Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Synthesis of 4-Pyridinylquinolines via Sugasawa and Friedlander Reaction from 4-Cyanopyridine with Anilines and Ketones

Author(s): Chi Liu, Zhilin Yang, Jiangyu Ji, He Li, Lili Man, Runlai Li* and Zhenming Zhang*

Volume 20, Issue 8, 2023

Published on: 02 March, 2023

Page: [755 - 762] Pages: 8

DOI: 10.2174/1570178620666230214100138

Price: $65

Abstract

Firstly, 2-amino aromatic ketones were synthesized by o-acylation of p-substituted anilines with nitrile under Sugasawa conditions, and the yield was up to 90.1%. Then, 4-pyridinylquinoline derivatives were synthesized by Friedlander reaction with α-methylene ketones, and the yield was up to 81.9%. The structures of five 2-amino aromatic ketones and eighteen substituted quinolines were characterized by MS, 1H NMR, and 13C NMR. The structures were further confirmed by single crystal X-ray diffraction, which was consistent with the expected structures. Analyzing the crystal structure, it was found that compounds 4j and 4q crystallized in the monoclinic with the P21/n space group, respectively. Compounds 2c, 2d, 2e, and 4n crystallized in the triclinic with the P-1 space group, respectively. Of which compound 4n crystallized in the triclinic space group P-1 with two crystallographically independent but chemically equivalent molecules in the asymmetric unit. The two independent molecules were found to possess different orientations of the chlorine, methyl, pyridyl, and acetyl groups relative to the core (quinoline) two-ring system. This work provides a simple, straightforward synthetic protocol for preparing 4-pyridinylquinoline derivatives.

Keywords: Sugasawa reaction, anilines, Friedlander reaction, quinolines, ketones, crystal.

Graphical Abstract
[1]
Chung, P.Y.; Bian, Z.X.; Pun, H.Y.; Chan, D.; Chan, A.S.C.; Chui, C.H.; Tang, J.C.O.; Lam, K.H. Future Med. Chem., 2015, 7(7), 947-967.
[http://dx.doi.org/10.4155/fmc.15.34] [PMID: 26061110]
[2]
Eswaran, S.; Adhikari, A.V.; Shetty, N.S. Eur. J. Med. Chem., 2009, 44(11), 4637-4647.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.031] [PMID: 19647905]
[3]
Krishnakumar, V.; Khan, F.R.N.; Mandal, B.K.; Mitta, S.; Dhasamandha, R.; Govindan, V.N. Res. Chem. Intermed., 2012, 38(8), 1819-1826.
[http://dx.doi.org/10.1007/s11164-012-0505-1]
[4]
Roma, G.; Di Braccio, M.; Grossi, G.; Mattioli, F.; Ghia, M. Eur. J. Med. Chem., 2000, 35(11), 1021-1035.
[http://dx.doi.org/10.1016/S0223-5234(00)01175-2] [PMID: 11137230]
[5]
Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Eur. J. Med. Chem., 2010, 45(8), 3245-3264.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.011] [PMID: 20466465]
[6]
Biamonte, M.A.; Wanner, J.; Le Roch, K.G. Bioorg. Med. Chem. Lett., 2013, 23(10), 2829-2843.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.067] [PMID: 23587422]
[7]
Vandekerckhove, S.; D’hooghe, M. Bioorg. Med. Chem., 2015, 23(16), 5098-5119.
[http://dx.doi.org/10.1016/j.bmc.2014.12.018] [PMID: 25593097]
[8]
Gopalsamy, A.; Pallai, P.V. Tetrahedron Lett., 1997, 38(6), 907-910.
[http://dx.doi.org/10.1016/S0040-4039(96)02456-2] [http://dx.doi.org/10.1016/S0040-4039(96)02456-2]
[9]
Myers, A.G.; Tom, N.J.; Fraley, M.E.; Cohen, S.B.; Madar, D.J. J. Am. Chem. Soc., 1997, 119(26), 6072-6094.
[http://dx.doi.org/10.1021/ja9703741]
[10]
Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A. Carreiras, Mdo. C.; Soriano, E. Chem. Rev., 2009, 109(6), 2652-2671.
[http://dx.doi.org/10.1021/cr800482c] [PMID: 19361199]
[11]
Muchowski, J.M.; Maddox, M.L. Can. J. Chem., 2004, 82(3), 461-478.
[http://dx.doi.org/10.1139/v03-211]
[12]
Li, B.; Guo, C.; Fan, X.; Zhang, J.; Zhang, X. Tetrahedron Lett., 2014, 55(43), 5944-5948.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.024]
[13]
Yadav, J.S.; Purushothama Rao, P.; Sreenu, D.; Rao, R.S.; Naveen Kumar, V.; Nagaiah, K.; Prasad, A.R. Tetrahedron Lett., 2005, 46(42), 7249-7253.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.042]
[14]
Arumugam, P.; Karthikeyan, G.; Atchudan, R.; Muralidharan, D.; Perumal, P.T. Chem. Lett., 2005, 34(3), 314-315.
[http://dx.doi.org/10.1246/cl.2005.314]
[15]
Yadav, J.S.; Reddy, B.V.; Sreedhar, P.; Rao, R.S.; Nagaiah, K. Synthesis, 2004, 2004(14), 2381-2385.
[http://dx.doi.org/10.1055/s-2004-831185]
[16]
Maguire, M.P.; Sheets, K.R.; McVety, K.; Spada, A.P.; Zilberstein, A. J. Med. Chem., 1994, 37(14), 2129-2137.
[PMID: 8035419]
[17]
Basha, A.; Ahmed, S.S.; Farooqui, T.A. Tetrahedron Lett., 1976, 17(36), 3217-3220.
[http://dx.doi.org/10.1016/S0040-4039(00)93884-X]
[18]
Chen, D.; Wang, X.; Wang, R.; Zhan, Y.; Peng, X.; Xia, T.; Zhang, Z.; Li, R.; Li, S. Lett. Org. Chem., 2020, 17(3), 211-215.
[http://dx.doi.org/10.2174/1570178616666190618091617]
[19]
Earley, J.V.; Gilman, N.W. Synth. Commun., 1985, 15(14), 1271-1276.
[http://dx.doi.org/10.1080/00397918508077275]
[20]
Prasad, K.; Lee, G.T.; Chaudhary, A.; Girgis, M.J.; Streemke, J.W.; Repič, O. Org. Process Res. Dev., 2003, 7(5), 723-732.
[http://dx.doi.org/10.1021/op0340659]
[21]
Dey, D.; De, A.; Pal, S.; Mitra, P.; Ranjani, A.; Gayathri, L.; Chandraleka, S.; Dhanasekaran, D.; Akbarsha, M.A.; Kole, N.; Biswas, B. Indian J. Chem., 2015, 54A(2), 170-178.
[22]
Dahal, U.P.; Joswig-Jones, C.; Jones, J.P. J. Med. Chem., 2012, 55(1), 280-290.
[http://dx.doi.org/10.1021/jm201207h] [PMID: 22087535]
[23]
Harris, C.M.; Kokot, S.; Patil, H.R.H.; Sinn, E.; Wong, H. Aust. J. Chem., 1972, 25(8), 1631.
[http://dx.doi.org/10.1071/CH9721631]
[24]
Zhuo, S.; Wu, W.; Liu, Y.; Zou, L.; Wu, Y.; Botha, L.; Kumar, A.; Afzal, M.; Alarifi, A. J. Mol. Struct., 2022, 1264, 133304.
[http://dx.doi.org/10.1016/j.molstruc.2022.133304]
[25]
Jiang, P.; Zhao, D.D.; Yang, X.L.; Zhu, X.L.; Chang, J.; Zhu, H.J. Org. Biomol. Chem., 2012, 10(24), 4704-4711.
[http://dx.doi.org/10.1039/c2ob25120e] [PMID: 22572762]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy