Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

4-Nerolidylcatechol (4-NC) and Docetaxel Synergize in Controlling Androgen- independent Prostate Cancer Cells

Author(s): Gabriela da Silva Guimarães, Antonielle Oliveira Cordeiro, Matheus Coutinho Gazolla, Lara Vecchi, Mariana Alves Pereira Zoia, Fernanda Van Petten de Vasconcelos Azevedo, Igor Moreira Campos, Danilo de Souza Costa, Sara Teixeira Soares Mota, Matheus Alves Ribeiro, Luiz Ricardo Goulart, Ademar Alves da Silva Filho and Thaise Gonçalves Araújo*

Volume 23, Issue 11, 2023

Published on: 01 March, 2023

Page: [943 - 955] Pages: 13

DOI: 10.2174/1568026623666230207095253

Price: $65

conference banner
Abstract

Background: Effective cancer treatment still challenges medicine since the strategies employed so far are not sufficiently safe and capable of specifically eliminating tumor cells. Prostate cancer (PCa) is a highly incident malignant neoplasm, and the outcome of patients, especially those with advanced castration-resistant PCa (CRPC), depends directly on the efficacy of the therapeutic agents, such as docetaxel (DOC).

Objectives: This study investigated the synergistic potentiation of 4-nerolidylcatechol (4-NC) with DOC in inhibiting androgen-independent PCa cells.

Methods: The cytotoxic effect of 4-NC was evaluated against non-tumorigenic (RWPE-01) and PCa cell lines (LNCaP and PC-3), and the antiproliferative potential of 4-NC was assessed by flow cytometry and colony formation. The Chou-Talalay method was applied to detect the synergistic effect of 4-NC and DOC, and the mechanism of anticancer activities of this combination was investigated by analyzing players in epithelial-mesenchymal transition (EMT).

Results: 4-NC significantly reduced the viability of PC-3 cells in a dose-dependent manner, decreasing colony formation and proliferation. The combination of 4-NC and DOC was synergistic in the androgen-independent cells and allowed the reduction of DOC concentration, with increased cytotoxicity and induction of apoptosis when compared to compounds alone. Furthermore, when 4- NC was co-administered with DOC, higher expression levels of proteins associated with the epithelial phenotype were observed, controlling EMT in PC-3 cells.

Conclusion: Collectively, these data demonstrated, for the first time, that the combination of 4-NC with reduced doses of DOC could be especially valuable in the suppression of oncogenic mechanisms of androgen-independent PCa cells.

Keywords: Androgen-independent prostate cancer, Chemotherapy, Epithelial-mesenchymal transition, Natural products, Synergistic, Tumor cell.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Kissel, M.; Créhange, G.; Graff, P. Stereotactic radiation therapy versus brachytherapy: relative strengths of two highly efficient options for the treatment of localized prostate cancer. Cancers (Basel), 2022, 14(9), 2226.
[http://dx.doi.org/10.3390/cancers14092226] [PMID: 35565355]
[3]
Vernooij, R.W.M.; Lancee, M.; Cleves, A.; Dahm, P.; Bangma, C.H.; Aben, K.K.H. Radical prostatectomy versus deferred treatment for localised prostate cancer. Cochrane Libr., 2020, 2020(6), CD006590.
[http://dx.doi.org/10.1002/14651858.CD006590.pub3] [PMID: 32495338]
[4]
Gamat, M.; McNeel, D.G. Androgen deprivation and immunotherapy for the treatment of prostate cancer. Endocr. Relat. Cancer, 2017, 24(12), T297-T310.
[http://dx.doi.org/10.1530/ERC-17-0145] [PMID: 28814451]
[5]
Litwin, M.S.; Tan, H.J. The diagnosis and treatment of prostate cancer. JAMA, 2017, 317(24), 2532-2542.
[http://dx.doi.org/10.1001/jama.2017.7248] [PMID: 28655021]
[6]
Schiewer, M.J.; Knudsen, K.E. DNA damage response in prostate cancer. Cold Spring Harb. Perspect. Med., 2019, 9(1), a030486.
[http://dx.doi.org/10.1101/cshperspect.a030486] [PMID: 29530944]
[7]
Choi, E.; Buie, J.D.; Camacho, J.; Sharma, P.; de Riese, W.T.W. Evolution of Androgen Deprivation Therapy (ADT) and its new emerging modalities in prostate cancer: An update for practicing urologists, clinicians and medical providers. Res. Rep. Urol., 2022, 14, 87-108.
[http://dx.doi.org/10.2147/RRU.S303215] [PMID: 35386270]
[8]
Davies, A.H.; Beltran, H.; Zoubeidi, A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol., 2018, 15(5), 271-286.
[http://dx.doi.org/10.1038/nrurol.2018.22] [PMID: 29460922]
[9]
Barbieri, C.E.; Bangma, C.H.; Bjartell, A.; Catto, J.W.F.; Culig, Z.; Grönberg, H.; Luo, J.; Visakorpi, T.; Rubin, M.A. The mutational landscape of prostate cancer. Eur. Urol., 2013, 64(4), 567-576.
[http://dx.doi.org/10.1016/j.eururo.2013.05.029] [PMID: 23759327]
[10]
Makino, T.; Izumi, K.; Mizokami, A. Undesirable status of prostate cancer cells after intensive inhibition of AR signaling: Post-AR Era of CRPC treatment. Biomedicines, 2021, 9, 414.
[http://dx.doi.org/10.3390/biomedicines9040414]
[11]
Lombard, A.P.; Liu, L.; Cucchiara, V.; Liu, C.; Armstrong, C.M.; Zhao, R.; Yang, J.C.; Lou, W.; Evans, C.P.; Gao, A.C. Intra versus inter cross-resistance determines treatment sequence between taxane and ar-targeting therapies in advanced prostate cancer. Mol. Cancer Ther., 2018, 17(10), 2197-2205.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1269] [PMID: 29891490]
[12]
Quinn, D.I.; Sandler, H.M.; Horvath, L.G.; Goldkorn, A.; Eastham, J.A. The evolution of chemotherapy for the treatment of prostate cancer. Ann. Oncol., 2017, 28(11), 2658-2669.
[http://dx.doi.org/10.1093/annonc/mdx348] [PMID: 29045523]
[13]
Sumanasuriya, S.; De Bono, J. Treatment of advanced prostate cancer-a review of current therapies and future promise. Cold Spring Harb. Perspect. Med., 2018, 8(6), a030635.
[http://dx.doi.org/10.1101/cshperspect.a030635] [PMID: 29101113]
[14]
Conteduca, V.; Gurioli, G.; Brighi, N.; Lolli, C.; Schepisi, G.; Casadei, C. Plasma androgen receptor in prostate cancer. Cancers, 2019, 11(11), 1719.
[http://dx.doi.org/10.3390/cancers11111719]
[15]
Varnai, R.; Koskinen, L.M.; Mäntylä, L.E.; Szabo, I.; FitzGerald, L.M.; Sipeky, C. Pharmacogenomic biomarkers in docetaxel treatment of prostate cancer: From discovery to implementation. Genes (Basel), 2019, 10(8), 599.
[http://dx.doi.org/10.3390/genes10080599] [PMID: 31398933]
[16]
Rice, M.A.; Malhotra, S.V.; Stoyanova, T. Second-generation antiandrogens: From discovery to standard of care in castration resistant prostate cancer. Front. Neurol., 2019, 10, 801.
[http://dx.doi.org/10.3389/FONC.2019.00801/BIBTEX]
[17]
Contreras, H.R.; Orellana-Serradell, O.; Herrera, D.; Castellón, E.A. The transcription factor ZEB1 promotes chemoresistance in prostate cancer cell lines. Asian J. Androl., 2019, 21(5), 460-467.
[http://dx.doi.org/10.4103/aja.aja_1_19] [PMID: 30880686]
[18]
Crawford, E.D.; Schellhammer, P.F.; McLeod, D.G.; Moul, J.W.; Higano, C.S.; Shore, N.; Denis, L.; Iversen, P.; Eisenberger, M.A.; Labrie, F. Androgen receptor targeted treatments of prostate cancer: 35 years of progress with antiandrogens. J. Urol., 2018, 200(5), 956-966.
[http://dx.doi.org/10.1016/j.juro.2018.04.083] [PMID: 29730201]
[19]
Shafi, A.A.; Yen, A.E.; Weigel, N.L. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol. Ther., 2013, 140(3), 223-238.
[http://dx.doi.org/10.1016/j.pharmthera.2013.07.003] [PMID: 23859952]
[20]
Chou, T.C. Preclinical versus clinical drug combination studies. Leuk. Lymphoma, 2008, 49(11), 2059-2080.
[http://dx.doi.org/10.1080/10428190802353591] [PMID: 19021049]
[21]
Ashton, J.C. Drug combination studies and their synergy quantification using the Chou-Talalay method--letter. Cancer Res., 2015, 75(11), 2400.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3763] [PMID: 25977339]
[22]
Trendowski, M. Recent advances in the development of antineoplastic agents derived from natural products. Drugs, 2015, 75, 1993-2016.
[http://dx.doi.org/10.1007/s40265-015-0489-4]
[23]
Mapoung, S.; Suzuki, S.; Fuji, S.; Naiki-Ito, A.; Kato, H.; Yodkeeree, S.; Ovatlarnporn, C.; Takahashi, S.; Limtrakul Dejkriengkraikul, P. Cyclohexanone curcumin analogs inhibit the progression of castration-resistant prostate cancer in vitro and in vivo. Cancer Sci., 2019, 110(2), 596-607.
[http://dx.doi.org/10.1111/cas.13897] [PMID: 30499149]
[24]
Wilson, B.A.P.; Thornburg, C.C.; Henrich, C.J.; Grkovic, T.; O’Keefe, B.R. Creating and screening natural product libraries. Nat. Prod. Rep., 2020, 37(7), 893-918.
[http://dx.doi.org/10.1039/C9NP00068B] [PMID: 32186299]
[25]
Wang, K.; Liu, W.; Xu, Q.; Gu, C.; Hu, D. Tenacissoside G synergistically potentiates inhibitory effects of 5-fluorouracil to human colorectal cancer. Phytomedicine, 2021, 86, 153553.
[http://dx.doi.org/10.1016/j.phymed.2021.153553] [PMID: 33906076]
[26]
Iksen, P.S.; Pothongsrisit, S.; Pongrakhananon, V. Targeting the PI3K/AKT/mTOR signaling pathway in lung cancer: an update regarding potential drugs and natural products. Molecules, 2021, 26(13), 4100.
[http://dx.doi.org/10.3390/molecules26134100] [PMID: 34279440]
[27]
Cortez, A.P.; de Ávila, R.I.; da Cunha, C.R.M.; Santos, A.P.; Menegatti, R.; Rezende, K.R.; Valadares, M.C. 4-Nerolidylcatechol analogues as promising anticancer agents. Eur. J. Pharmacol., 2015, 765, 517-524.
[http://dx.doi.org/10.1016/j.ejphar.2015.08.024] [PMID: 26297972]
[28]
Valadares, M.C.; Rezende, K.R.; Pereira, E.R.T.; Sousa, M.C.; Gonçalves, B.; de Assis, J.C.; Kato, M.J. Protective effects of 4-nerolidylcatechol against genotoxicity induced by cyclophosphamide. Food Chem. Toxicol., 2007, 45(10), 1975-1978.
[http://dx.doi.org/10.1016/j.fct.2007.04.016] [PMID: 17574317]
[29]
Garcia, L.F.R.; França, S.C.; Sponchiado, E.C.; Pereira, J.V.; Marques, A.A.F. In vitro assessment of antimicrobial activity of Pothomorphe umbellata extracts against Enterococcus faecalis. Indian J. Dent. Res., 2014, 25(1), 64-68.
[http://dx.doi.org/10.4103/0970-9290.131129] [PMID: 24748302]
[30]
Lopes, A.P.; Bagatela, B.S.; Rosa, P.C.P.; Nanayakkara, D.N.P.; Carlos Tavares Carvalho, J.; Maistro, E.L.; Bastos, J.K.; Perazzo, F.F. Antioxidant and cytotoxic effects of crude extract, fractions and 4-nerolidylcathecol from aerial parts of Pothomorphe umbellata L. (Piperaceae). BioMed Res. Int., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/206581] [PMID: 23509690]
[31]
Sacoman, J.L.; Monteiro, K.M.; Possenti, A.; Figueira, G.M.; Foglio, M.A.; Carvalho, J.E. Cytotoxicity and antitumoral activity of dichloromethane extract and its fractions from Pothomorphe umbellata. Braz. J. Med. Biol. Res., 2008, 41(5), 411-415.
[http://dx.doi.org/10.1590/S0100-879X2008000500010] [PMID: 18545814]
[32]
Benfica, P.L.; Ávila, R.I.; Rodrigues, B.S.; Cortez, A.P.; Batista, A.C.; Gaeti, M.P.N.; Lima, E.M.; Rezende, K.R.; Valadares, M.C. 4-Nerolidylcatechol: apoptosis by mitochondrial mechanisms with reduction in cyclin D1 at G0/G1 stage of the chronic myelogenous K562 cell line. Pharm. Biol., 2017, 55(1), 1899-1908.
[http://dx.doi.org/10.1080/13880209.2017.1311351] [PMID: 28644062]
[33]
Brohem, C.A.; Sawada, T.C.H.; Massaro, R.R.; Almeida, R.L.; Rivelli, D.P.; Ropke, C.D.; da Silva, V.V.; de Lima, T.M.; Curi, R.; Barros, S.B.M.; Maria-Engler, S.S. Apoptosis induction by 4-nerolidylcatechol in melanoma cell lines. Toxicol. In Vitro, 2009, 23(1), 111-119.
[http://dx.doi.org/10.1016/j.tiv.2008.11.004] [PMID: 19059332]
[34]
Alves-Fernandes, D.K.; Oliveira, É.A.; Faião-Flores, F.; Alicea-Rebecca, G.; Weeraratna, A.T.; Smalley, K.S.M.; Barros, S.B.M.; Maria-Engler, S.S. ER stress promotes antitumor effects in BRAFi/MEKi resistant human melanoma induced by natural compound 4-nerolidylcathecol (4-NC). Pharmacol. Res., 2019, 141, 63-72.
[http://dx.doi.org/10.1016/j.phrs.2018.12.006] [PMID: 30550954]
[35]
Dashek, W.V. Methods in plant biochemistry and molecular biology, 1st ed; CRC Press: Boca Raton, 1997.
[http://dx.doi.org/10.1201/9781351074483]
[36]
Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1947] [PMID: 20068163]
[37]
Mota, S.T.S.; Vecchi, L.; Alves, D.A.; Cordeiro, A.O.; Guimarães, G.S.; Campos-Fernández, E.; Maia, Y.C.P.; Dornelas, B.C.; Bezerra, S.M.; de Andrade, V.P.; Goulart, L.R.; Araújo, T.G. Annexin A1 promotes the nuclear localization of the epidermal growth factor receptor in castration-resistant prostate cancer. Int. J. Biochem. Cell Biol., 2020, 127, 105838.
[http://dx.doi.org/10.1016/j.biocel.2020.105838] [PMID: 32858191]
[38]
Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev., 2006, 58(3), 621-681.
[http://dx.doi.org/10.1124/pr.58.3.10] [PMID: 16968952]
[39]
Kijjoa, A.; Giesbrecht, A.; Akisue, M.; Gottlieb, O.; Gottlieb, H. Kijjoa A.E.A. 4-Nerodyl-cathechol from Pothomorphe umbellata. Planta Med., 1980, 39(5), 85-87.
[http://dx.doi.org/10.1055/s-2008-1074908]
[40]
Caesar, L.K.; Cech, N.B.; Kubanek, J.; Linington, R.; Luesch, H. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat. Prod. Rep., 2019, 36(6), 869-888.
[http://dx.doi.org/10.1039/C9NP00011A] [PMID: 31187844]
[41]
Chandrasekar, T.; Yang, J.C.; Gao, A.C.; Evans, C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol., 2015, 4(3), 365-380.
[http://dx.doi.org/10.3978/J.ISSN.2223-4683.2015.05.02] [PMID: 26814148]
[42]
Liu, C.H.; Tang, W.C.; Sia, P.; Huang, C.C.; Yang, P.M.; Wu, M.H.; Lai, I.L.; Lee, K.H. Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. Int. J. Med. Sci., 2015, 12(1), 63-71.
[http://dx.doi.org/10.7150/ijms.9982] [PMID: 25552920]
[43]
Beutler, J.A. Natural products as a foundation for drug discovery. Curr. Protocols Pharmacol., 2019, 86(1), e67.
[http://dx.doi.org/10.1002/cpph.67] [PMID: 31539923]
[44]
Li, J.W.H.; Vederas, J.C. Drug discovery and natural products: end of an era or an endless frontier? Science, 2009, 325(5937), 161-165.
[http://dx.doi.org/10.1126/science.1168243] [PMID: 19589993]
[45]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[46]
Buenz, E.J.; Verpoorte, R.; Bauer, B.A. The Ethnopharmacologic Contribution to Bioprospecting Natural Products. Annu. Rev. Pharmacol. Toxicol., 2018, 58, 509-530.
[http://dx.doi.org/10.1146/annurev-pharmtox-010617-052703]
[47]
Saeidnia, S.; Gohari, A.R.; Manayi, A. Reverse pharmacognosy and reverse pharmacology; two closely related approaches for drug discovery development. Curr. Pharm. Biotechnol., 2016, 17(11), 1016-1022.
[http://dx.doi.org/10.2174/1389201017666160709200208] [PMID: 27396403]
[48]
Chen, Y.; de Bruyn Kops, C.; Kirchmair, J. Data resources for the computer-guided discovery of bioactive natural products. J. Chem. Inf. Model., 2017, 57(9), 2099-2111.
[http://dx.doi.org/10.1021/acs.jcim.7b00341] [PMID: 28853576]
[49]
da Silva, V.V.; Ropke, C.D.; Miranda, D.V.; de Almeida, R.L.; Sawada, T.C.H.; Rivelli, D.P. Photoprotective effect of Pothomorphe umbellata on UVB radiation-induced biomarkers involved in carcinogenesis of hairless mouse epidermis. Cutan. Ocul. Toxicol., 2009, 28(2), 54-60.
[http://dx.doi.org/10.1080/15569520902784014]
[50]
Hii, L.W.; Lim, S.H.E.; Leong, C.O.; Chin, S.Y.; Tan, N.P.; Lai, K.S.; Mai, C.W. The synergism of Clinacanthus nutans Lindau extracts with gemcitabine: downregulation of anti-apoptotic markers in squamous pancreatic ductal adenocarcinoma. BMC Complement. Altern. Med., 2019, 19(1), 257.
[http://dx.doi.org/10.1186/s12906-019-2663-9] [PMID: 31521140]
[51]
Duarte, D.; Vale, N. Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr. Res. Pharmacol. Drug Discov., 2022, 3, 100110.
[http://dx.doi.org/10.1016/j.crphar.2022.100110] [PMID: 35620200]
[52]
Papatsoris, A.G.; Karamouzis, M.V.; Papavassiliou, A.G. Novel insights into the implication of the IGF-1 network in prostate cancer. Trends Mol. Med., 2005, 11(2), 52-55.
[http://dx.doi.org/10.1016/j.molmed.2004.12.005] [PMID: 15694866]
[53]
Siech, C.; Rutz, J.; Maxeiner, S.; Grein, T.; Sonnenburg, M.; Tsaur, I.; Chun, F.K.H.; Blaheta, R.A. Insulin-like growth factor-1 influences prostate cancer cell growth and invasion through an integrin α3, α5, αv, and β1 dependent mechanism. Cancers (Basel), 2022, 14(2), 363.
[http://dx.doi.org/10.3390/cancers14020363] [PMID: 35053528]
[54]
Goldin, A.; Mantel, N. The employment of combinations of drugs in the chemotherapy of neoplasia: a review. Cancer Res., 1957, 17(7), 635-654.
[PMID: 13460966]
[55]
Baker, J.; Ajani, J.; Scotté, F.; Winther, D.; Martin, M.; Aapro, M.S.; von Minckwitz, G. Docetaxel-related side effects and their management. Eur. J. Oncol. Nurs., 2009, 13(1), 49-59.
[http://dx.doi.org/10.1016/j.ejon.2008.10.003] [PMID: 19201649]
[56]
Hamdan, D.; Leboeuf, C.; Le Foll, C.; Bousquet, G.; Janin, A. Re‐exploring immune‐related side effects of docetaxel in an observational study: Blood hypereosinophilia. Cancer Med., 2019, 8(5), 2005-2012.
[http://dx.doi.org/10.1002/cam4.2062] [PMID: 30854809]
[57]
Galsky, M.D.; Vogelzang, N.J. Docetaxel-based combination therapy for castration-resistant prostate cancer. Ann. Oncol., 2010, 21(11), 2135-2144.
[http://dx.doi.org/10.1093/annonc/mdq050] [PMID: 20351071]
[58]
Rushworth, L.K.; Hewit, K.; Munnings-Tomes, S.; Somani, S.; James, D.; Shanks, E.; Dufès, C.; Straube, A.; Patel, R.; Leung, H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer, 2020, 122(4), 517-527.
[http://dx.doi.org/10.1038/s41416-019-0681-5] [PMID: 31844184]
[59]
Lu, X.; Yang, F.; Chen, D.; Zhao, Q.; Chen, D.; Ping, H.; Xing, N. Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. Int. J. Biol. Sci., 2020, 16(7), 1121-1134.
[http://dx.doi.org/10.7150/ijbs.41686] [PMID: 32174789]
[60]
Lin, A.M.; Rini, B.I.; Derynck, M.K.; Weinberg, V.; Park, M.; Ryan, C.J.; Rosenberg, J.E.; Bubley, G.; Small, E.J. A phase I trial of docetaxel/estramustine/imatinib in patients with hormone-refractory prostate cancer. Clin. Genitourin. Cancer, 2007, 5(5), 323-328.
[http://dx.doi.org/10.3816/CGC.2007.n.011] [PMID: 17645829]
[61]
Mathema, V.B.; Koh, Y.S.; Thakuri, B.C.; Sillanpää, M. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation, 2012, 35(2), 560-565.
[http://dx.doi.org/10.1007/s10753-011-9346-0] [PMID: 21603970]
[62]
Di Lorenzo, G.; Figg, W.D.; Fossa, S.D.; Mirone, V.; Autorino, R.; Longo, N.; Imbimbo, C.; Perdonà, S.; Giordano, A.; Giuliano, M.; Labianca, R.; De Placido, S. Combination of bevacizumab and docetaxel in docetaxel-pretreated hormone-refractory prostate cancer: a phase 2 study. Eur. Urol., 2008, 54(5), 1089-1096.
[http://dx.doi.org/10.1016/j.eururo.2008.01.082] [PMID: 18276061]
[63]
Picus, J.; Halabi, S.; Kelly, W.K.; Vogelzang, N.J.; Whang, Y.E.; Kaplan, E.B.; Stadler, W.M.; Small, E.J. A phase 2 study of estramustine, docetaxel, and bevacizumab in men with castrate-resistant prostate cancer. Cancer, 2011, 117(3), 526-533.
[http://dx.doi.org/10.1002/cncr.25421] [PMID: 20862750]
[64]
Chi, K.N.; Hotte, S.J.; Yu, E.; Tu, D.; Eigl, B.; Tannock, I.; Saad, F.; North, S.; Powers, J.; Eisenhauer, E. Mature results of a randomized phase II study of OGX-011 in combination with docetaxel/prednisone versus docetaxel/prednisone in patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol., 2009, 27(15)(Suppl.), 5012-5012.
[http://dx.doi.org/10.1200/jco.2009.27.15_suppl.5012]
[65]
Liu, G.; Kelly, W.K.; Wilding, G.; Leopold, L.; Brill, K.; Somer, B. An open-label, multicenter, phase I/II study of single-agent AT-101 in men with castrate-resistant prostate cancer. Clin. Cancer Res., 2009, 15(9), 3172-3176.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2985] [PMID: 19366825]
[66]
Banerjee, P.; Chatterjee, M. Antiproliferative role of vitamin D and its analogs--a brief overview. Mol. Cell. Biochem., 2003, 253(1/2), 247-254.
[http://dx.doi.org/10.1023/A:1026072118217] [PMID: 14619976]
[67]
Sánchez, B.G.; Bort, A.; Mateos-Gómez, P.A.; Rodríguez-Henche, N.; Díaz-Laviada, I. Combination of the natural product capsaicin and docetaxel synergistically kills human prostate cancer cells through the metabolic regulator AMP-activated kinase. Cancer Cell Int., 2019, 19(1), 54.
[http://dx.doi.org/10.1186/s12935-019-0769-2] [PMID: 30899201]
[68]
Mahammedi, H.; Planchat, E.; Pouget, M.; Durando, X.; Curé, H.; Guy, L.; Van-Praagh, I.; Savareux, L.; Atger, M.; Bayet-Robert, M.; Gadea, E.; Abrial, C.; Thivat, E.; Chollet, P.; Eymard, J.C. The new combination docetaxel, prednisone and curcumin in patients with castration-resistant prostate cancer: A pilot phase II study. Oncology, 2016, 90(2), 69-78.
[http://dx.doi.org/10.1159/000441148] [PMID: 26771576]
[69]
Bhalla, K.N. Microtubule-targeted anticancer agents and apoptosis. Oncogene, 2003, 22(56), 9075-9086.
[http://dx.doi.org/10.1038/sj.onc.1207233] [PMID: 14663486]
[70]
Ogura, T.; Tanaka, Y.; Tamaki, H.; Harada, M. Docetaxel induces Bcl-2- and pro-apoptotic caspase-independent death of human prostate cancer DU145 cells. Int. J. Oncol., 2016, 48(6), 2330-2338.
[http://dx.doi.org/10.3892/ijo.2016.3482] [PMID: 27082738]
[71]
Mikuła-Pietrasik, J.; Witucka, A.; Pakuła, M.; Uruski, P.; Begier-Krasińska, B.; Niklas, A.; Tykarski, A.; Książek, K. Comprehensive review on how platinum- and taxane-based chemotherapy of ovarian cancer affects biology of normal cells. Cell. Mol. Life Sci., 2019, 76(4), 681-697.
[http://dx.doi.org/10.1007/s00018-018-2954-1] [PMID: 30382284]
[72]
Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[73]
Dong, Y.; Bai, S.; Zhang, B.Y. Impact of taxanes on androgen receptor signaling. Asian J. Androl., 2019, 21(3), 249-252.
[http://dx.doi.org/10.4103/aja.aja_37_18] [PMID: 29900882]
[74]
Martin, S.K.; Kyprianou, N. Exploitation of the androgen receptor to overcome taxane resistance in advanced prostate cancer. Adv. Cancer Res., 2015, 127, 123-158.
[http://dx.doi.org/10.1016/bs.acr.2015.03.001] [PMID: 26093899]
[75]
Elwakeel, A.; Soudan, H.; Eldoksh, A.; Shalaby, M.; Eldemellawy, M.; Ghareeb, D.; Abouseif, M.; Fayad, A.; Hassan, M.; Saeed, H. Implementation of the Chou-Talalay method for studying the in vitro pharmacodynamic interactions of binary and ternary drug combinations on MDA-MB-231 triple negative breast cancer cells. Synergy, 2019, 8, 100047.
[http://dx.doi.org/10.1016/j.synres.2019.100047]
[76]
Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 69-84.
[http://dx.doi.org/10.1038/s41580-018-0080-4] [PMID: 30459476]
[77]
Dalla Pozza, E.; Forciniti, S.; Palmieri, M.; Dando, I. Secreted molecules inducing epithelial-to-mesenchymal transition in cancer development. Semin. Cell Dev. Biol., 2018, 78, 62-72.
[http://dx.doi.org/10.1016/j.semcdb.2017.06.027] [PMID: 28673679]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy