(37), 11653-11661.
[http://dx.doi.org/10.1021/ja075181k] [PMID: 17718495]
[30]
Nikolic, V.; Savic, I.; Savic, I.; Nikolic, L.; Stankovic, M.; Marinkovic, V. Paclitaxel as an anticancer agent: isolation, activity, synthesis and stability. Open Med., 2011, 6(5), 527-536.
[http://dx.doi.org/10.2478/s11536-011-0074-5]
[31]
Sparreboom, A.; Huizing, M.T.; Boesen, J.J.; Nooijen, W.J.; Van Tellingen, O.; Beijnen, J.H. Isolation, purification, and biological actidihydroxylationnd dihydroxylation paclitaxel metabolites from human feces. Cancer Chemother. Pharmacol., 1995, 36(4), 299-304.
[http://dx.doi.org/10.1007/BF00689047] [PMID: 7628049]
[32]
Noh, M.J.; Yang, J.G.; Kim, K.S.; Yoon, Y.M.; Kang, K.A.; Han, H.Y.; Shim, S.B.; Park, H.J. Isolation of a novel microorganism, Pestalotia heterocornis, producing paclitaxel. Biotechnol. Bioeng., 1999, 64(5), 620-623.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19990905)64:5620:AID-BIT133.0.CO;2-W] [PMID: 10404243]
[33]
Chakravarthi, B.V.S.K.; Das, P.; Surendranath, K.; Karande, A.A.; Jayabaskaran, C. Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J. Biosci., 2008, 33(2), 259-267.
[http://dx.doi.org/10.1007/s12038-008-0043-6] [PMID: 18535360]
[34]
Liang, Z.K.; Huang, R.G.; Xie, Z.S.; Xu, X.J. Preparative isolation of paclitaxel and related taxanes from cell cultures of Taxus chinensis using reversed-phase flash chromatography. Nat. Prod. Res., 2015, 29(4), 327-330.
[http://dx.doi.org/10.1080/14786419.2014.945169] [PMID: 25109635]
[35]
Legault, J.; Pichette, A. Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol., 2010, 59(12), 1643-1647.
[http://dx.doi.org/10.1211/jpp.59.12.0005] [PMID: 18053325]
[36]
Gelmon, K. The taxoids: Paclitaxel and docetaxel. Lancet, 1994, 344(8932), 1267-1272.
[http://dx.doi.org/10.1016/S0140-6736(94)90754-4] [PMID: 7967989]
[37]
Verweij, J.; Clavel, M.; Chevalier, B. Paclitaxel (TaxolTM) and docetaxel (TaxotereTM): Not simply two of a kind. Ann. Oncol., 1994, 5(6), 495-505.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a058903] [PMID: 7918121]
[38]
Eisenhauer, E.A.; Vermorken, J.B. The Taxoids. Drugs, 1998, 55(1), 5-30.
[http://dx.doi.org/10.2165/00003495-199855010-00002] [PMID: 9463787]
[39]
Yusuf, R.; Duan, Z.; Lamendola, D.; Penson, R.; Seiden, M. Paclitaxel resistance: Molecular mechanisms and pharmacologic manipulation. Curr. Cancer Drug Targets, 2003, 3(1), 1-19.
[http://dx.doi.org/10.2174/1568009033333754] [PMID: 12570657]
[40]
Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett., 2019, 24(1), 40.
[http://dx.doi.org/10.1186/s11658-019-0164-y] [PMID: 31223315]
[41]
Markman, M.; Mekhail, T.M. Paclitaxel in cancer therapy. Expert Opin. Pharmacother., 2002, 3(6), 755-766.
[http://dx.doi.org/10.1517/14656566.3.6.755] [PMID: 12036415]
[42]
Al-Batran, S.E.; Geissler, M.; Seufferlein, T.; Oettle, H. Nab-paclitaxel for metastatic pancreatic cancer: Clinical outcomes and potential mechanisms of action. Oncol. Res. Treat., 2014, 37(3), 128-134.
[http://dx.doi.org/10.1159/000358890] [PMID: 24685917]
[43]
Mooberry, S.L.; Tien, G.; Hernandez, A.H.; Plubrukarn, A.; Davidson, B.S. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res., 1999, 59(3), 653-660.
[PMID: 9973214]
[44]
Mehdi, I.; Al Bahrani, B. Chemotherapy-induced neutropenic necrotizing enterocolitis: A review. J. Pak. Med. Assoc., 2012, 62(7), 718-723.
[PMID: 23866523]
[45]
Chowdhury, P.; Nagesh, P.K.B.; Hatami, E.; Wagh, S.; Dan, N.; Tripathi, M.K.; Khan, S.; Hafeez, B.B.; Meibohm, B.; Chauhan, S.C.; Jaggi, M.; Yallapu, M.M. Tannic acid-inspired paclitaxel nanoparticles for enhanced anticancer effects in breast cancer cells. J. Colloid Interface Sci., 2019, 535, 133-148.
[http://dx.doi.org/10.1016/j.jcis.2018.09.072] [PMID: 30292104]
[46]
Zhang, Z.; Mei, L.; Feng, S.S. Paclitaxel drug delivery systems. Expert Opin. Drug Deliv., 2013, 10(3), 325-340.
[http://dx.doi.org/10.1517/17425247.2013.752354] [PMID: 23289542]
[47]
Pourkarim, F.; Rahimpour, E.; Alvani, S.; Jouyban, A. Solubilization methods for paclitaxel and docetaxel: An overview. Ulum-i Daruyi, 2021, 28(2), 208-223.
[http://dx.doi.org/10.34172/PS.2021.30]
[48]
Yang, J.; Lv, Q.; Wei, W.; Yang, Z.; Dong, J.; Zhang, R.; Kan, Q.; He, Z.; Xu, Y. Bioresponsive albumin-conjugated paclitaxel prodrugs for cancer therapy. Drug Deliv., 2018, 25(1), 807-814.
[http://dx.doi.org/10.1080/10717544.2018.1451935] [PMID: 29553858]
[49]
Fu, Y.; Li, S.; Zu, Y.; Yang, G.; Yang, Z.; Luo, M.; Jiang, S.; Wink, M.; Efferth, T. Medicinal chemistry of paclitaxel and its analogues. Curr. Med. Chem., 2009, 16(30), 3966-3985.
[http://dx.doi.org/10.2174/092986709789352277] [PMID: 19747129]
[50]
Adewole, K.E. Nigerian antimalarial plants and their anticancer potential: A review. J. Integr. Med., 2020, 18(2), 92-113.
[http://dx.doi.org/10.1016/j.joim.2020.01.001] [PMID: 31953044]
[51]
Ezrahi, S.; Aserin, A.; Garti, N. Basic principles of drug delivery systems-the case of paclitaxel. Adv. Colloid Interface Sci., 2019, 263, 95-130.
[http://dx.doi.org/10.1016/j.cis.2018.11.004] [PMID: 30530177]
[52]
Ueda, Y.; Wong, H.; Matiskella, J.D.; Mikkilineni, A.B.; Farina, V.; Fairchild, C.; Rose, W.C.; Mamber, S.W.; Long, B.H.; Kerns, E.H.; Casazza, A.M.; Vyas, D.M. Synthesis and antitumor evaluation of 2′-oxycarbonylpaclitaxels (paclitaxel-2′-carbonates). Bioorg. Med. Chem. Lett., 1994, 4(15), 1861-1864.
[http://dx.doi.org/10.1016/S0960-894X(01)80385-1]
[53]
Miller, M.L.; Ojima, I. Chemistry and chemical biology of taxane anticancer agents. Chem. Rec., 2001, 1(3), 195-211.
[http://dx.doi.org/10.1002/tcr.1008] [PMID: 11895119]
[54]
Singla, A.K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm., 2002, 235(1-2), 179-192.
[http://dx.doi.org/10.1016/S0378-5173(01)00986-3] [PMID: 11879753]
[55]
Meng, Z.; Lv, Q.; Lu, J.; Yao, H.; Lv, X.; Jiang, F.; Lu, A.; Zhang, G. Prodrug strategies for paclitaxel. Int. J. Mol. Sci., 2016, 17(5), 796.
[http://dx.doi.org/10.3390/ijms17050796] [PMID: 27223283]
[56]
Gade, J.V.; Prashant Sharma, P.; Jain, B.; Rawat, R. Synthesis and characterization of paclitaxel nanoparticles for drug delivery. Mater. Today Proc., 2022, 51, 445-450.
[http://dx.doi.org/10.1016/j.matpr.2021.05.573]
[57]
Meng, X.; Lian, X.; Li, X.; Ya, Q.; Li, T.; Zhang, Y.; Yang, Y.; Zhang, Y. Synthesis of 2′-paclitaxel 2-deoxy-2-fluoro-glucopyranosyl carbonate for specific targeted delivery to cancer cells. Carbohydr. Res., 2020, 493, 108034.
[http://dx.doi.org/10.1016/j.carres.2020.108034] [PMID: 32485481]
[58]
Huo, M.; Wang, H.; Zhang, Y.; Cai, H.; Zhang, P.; Li, L.; Zhou, J.; Yin, T. Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumor treatment through chemotherapy sensitization and microenvironment modulation. J. Control. Release, 2020, 321, 198-210.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.017] [PMID: 32044390]
[59]
Saxena, A.; Kori, M.L. Preparation and characterization of ph-responsive transferosomes for transdermal delivery of paclitaxel. Int. J. Adv. Sci. Res., 2020, 11(1), 27-34.
[60]
Başpınar, Y.; Erel-Akbaba, G.; Kotmakçı, M.; Akbaba, H. Development and characterization of nanobubbles containing paclitaxel and survivin inhibitor YM155 against lung cancer. Int. J. Pharm., 2019, 566, 149-156.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.039] [PMID: 31129344]
[61]
Shu, X.; Zhu, Z.; Cao, D.; Zheng, L.; Wang, F.; Pei, H.; Wen, J.; Yang, J.; Li, D.; Bai, P.; Tang, M.; Ye, H.; Peng, A.; Li, W.; Chen, L. PEG-derivatized birinapant as a nanomicellar carrier of paclitaxel delivery for cancer therapy. Colloids Surf. B Biointerfac., 2019, 182, 110356.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110356] [PMID: 31319226]
[62]
Kumar, A.; Kaur, V.; Singh, A.; Mishra, N. Development and characterization of paclitaxel and embelin loaded solid lipid nanoparticles for breast cancer. J. Drug Deliv. Ther., 2020, 10(1), 60-68.
[http://dx.doi.org/10.22270/jddt.v10i1.3840]
[63]
Wang, M.; Chen, L.; Huang, W.; Jin, M.; Wang, Q.; Gao, Z.; Jin, Z. Improving the anti-keloid outcomes through liposomes loading paclitaxel–cholesterol complexes. Int. J. Nanomedic, 2019, 14, 1385-1400.
[http://dx.doi.org/10.2147/IJN.S195375] [PMID: 30863067]
[64]
Wang, Z.; Ling, L.; Du, Y.; Yao, C.; Li, X. Reduction responsive liposomes based on paclitaxel-ss-lysophospholipid with high drug loading for intracellular delivery. Int. J. Pharm., 2019, 564, 244-255.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.060] [PMID: 31022499]
[65]
Coccè, V.; Franzè, S.; Brini, A.; Giannì, A.; Pascucci, L.; Ciusani, E.; Alessandri, G.; Farronato, G.; Cavicchini, L.; Sordi, V.; Paroni, R.; Dei Cas, M.; Cilurzo, F.; Pessina, A. In vitro anticancer activity of extracellular vesicles (EVs) secreted by gingival mesenchymal stromal cells primed with paclitaxel. Pharmaceutics, 2019, 11(2), 61.
[http://dx.doi.org/10.3390/pharmaceutics11020061] [PMID: 30717104]
[66]
Qu, G.; Hou, S.; Qu, D.; Tian, C.; Zhu, J.; Xue, L.; Ju, C.; Zhang, C. Self-assembled micelles based on N-octyl-N’-phthalyl-Ophosphoryl chitosan derivative as an effective oral carrier of paclitaxel. Carbohydr. Polym., 2019, 207, 428-439.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.099] [PMID: 30600025]
[67]
Foglietta, F.; Spagnoli, G.C.; Muraro, M.G.; Ballestri, M.; Guerrini, A.; Ferroni, C.; Aluigi, A.; Sotgiu, G.; Varchi, G. Anticancer activity of paclitaxel-loaded keratin nanoparticles in two-dimensional and perfused three-dimensional breast cancer models. Int. J. Nanomedic, 2018, 13, 4847-4867.
[http://dx.doi.org/10.2147/IJN.S159942] [PMID: 30214193]
[68]
Xu, W.; Bae, E.J.; Lee, M.K. Enhanced anticancer activity and intracellular uptake of paclitaxel-containing solid lipid nanoparticles in multidrug-resistant breast cancer cells. Int. J. Nanomedic, 2018, 13, 7549-7563.
[http://dx.doi.org/10.2147/IJN.S182621] [PMID: 30532538]
[69]
Min, J.; Shen, H.; Xi, W.; Wang, Q.; Yin, L.; Zhang, Y.; Yu, Y.; Yang, Q.; Wang, Z. Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro. Cell. Physiol. Biochem., 2018, 48(4), 1433-1442.
[http://dx.doi.org/10.1159/000492253] [PMID: 30064123]
[70]
Sayeli, V.; Nadipelly, J.; Kadhirvelu, P.; Cheriyan, B.V.; Shanmugasundaram, J.; Subramanian, V. Effect of flavonol and its dimethoxy derivatives on paclitaxel-induced peripheral neuropathy in mice. J. Basic Clin. Physiol. Pharmacol., 2018, 29(5), 525-535.
[http://dx.doi.org/10.1515/jbcpp-2016-0127] [PMID: 29652665]
[71]
Di Mauro, P.P.; Cascante, A.; Brugada Vilà, P.; Gómez-Vallejo, V.; Llop, J.; Borrós, S. Peptide-functionalized and high drug loaded novel nanoparticles as dual-targeting drug delivery system for modulated and controlled release of paclitaxel to brain glioma. Int. J. Pharm., 2018, 553(1-2), 169-185.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.022] [PMID: 30321641]
[72]
Larsen, M.T.; Rawsthorne, H.; Schelde, K.K.; Dagnæs-Hansen, F.; Cameron, J.; Howard, K.A. Cellular recycling-driven in vivo half-life extension using recombinant albumin fusions tuned for neonatal Fc receptor (FcRn) engagement. J. Control. Release, 2018, 287, 132-141.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.023] [PMID: 30016735]
[73]
Tarantash, M.; Nosrati, H.; Kheiri Manjili, H.; Baradar Khoshfetrat, A. Preparation, characterization and in vitro anticancer activity of paclitaxel conjugated magnetic nanoparticles. Drug Dev. Ind. Pharm., 2018, 44(11), 1895-1903.
[http://dx.doi.org/10.1080/03639045.2018.1508222] [PMID: 30073853]
[74]
Azevedo Feio, D.C.; Oliveira, N.; Pereira, E.; Morikawa, A.T.; Pereira Carneiro Muniz, J.A.; Montenegro, R.; Alves, A.P.; Lima, P.; Maranhão, R.; Burbano, R. Organic effects of associating paclitaxel with a lipid-based nanoparticle system on a nonhuman primate, Cebus apella. Int. J. Nanomedic, 2017, 12, 3827-3837.
[http://dx.doi.org/10.2147/IJN.S129153] [PMID: 28572727]
[75]
Bhatt, P.; Lalani, R.; Vhora, I.; Patil, S.; Amrutiya, J.; Misra, A.; Mashru, R. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. Int. J. Pharm., 2018, 536(1), 95-107.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.048] [PMID: 29175440]
[76]
Pei, Q.; Hu, X.; Liu, S.; Li, Y.; Xie, Z.; Jing, X. Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma. J. Control. Release, 2017, 254, 23-33.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.391] [PMID: 28359677]
[77]
Vismara, E.; Bongio, C.; Coletti, A.; Edelman, R.; Serafini, A.; Mauri, M.; Simonutti, R.; Bertini, S.; Urso, E.; Assaraf, Y.; Livney, Y. Albumin and hyaluronic acid-coated superparamagnetic iron oxide nanoparticles loaded with paclitaxel for biomedical applications. Molecules, 2017, 22(7), 1030.
[http://dx.doi.org/10.3390/molecules22071030] [PMID: 28640222]
[78]
Bao, Y.; Guégain, E.; Mougin, J.; Nicolas, J. Self-stabilized, hydrophobic or PEGylated paclitaxel polymer prodrug nanoparticles for cancer therapy. Polym. Chem., 2018, 9(6), 687-698.
[http://dx.doi.org/10.1039/C7PY01918A]
[79]
Chu, B.; Qu, Y.; Huang, Y.; Zhang, L.; Chen, X.; Long, C.; He, Y.; Ou, C.; Qian, Z. PEG-derivatized octacosanol as micellar carrier for paclitaxel delivery. Int. J. Pharm., 2016, 500(1-2), 345-359.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.030] [PMID: 26794876]
[80]
Yu, Y.; Xu, S.; You, H.; Zhang, Y.; Yang, B.; Sun, X.; Yang, L.; Chen, Y.; Fu, S.; Wu, J. In vivo synergistic anti-tumor effect of paclitaxel nanoparticles combined with radiotherapy on human cervical carcinoma. Drug Deliv., 2017, 24(1), 75-82.
[http://dx.doi.org/10.1080/10717544.2016.1230902] [PMID: 28155566]
[81]
Zou, H.; Li, L.; Garcia Carcedo, I.; Xu, Z.P.; Monteiro, M.; Gu, W. Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis. Int. J. Nanomedic., 2016, 11, 1947-1958.
[PMID: 27226714]
[82]
Muntimadugu, E.; Kumar, R.; Saladi, S.; Rafeeqi, T.A.; Khan, W. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf. B Biointerfaces, 2016, 143, 532-546.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.075] [PMID: 27045981]
[83]
Zhong, Y.; Goltsche, K.; Cheng, L.; Xie, F.; Meng, F.; Deng, C.; Zhong, Z.; Haag, R. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Biomaterials, 2016, 84, 250-261.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.049] [PMID: 26851390]
[84]
Ravar, F.; Saadat, E.; Gholami, M.; Dehghankelishadi, P.; Mahdavi, M.; Azami, S.; Dorkoosh, F.A. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J. Control. Release, 2016, 229, 10-22.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.012] [PMID: 26968799]
[85]
Eloy, J.O.; Petrilli, R.; Topan, J.F.; Antonio, H.M.R.; Barcellos, J.P.A.; Chesca, D.L.; Serafini, L.N.; Tiezzi, D.G.; Lee, R.J.; Marchetti, J.M. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf. B Biointerfaces, 2016, 141, 74-82.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.032] [PMID: 26836480]
[86]
Sun, J.; Chen, Y.; Li, K.; Huang, Y.; Fu, X.; Zhang, X.; Zhao, W.; Wei, Y.; Xu, L.; Zhang, P.; Venkataramanan, R.; Li, S. A prodrug micellar carrier assembled from polymers with pendant farnesyl thiosalicylic acid moieties for improved delivery of paclitaxel. Acta Biomater., 2016, 43, 282-291.
[http://dx.doi.org/10.1016/j.actbio.2016.07.014] [PMID: 27422196]
[87]
Dal Corso, A.; Caruso, M.; Belvisi, L.; Arosio, D.; Piarulli, U.; Albanese, C.; Gasparri, F.; Marsiglio, A.; Sola, F.; Troiani, S.; Valsasina, B.; Pignataro, L.; Donati, D.; Gennari, C. Synthesis and biological evaluation of RGD peptidomimetic-paclitaxel conjugates bearing lysosomally cleavable linkers. Chemistry, 2015, 21(18), 6921-6929.
[http://dx.doi.org/10.1002/chem.201500158] [PMID: 25784522]
[88]
Barat, R.; Legigan, T.; Tranoy-Opalinski, I.; Renoux, B.; Péraudeau, E.; Clarhaut, J.; Poinot, P.; Fernandes, A.E.; Aucagne, V.; Leigh, D.A.; Papot, S. A mechanically interlocked molecular system programmed for the delivery of an anticancer drug. Chem. Sci., 2015, 6(4), 2608-2613.
[http://dx.doi.org/10.1039/C5SC00648A] [PMID: 29308165]
[89]
Misri, R.; Wong, N.K.Y.; Shenoi, R.A.; Lum, C.M.W.; Chafeeva, I.; Toth, K.; Rustum, Y.; Kizhakkedathu, J.N.; Khan, M.K. Investigation of hydrophobically derivatized hyperbranched polyglycerol with PEGylated shell as a nanocarrier for systemic delivery of chemotherapeutics. Nanomedicine, 2015, 11(7), 1785-1795.
[http://dx.doi.org/10.1016/j.nano.2015.04.016] [PMID: 25981338]
[90]
Liu, P.; Situ, J.Q.; Li, W.S.; Shan, C.L.; You, J.; Yuan, H.; Hu, F.Q.; Du, Y.Z. High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomedicine, 2015, 11(4), 855-866.
[http://dx.doi.org/10.1016/j.nano.2015.02.002] [PMID: 25725489]
[91]
Safavy, A.; Raisch, K.P.; Khazaeli, M.B.; Buchsbaum, D.J.; Bonner, J.A. Paclitaxel derivatives for targeted therapy of cancer: Toward the development of smart taxanes. J. Med. Chem., 1999, 42(23), 4919-4924.
[http://dx.doi.org/10.1021/jm990355x] [PMID: 10579854]
[92]
Beusker, P.H.; Veldhuis, H.; Brinkhorst, J.; Hetterscheid, D.G.H.; Feichter, N.; Bugaut, A.; Scheeren, H.W. Semisynthesis of 7-deoxypaclitaxel derivatives devoid of an Oxetane D-Ring, starting from Taxine B. Eur. J. Org. Chem., 2003, 2003(4), 689-705.
[http://dx.doi.org/10.1002/ejoc.200390109]
[93]
Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules, 2021, 26(4), 1109.
[http://dx.doi.org/10.3390/molecules26041109] [PMID: 33669817]
[94]
Leonelli, F.; La Bella, A.; Migneco, L.; Bettolo, R. Design, synthesis and applications of hyaluronic acid-paclitaxel bioconjugates. Molecules, 2008, 13(2), 360-378.
[http://dx.doi.org/10.3390/molecules13020360] [PMID: 18305424]
[95]
Bouvier, E.; Thirot, S.; Schmidt, F.; Monneret, C. A new paclitaxel prodrug for use in ADEPT strategy. Org. Biomol. Chem., 2003, 1(19), 3343-3352.
[http://dx.doi.org/10.1039/b306236h] [PMID: 14584798]
[96]
Tashima, T. Possibilities of cancer chemotherapy based on transporter-conscious drug design. J. Carcinog. Mutagen., 2015, 6(4), 2.
[http://dx.doi.org/10.4172/2157-2518.1000233]
[97]
Paller, C.J.; Antonarakis, E.S. Cabazitaxel: A novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des. Devel. Ther., 2011, 5, 117-124.
[PMID: 21448449]
[98]
Ren, S.; Wang, Y.; Wang, J.; Gao, D.; Zhang, M.; Ding, N.; Li, Y. Synthesis and biological evaluation of novel larotaxel analogues. Eur. J. Med. Chem., 2018, 156, 692-710.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.029] [PMID: 30036834]
[99]
Rong, D.; Wang, C.; Zhang, X.; Wei, Y.; Zhang, M.; Liu, D.; Farhan, H.; Momen Ali, S.A.; Liu, Y.; Taouil, A.; Guo, W.; Wang, Y.; Ojima, I.; Yang, S.; Wang, H. A novel taxane, difluorovinyl-ortataxel, effectively overcomes paclitaxel-resistance in breast cancer cells. Cancer Lett., 2020, 491, 36-49.
[http://dx.doi.org/10.1016/j.canlet.2020.06.025] [PMID: 32730778]
[100]
Mousa, S.A.; Bharali, D.J. Nanotechnology-based detection and targeted therapy in cancer: Nano-bio paradigms and applications. Cancers, 2011, 3(3), 2888-2903.
[http://dx.doi.org/10.3390/cancers3032888] [PMID: 24212938]
[101]
Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[102]
Ranade, A.A.; Joshi, D.A.; Phadke, G.K.; Patil, P.P.; Kasbekar, R.B.; Apte, T.G.; Dasare, R.R.; Mengde, S.D.; Parikh, P.M.; Bhattacharyya, G.S.; Lopes, G.L. Clinical and economic implications of the use of nanoparticle paclitaxel (Nanoxel) in India. Annals of Oncology., 2013, 24(5), v6-v12.
[http://dx.doi.org/10.1093/annonc/mdt322]
[103]
Harshita; Barkat, M.A.; Beg, S.; Pottoo, F.H.; Ahmad, F.J. Nanopaclitaxel therapy: an evidence based review on the battle for next-generation formulation challenges. Nanomedicine, 2019, 14(10), 1323-1341.
[http://dx.doi.org/10.2217/nnm-2018-0313] [PMID: 31124758]
[104]
Miguel, R.A.; Hirata, A.S.; Jimenez, P.C.; Lopes, L.B.; Costa-Lotufo, L.V. Beyond Formulation: Contributions of nanotechnology for translation of anticancer natural products into new drugs. Pharmaceutics, 2022, 14(8), 1722.
[http://dx.doi.org/10.3390/pharmaceutics14081722] [PMID: 36015347]
[105]
Kim, SB.; Zhang, Q.; Sun, T.; Seo, JH.; Lee, KS.; Kim, TY.; Tong, Z.; Park, KH.; Moon, YW.; Wang, S.; Li, W. A phase III trial to evaluate the efficacy and safety of DHP107 (Liporaxel, oral paclitaxel) compared to Taxol (IV paclitaxel) as first-line therapy in patients with recurrent or metastatic HER2 negative breast cancer (BC)(NCT03315364). J. Clinical Oncol., 2020, 38(Suppl. 15)
[106]
Chen, P.; Liu, Y.; Wen, Y.; Zhou, C. Non‐small cell lung cancer in China. Cancer Commun., 2022, 42(10), 937-970.
[http://dx.doi.org/10.1002/cac2.12359]
[107]
Jacob, J.N. Paclitaxel-carbohydrate conjugates: Design, synthesis and biological evaluations. United States patent US 6,218,367, 2001.
[108]
Straubinger, R.M.; Sharma, A.; Mayhew, E. Research Foundation of State University of New York, assignee.Taxol formulation. United States patent US 5,415,869,, 1995.
[109]
Ojima, I.; Lichtenthal, B.; Lee, S.; Wang, C.; Wang, X. Taxane anticancer agents: A patent perspective. Expert Opin. Ther. Pat., 2016, 26(1), 1-20.
[http://dx.doi.org/10.1517/13543776.2016.1111872] [PMID: 26651178]
[110]
Koya, K.; Sun, L.; Chen, S.; Tatsuta, N.; Wu, Y.; Ono, M. Paclitaxel enhancer compounds. United States patent US 9,107,955,, 2015.
[111]
Trissel, L.A. University of Texas System, assignee.Extended stability formulations for paclitaxel. United States patent US 5,681,846, 1997.
[112]
Miller, R.W.; Powell, R.G. Cephalomannine and its use in treating leukemic tumors. United States patent US 4,206,221, 1980.
[113]
Hirose, Y.; Kinoshita, A.; Ohsawa, A.; Aoki, Y.; Satou, Y.; Ishimoto, U.; Satou, N.; Mizuno, Y.; Koike, K.; Saruta, M. A case of advanced pancreatic cancer with oculomotor nerve palsy caused by herpes zoster after introduction of gemcitabine plus nab-paclitaxel. Nihon Shokakibyo Gakkai Zasshi, 2021, 118(1), 86-92.
[PMID: 33431754]
[114]
Bio, M.; Rahman, K.M.M.; Lim, I.; Rajaputra, P.; Hurst, R.E.; You, Y. Singlet oxygen-activatable Paclitaxel prodrugs via intermolecular activation for combined PDT and chemotherapy. Bioorg. Med. Chem. Lett., 2019, 29(12), 1537-1540.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.053] [PMID: 30987891]
[115]
Zang, X.; Lee, J.B.; Deshpande, K.; Garbuzenko, O.B.; Minko, T.; Kagan, L. Prevention of paclitaxel-induced neuropathy by formulation approach. J. Control. Release, 2019, 303, 109-116.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.013] [PMID: 30981814]
[116]
Zhang, C.; Li, C.; Wang, Y.; Xu, L.; He, X.; Zeng, Q.; Zeng, C.; Mai, F.; Hu, B.; Ouyang, D. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis, 2019, 24(3-4), 312-325.
[http://dx.doi.org/10.1007/s10495-019-01515-1] [PMID: 30710195]
[117]
Sharifi-Rad, J.; Quispe, C.; Patra, J.K.; Singh, Y.D.; Panda, M.K.; Das, G.; Adetunji, C.O.; Michael, O.S.; Sytar, O.; Polito, L.; Živković, J.; Cruz-Martins, N.; Klimek-Szczykutowicz, M.; Ekiert, H.; Choudhary, M.I.; Ayatollahi, S.A.; Tynybekov, B.; Kobarfard, F.; Muntean, A.C.; Grozea, I.; Daştan, S.D.; Butnariu, M.; Szopa, A.; Calina, D. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxid. Med. Cell. Longev., 2021, 2021, 1-24.
[http://dx.doi.org/10.1155/2021/3687700] [PMID: 34707776]
[118]
Hussain, S.; Anderson, D.N.; Salvatti, M.E.; Adamson, B.; McManus, M.; Braverman, A.S. Onycholysis as a complication of systemic chemotherapy. Cancer, 2000, 88(10), 2367-2371.
[http://dx.doi.org/10.1002/(SICI)1097-0142(20000515)88:102367:AID-CNCR223.0.CO;2-#] [PMID: 10820360]
[119]
Ashrafizadeh, M.; Zarrabi, A.; Hashemi, F.; Moghadam, E.R.; Hashemi, F.; Entezari, M.; Hushmandi, K.; Mohammadinejad, R.; Najafi, M. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sci., 2020, 256, 117984.
[http://dx.doi.org/10.1016/j.lfs.2020.117984] [PMID: 32593707]
[120]
Ashrafizadeh, M.; Ahmadi, Z.; Mohamadi, N.; Zarrabi, A.; Abasi, S.; Dehghannoudeh, G.; Tamaddondoust, R.N.; Khanbabaei, H.; Mohammadinejad, R.; Thakur, V.K. Chitosan-based advanced materials for docetaxel and paclitaxel delivery: Recent advances and future directions in cancer theranostics. Int. J. Biol. Macromol., 2020, 145, 282-300.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.145] [PMID: 31870872]
[121]
Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martínez, R.A.; Cánovas-Díaz, M.; de Diego Puente, T. A compressive review about taxol®: History and future challenges. Molecules, 2020, 25(24), 5986.
[http://dx.doi.org/10.3390/molecules25245986] [PMID: 33348838]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy