Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Flavonoids-mediated TLR4 Inhibition as a Promising Therapy for Renal Diseases

Author(s): Ayman M. Mahmoud*, Ahmed M. Sayed, Ahmed F. Ahmeda, Esraa K. Abd-Alhameed, Shimaa H. Salem, Reem S. Alruhaimi, Ali Shukur and Emad H.M. Hassanein

Volume 26, Issue 12, 2023

Published on: 16 February, 2023

Page: [2124 - 2148] Pages: 25

DOI: 10.2174/1386207326666230116124532

Price: $65

Abstract

Toll-like receptors (TLRs) control both innate and adaptive immunity with a wide expression on renal epithelial cells and leukocytes. Activation of TLRs results in the production of cytokines, chemokines and interferons along with activation of the transcription factor NF-κB, resulting in inflammatory perturbations. TLR4 signaling pathway is the most extensively studied of TLRs. TLR4 is expressed on renal microvascular endothelial and tubular epithelial cells. So, targeting TLR4 modulation could be a therapeutic approach to attenuate kidney diseases that are underlined by inflammatory cascade. Medicinal plants with anti-inflammatory activities display valuable effects and are employed as alternative sources to alleviate renal disease linked with inflammation. Flavonoids and other phytochemicals derived from traditional medicines possess promising pharmacological activities owing to their relatively cheap and high safety profile. Our review focuses on the potent anti-inflammatory activities of twenty phytochemicals to verify if their potential promising renoprotective effects are related to suppression of TLR4 signaling in different renal diseases, including sepsis-induced acute kidney injury, renal fibrosis, chemotherapy-induced nephrotoxicity, diabetic nephropathy and renal ischemia/reperfusion injury. Additionally, molecular docking simulations were employed to explore the potential binding affinity of these phytochemicals to TLR4 as a strategy to attenuate renal diseases associated with activated TLR4 signaling.

Keywords: Renal diseases, flavonoids, TLR4, inflammation, phytochemicals, molecular docking.

Graphical Abstract
[1]
Klahr, S.; Schreiner, G.; Ichikawa, I. The progression of renal disease. 1988, 318(25), 1657-1666.
[2]
Imig, J.D.; Ryan, M.J. Immune and inflammatory role in renal disease. Compr. Physiol., 2013, 3(2), 957-976.
[http://dx.doi.org/10.1002/cphy.c120028] [PMID: 23720336]
[3]
Kurts, C.; Panzer, U.; Anders, H.J.; Rees, A.J. The immune system and kidney disease: basic concepts and clinical implications. Nat. Rev. Immunol., 2013, 13(10), 738-753.
[http://dx.doi.org/10.1038/nri3523] [PMID: 24037418]
[4]
Akira, S. Toll-like receptors: lessons from knockout mice. Biochem. Soc. Trans., 2000, 28(5), 551-556.
[http://dx.doi.org/10.1042/bst0280551] [PMID: 11044373]
[5]
Akira, S.; Takeda, K. Functions of Toll-like receptors: lessons from KO mice. C. R. Biol., 2004, 327(6), 581-589.
[http://dx.doi.org/10.1016/j.crvi.2004.04.002] [PMID: 15330257]
[6]
West, A.P.; Koblansky, A.A.; Ghosh, S. Recognition and signaling by toll-like receptors. Annu. Rev. Cell Dev. Biol., 2006, 22(1), 409-437.
[http://dx.doi.org/10.1146/annurev.cellbio.21.122303.115827] [PMID: 16822173]
[7]
Anders, H.J.; Banas, B.; Schlöndorff, D. Signaling danger: toll-like receptors and their potential roles in kidney disease. J. Am. Soc. Nephrol., 2004, 15(4), 854-867.
[http://dx.doi.org/10.1097/01.ASN.0000121781.89599.16] [PMID: 15034087]
[8]
Hoshino, K.; Takeuchi, O.; Kawai, T.; Sanjo, H.; Ogawa, T.; Takeda, Y.; Takeda, K.; Akira, S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. (Baltimore, Md.: 1950), 1999, 162(7), 3749-3752.
[9]
Poltorak, A.; He, X.; Smirnova, I.; Liu, M.Y.; Huffel, C.V.; Du, X.; Birdwell, D.; Alejos, E.; Silva, M.; Galanos, C.; Freudenberg, M.; Ricciardi-Castagnoli, P.; Layton, B.; Beutler, B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 1998, 282(5396), 2085-2088.
[http://dx.doi.org/10.1126/science.282.5396.2085] [PMID: 9851930]
[10]
El-Achkar, T.M.; Huang, X.; Plotkin, Z.; Sandoval, R.M.; Rhodes, G.J.; Dagher, P.C. Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am. J. Physiol. Renal Physiol., 2006, 290(5), F1034-F1043.
[http://dx.doi.org/10.1152/ajprenal.00414.2005] [PMID: 16332927]
[11]
Wu, H.; Chen, G.; Wyburn, K.R.; Yin, J.; Bertolino, P.; Eris, J.M.; Alexander, S.I.; Sharland, A.F.; Chadban, S.J. TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Invest., 2007, 117(10), 2847-2859.
[http://dx.doi.org/10.1172/JCI31008] [PMID: 17853945]
[12]
Chen, J.; John, R.; Richardson, J.A.; Shelton, J.M.; Zhou, X.J.; Wang, Y.; Wu, Q.Q.; Hartono, J.R.; Winterberg, P.D.; Lu, C.Y. Toll-like receptor 4 regulates early endothelial activation during ischemic acute kidney injury. Kidney Int., 2011, 79(3), 288-299.
[http://dx.doi.org/10.1038/ki.2010.381] [PMID: 20927041]
[13]
Pulskens, W.P.; Teske, G.J.; Butter, L.M.; Roelofs, J.J.; van der Poll, T.; Florquin, S.; Leemans, J.C. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS One, 2008, 3(10), e3596.
[http://dx.doi.org/10.1371/journal.pone.0003596] [PMID: 18974879]
[14]
Souza, A.C.P.; Tsuji, T.; Baranova, I.N.; Bocharov, A.V.; Wilkins, K.J.; Street, J.M.; Alvarez-Prats, A.; Hu, X.; Eggerman, T.; Yuen, P.S.T.; Star, R.A. TLR4 mutant mice are protected from renal fibrosis and chronic kidney disease progression. Physiol. Rep., 2015, 3(9), e12558.
[http://dx.doi.org/10.14814/phy2.12558] [PMID: 26416975]
[15]
Rothfuchs, A.G.; Trumstedt, C.; Wigzell, H.; Rottenberg, M.E. Intracellular bacterial infection-induced IFN-gamma is critically but not solely dependent on Toll-like receptor 4-myeloid differentiation factor 88-IFN-alpha beta-STAT1 signaling. J. Immunol., 2004, 172(10), 6345-6353.
[16]
Tsuboi, N.; Yoshikai, Y.; Matsuo, S.; Kikuchi, T.; Iwami, K.; Nagai, Y.; Takeuchi, O.; Akira, S.; Matsuguchi, T. Roles of tolllike receptors in C-C chemokine production by renal tubular epithelial cells. J. Immunol. (Baltimore, Md. : 1950), 2002, 169(4), 2026-2033.
[17]
Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol., 2004, 4(7), 499-511.
[http://dx.doi.org/10.1038/nri1391] [PMID: 15229469]
[18]
Buchanan, M.M.; Hutchinson, M.; Watkins, L.R.; Yin, H. Toll-like receptor 4 in CNS pathologies. J. Neurochem., 2010, 114(1), 13-27.
[PMID: 20402965]
[19]
Keating, S.E.; Maloney, G.M.; Moran, E.M.; Bowie, A.G. IRAK-2 participates in multiple toll-like receptor signaling pathways to NFkappaB via activation of TRAF6 ubiquitination. J. Biol. Chem., 2007, 282(46), 33435-33443.
[http://dx.doi.org/10.1074/jbc.M705266200] [PMID: 17878161]
[20]
Doyle, S.L.; O’Neill, L.A.J. Toll-like receptors: From the discovery of NFκB to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol., 2006, 72(9), 1102-1113.
[http://dx.doi.org/10.1016/j.bcp.2006.07.010] [PMID: 16930560]
[21]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[22]
Roy, A.; Srivastava, M.; Saqib, U.; Liu, D.; Faisal, S.M.; Sugathan, S.; Bishnoi, S.; Baig, M.S. Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways. Int. Immunopharmacol., 2016, 40, 79-89.
[http://dx.doi.org/10.1016/j.intimp.2016.08.026] [PMID: 27584057]
[23]
Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol., 2014, 5, 461.
[http://dx.doi.org/10.3389/fimmu.2014.00461] [PMID: 25309543]
[24]
Chinembiri, T.; du Plessis, L.; Gerber, M.; Hamman, J.; du Plessis, J. Review of natural compounds for potential skin cancer treatment. Molecules, 2014, 19(8), 11679-11721.
[http://dx.doi.org/10.3390/molecules190811679] [PMID: 25102117]
[25]
Yaribeygi, H.; Simental-Mendía, L.E.; Butler, A.E.; Sahebkar, A. Protective effects of plant-derived natural products on renal complications. J. Cell. Physiol., 2019, 234(8), 12161-12172.
[http://dx.doi.org/10.1002/jcp.27950] [PMID: 30536823]
[26]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[27]
Althunibat, O.Y.; Al Hroob, A.M.; Abukhalil, M.H.; Germoush, M.O.; Bin-Jumah, M.; Mahmoud, A.M. Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sci., 2019, 221, 83-92.
[http://dx.doi.org/10.1016/j.lfs.2019.02.017] [PMID: 30742869]
[28]
Mahmoud, A.M.; Ashour, M.B.; Abdel-Moneim, A.; Ahmed, O.M. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J. Diabetes Compl., 2012, 26(6), 483-490.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.06.001] [PMID: 22809898]
[29]
Mahmoud, A.M.; Mohammed, H.M.; Khadrawy, S.M.; Galaly, S.R. Hesperidin protects against chemically induced hepatocarcinogenesis via modulation of Nrf2/ARE/HO-1, PPARγ and TGF-β1/Smad3 signaling, and amelioration of oxidative stress and inflammation. Chem. Biol. Interact., 2017, 277, 146-158.
[http://dx.doi.org/10.1016/j.cbi.2017.09.015] [PMID: 28935427]
[30]
Mahmoud, A.M. Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARγ and abrogation of oxidative stress and inflammation. Can. J. Physiol. Pharmacol., 2014, 92(9), 717-724.
[http://dx.doi.org/10.1139/cjpp-2014-0204] [PMID: 25079140]
[31]
Mahmoud, A.M. Influence of rutin on biochemical alterations in hyperammonemia in rats. Exp. Toxicol. Pathol., 2012, 64(7-8), 783-789.
[32]
Si, H.; Lai, C.Q.; Liu, D. Dietary epicatechin, a novel anti-aging bioactive small molecule. Curr. Med. Chem., 2021, 28(1), 3-18.
[PMID: 31886745]
[33]
Prince, P.D.; Fischerman, L.; Toblli, J.E.; Fraga, C.G.; Galleano, M. LPS-induced renal inflammation is prevented by (−)-epicatechin in rats. Redox Biol., 2017, 11, 342-349.
[http://dx.doi.org/10.1016/j.redox.2016.12.023] [PMID: 28039839]
[34]
Bernatoniene, J.; Kopustinskiene, D. The role of catechins in cellular responses to oxidative stress. Molecules, 2018, 23(4), 965.
[http://dx.doi.org/10.3390/molecules23040965] [PMID: 29677167]
[35]
Butt, M.S.; Ahmad, R.S.; Sultan, M.T.; Qayyum, M.M.N.; Naz, A. Green tea and anticancer perspectives: updates from last decade. Crit. Rev. Food Sci. Nutr., 2015, 55(6), 792-805.
[http://dx.doi.org/10.1080/10408398.2012.680205] [PMID: 24915354]
[36]
Prince, P.D.; Lanzi, C.R.; Toblli, J.E.; Elesgaray, R.; Oteiza, P.I.; Fraga, C.G.; Galleano, M. Dietary (–)-epicatechin mitigates oxidative stress, NO metabolism alterations, and inflammation in renal cortex from fructose-fed rats. Free Radic. Biol. Med., 2016, 90, 35-46.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.11.009] [PMID: 26569027]
[37]
Tanabe, K.; Tamura, Y.; Lanaspa, M.A.; Miyazaki, M.; Suzuki, N.; Sato, W.; Maeshima, Y.; Schreiner, G.F.; Villarreal, F.J.; Johnson, R.J.; Nakagawa, T. Epicatechin limits renal injury by mitochondrial protection in cisplatin nephropathy. Am. J. Physiol. Renal Physiol., 2012, 303(9), F1264-F1274.
[http://dx.doi.org/10.1152/ajprenal.00227.2012] [PMID: 22933302]
[38]
He, W.; Li, Y.; Xue, C.; Hu, Z.; Chen, X.; Sheng, F. Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg. Med. Chem., 2005, 13(5), 1837-1845.
[http://dx.doi.org/10.1016/j.bmc.2004.11.038] [PMID: 15698801]
[39]
Huang, Y.; Zhou, L.; Yan, L.; Ren, J.; Zhou, D.; Li, S.S. Alpinetin inhibits lipopolysaccharide-induced acute kidney injury in mice. Int. Immunopharmacol., 2015, 28(2), 1003-1008.
[http://dx.doi.org/10.1016/j.intimp.2015.08.002] [PMID: 26321118]
[40]
Zhao, X.; Guo, X.; Shen, J.; Hua, D. Alpinetin inhibits proliferation and migration of ovarian cancer cells via suppression of STAT3 signaling. Mol. Med. Rep., 2018, 18(4), 4030-4036.
[http://dx.doi.org/10.3892/mmr.2018.9420] [PMID: 30132572]
[41]
Liang, Y.; Shen, T.; Ming, Q.; Han, G.; Zhang, Y.; Liang, J.; Zhu, D. Alpinetin ameliorates inflammatory response in LPS-induced endometritis in mice. Int. Immunopharmacol., 2018, 62, 309-312.
[http://dx.doi.org/10.1016/j.intimp.2018.07.010] [PMID: 30048861]
[42]
Zhou, Y.; Ding, Y.L.; Zhang, J.L.; Zhang, P.; Wang, J.Q.; Li, Z.H. Alpinetin improved high fat diet-induced non-alcoholic fatty liver disease (NAFLD) through improving oxidative stress, inflammatory response and lipid metabolism. Biomed. Pharmacother., 2018, 97, 1397-1408.
[43]
Hu, K.; Yang, Y.; Tu, Q.; Luo, Y.; Ma, R. Alpinetin inhibits LPS-induced inflammatory mediator response by activating PPAR-γ in THP-1-derived macrophages. Eur. J. Pharmacol., 2013, 721(1-3), 96-102.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.049] [PMID: 24104193]
[44]
Chen, H.; Mo, X.; Yu, J.; Huang, Z. Alpinetin attenuates inflammatory responses by interfering toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced mastitis in mice. Int. Immunopharmacol., 2013, 17(1), 26-32.
[http://dx.doi.org/10.1016/j.intimp.2013.04.030] [PMID: 23669335]
[45]
Cheng, P.; Wang, T.; Li, W.; Muhammad, I.; Wang, H.; Sun, X.; Yang, Y.; Li, J.; Xiao, T.; Zhang, X. Baicalin alleviates lipopolysaccharide-induced liver inflammation in chicken by suppressing TLR4-mediated NF-κB pathway. Front. Pharmacol., 2017, 8, 547.
[http://dx.doi.org/10.3389/fphar.2017.00547] [PMID: 28868036]
[46]
Zheng, W.; Wang, F.; Cao, X.; Pan, H.; Liu, X.; Hu, X.; Sun, Y. Baicalin protects PC-12 cells from oxidative stress induced by hydrogen peroxide via anti-apoptotic effects. Brain Inj., 2014, 28(2), 227-234.
[http://dx.doi.org/10.3109/02699052.2013.860469] [PMID: 24456060]
[47]
Luo, J.; Dong, B.; Wang, K.; Cai, S.; Liu, T.; Cheng, X.; Lei, D.; Chen, Y.; Li, Y.; Kong, J.; Chen, Y. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One, 2017, 12(4), e0176883.
[http://dx.doi.org/10.1371/journal.pone.0176883] [PMID: 28453568]
[48]
Ma, J.; Wang, R.; Yan, H.; Xu, R.; Xu, A.; Zhang, J. Protective Effects of Baicalin on Lipopolysaccharide-Induced Injury in Caenorhabditis elegans. Pharmacology, 2019, 105(1-2), 109-117.
[PMID: 31671428]
[49]
Guo, L.T.; Wang, S.Q.; Su, J.; Xu, L.X.; Ji, Z.Y.; Zhang, R.Y.; Zhao, Q.W.; Ma, Z.Q.; Deng, X.Y.; Ma, S.P. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J. Neuroinflammation, 2019, 16(1), 95.
[http://dx.doi.org/10.1186/s12974-019-1474-8] [PMID: 31068207]
[50]
Jin, X.; Liu, M.Y.; Zhang, D.F.; Zhong, X.; Du, K.; Qian, P.; Yao, W.F.; Gao, H.; Wei, M.J. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP 3 inflammasomes and TLR 4/NF -κB signaling pathway. CNS Neurosci. Ther., 2019, 25(5), 575-590.
[http://dx.doi.org/10.1111/cns.13086] [PMID: 30676698]
[51]
Liu, L.; Dong, Y.; Shan, X.; Li, L.; Xia, B.; Wang, H. Anti-depressive effectiveness of baicalin in vitro and in vivo. Molecules, 2019, 24(2), 326.
[http://dx.doi.org/10.3390/molecules24020326] [PMID: 30658416]
[52]
Sherwani, M.A.; Yang, K.; Jani, A.; Abed, R.A.; Taufique, A.K.; Dosunmu, T.G.; Yusuf, N. Protective effect of baicalin against TLR4-mediated UVA-induced skin inflammation. Photochem. Photobiol., 2019, 95(2), 605-611.
[http://dx.doi.org/10.1111/php.13021] [PMID: 30246296]
[53]
Sun, J.Y.; Li, D.L.; Dong, Y.; Zhu, C.H.; Liu, J.; Li, J.D.; Zhou, T.; Gou, J.Z.; Li, A.; Zang, W.J. Baicalin inhibits toll-like receptor 2/4 expression and downstream signaling in rat experimental periodontitis. Int. Immunopharmacol., 2016, 36, 86-93.
[http://dx.doi.org/10.1016/j.intimp.2016.04.012] [PMID: 27107801]
[54]
Ye, L.; Tao, Y.; Wang, Y.; Feng, T.; Li, H. The effects of baicalin on the TLR2/4 signaling pathway in the peripheral blood mononuclear cells of a lipopolysaccharide-induced rat fever model. Int. Immunopharmacol., 2015, 25(1), 106-111.
[http://dx.doi.org/10.1016/j.intimp.2014.12.028] [PMID: 25576404]
[55]
Feng, J.; Guo, C.; Zhu, Y.; Pang, L.; Yang, Z.; Zou, Y.; Zheng, X. Baicalin down regulates the expression of TLR4 and NFkB-p65 in colon tissue in mice with colitis induced by dextran sulfate sodium. Int. J. Clin. Exp. Med., 2014, 7(11), 4063-4072.
[PMID: 25550915]
[56]
Feng, A.; Zhou, G.; Yuan, X.; Huang, X.; Zhang, Z.; Zhang, T. Inhibitory effect of baicalin on iNOS and NO expression in intestinal mucosa of rats with acute endotoxemia. PLoS One, 2013, 8(12), e80997.
[http://dx.doi.org/10.1371/journal.pone.0080997] [PMID: 24312512]
[57]
Kim, S.J.; Lee, S.M. Effect of baicalin on toll-like receptor 4-mediated ischemia/reperfusion inflammatory responses in alcoholic fatty liver condition. Toxicol. Appl. Pharmacol., 2012, 258(1), 43-50.
[http://dx.doi.org/10.1016/j.taap.2011.10.005] [PMID: 22019745]
[58]
Shankar, S.; Ganapathy, S.; Srivastava, R.K. Green tea polyphenols: biology and therapeutic implications in cancer. Front. Biosci., 2007, 12, 4881-4899.
[59]
Kakuta, Y.; Okumi, M.; Isaka, Y.; Tsutahara, K.; Abe, T.; Yazawa, K.; Ichimaru, N.; Matsumura, K.; Hyon, S.H.; Takahara, S.; Nonomura, N. Epigallocatechin-3-gallate protects kidneys from ischemia reperfusion injury by HO-1 upregulation and inhibition of macrophage infiltration. Transpl. Int., 2011, 24(5), 514-522.
[http://dx.doi.org/10.1111/j.1432-2277.2011.01224.x] [PMID: 21291499]
[60]
Kanlaya, R.; Peerapen, P.; Nilnumkhum, A.; Plumworasawat, S.; Sueksakit, K.; Thongboonkerd, V. Epigallocatechin-3-gallate prevents TGF-β1-induced epithelial-mesenchymal transition and fibrotic changes of renal cells via GSK-3β/β-catenin/Snail1 and Nrf2 pathways. J. Nutr. Biochem., 2020, 76, 108266.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108266] [PMID: 31760226]
[61]
Kaushal, S.; Ahsan, A.U.; Sharma, V.L.; Chopra, M. Epigallocatechin gallate attenuates arsenic induced genotoxicity via regulation of oxidative stress in balb/C mice. Mol. Biol. Rep., 2019, 46(5), 5355-5369.
[http://dx.doi.org/10.1007/s11033-019-04991-5] [PMID: 31350662]
[62]
Kwak, T.W.; Park, S.B.; Kim, H.J.; Jeong, Y.I.; Kang, D.H. Anticancer activities of epigallocatechin-3-gallate against cholangiocarcinoma cells. OncoTargets Ther., 2016, 10, 137-144.
[http://dx.doi.org/10.2147/OTT.S112364] [PMID: 28053547]
[63]
Liu, G.; He, L. Epigallocatechin-3-gallate attenuates adriamycin-induced focal segmental glomerulosclerosis via suppression of oxidant stress and apoptosis by targeting hypoxia-inducible factor-1α/angiopoietin-like 4 pathway. Pharmacology, 2019, 103(5-6), 303-314.
[http://dx.doi.org/10.1159/000496799] [PMID: 30840953]
[64]
Ahmed, H.I.; Mohamed, E.A. Candesartan and epigallocatechin-3-gallate ameliorate gentamicin-induced renal damage in rats through p38-MAPK and NF-κB pathways. J. Biochem. Mol. Toxicol., 2019, 33(3), e22254.
[http://dx.doi.org/10.1002/jbt.22254] [PMID: 30368989]
[65]
Hammad, F.T.; Lubbad, L. The effect of epigallocatechin-3-gallate on the renal dysfunction in the obstructed kidney in the rat. Int. J. Physiol. Pathophysiol. Pharmacol., 2017, 9(4), 119-126.
[PMID: 28951774]
[66]
Sun, W.; Liu, X.; Zhang, H.; Song, Y.; Li, T.; Liu, X.; Liu, Y.; Guo, L.; Wang, F.; Yang, T.; Guo, W.; Wu, J.; Jin, H.; Wu, H. Epigallocatechin gallate upregulates NRF2 to prevent diabetic nephropathy via disabling KEAP1. Free Radic. Biol. Med., 2017, 108, 840-857.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.365] [PMID: 28457936]
[67]
Chen, J.; Du, L.; Li, J.; Song, H. Epigallocatechin-3-gallate attenuates cadmium-induced chronic renal injury and fibrosis. Food Chem. Toxicol., 2016, 96, 70-78.
[68]
Kanlaya, R.; Khamchun, S.; Kapincharanon, C.; Thongboonkerd, V. Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells. Sci. Rep., 2016, 6(1), 30233.
[http://dx.doi.org/10.1038/srep30233] [PMID: 27452398]
[69]
Chen, S.J.; Yao, X.D.; Peng, B.; Xu, Y.F.; Wang, G.C.; Huang, J.; Liu, M.; Zheng, J.H. Epigallocatechin-3-gallate inhibits migration and invasion of human renal carcinoma cells by downregulating matrix metalloproteinase-2 and matrix metalloproteinase-9. Exp. Ther. Med., 2016, 11(4), 1243-1248.
[http://dx.doi.org/10.3892/etm.2016.3050] [PMID: 27073430]
[70]
Gao, Z.; Han, Y.; Hu, Y.; Wu, X.; Wang, Y.; Zhang, X.; Fu, J.; Zou, X.; Zhang, J.; Chen, X.; Jose, P.A.; Lu, X.; Zeng, C. Targeting HO-1 by epigallocatechin-3-gallate reduces contrast-induced renal injury via anti-oxidative stress and anti-inflammation pathways. PLoS One, 2016, 11(2), e0149032.
[http://dx.doi.org/10.1371/journal.pone.0149032] [PMID: 26866373]
[71]
Lv, J.; Feng, M.; Zhang, L.; Wan, X.; Zeng, Y.C.; Liang, P.F.; Xu, A.P. Protective effect of epigallocatechin gallate, a major constituent of green tea, against renal ischemia–reperfusion injury in rats. Int. Urol. Nephrol., 2015, 47(8), 1429-1435.
[http://dx.doi.org/10.1007/s11255-015-1030-0] [PMID: 26122117]
[72]
Zou, P.; Song, J.; Jiang, B.; Pei, F.; Chen, B.; Yang, X.; Liu, G.; Hu, Z. Epigallocatechin-3-gallate protects against cisplatin nephrotoxicity by inhibiting the apoptosis in mouse. Int. J. Clin. Exp. Pathol., 2014, 7(8), 4607-4616.
[PMID: 25197333]
[73]
Sahin, K.; Tuzcu, M.; Gencoglu, H.; Dogukan, A.; Timurkan, M.; Sahin, N.; Aslan, A.; Kucuk, O. Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Life Sci., 2010, 87(7-8), 240-245.
[http://dx.doi.org/10.1016/j.lfs.2010.06.014] [PMID: 20619277]
[74]
Thangapandiyan, S.; Miltonprabu, S. Epigallocatechin gallate supplementation protects against renal injury induced by fluoride intoxication in rats: Role of Nrf2/HO-1 signaling. Toxicol. Rep., 2014, 1, 12-30.
[http://dx.doi.org/10.1016/j.toxrep.2014.01.002] [PMID: 28962222]
[75]
Mun, K.C.; Mun, K.C. Effect of epigallocatechin gallate on renal function in cyclosporine-induced nephrotoxicity. Transplant. Proc., 2004, 36(7), 2133-2134.
[http://dx.doi.org/10.1016/j.transproceed.2004.08.020] [PMID: 15518774]
[76]
Zhong, X.; Liu, M.; Yao, W.; Du, K.; He, M.; Jin, X.; Jiao, L.; Ma, G.; Wei, B.; Wei, M. Epigallocatechin-3-gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via tlr4/nf-κb pathway. Mol. Nutr. Food Res., 2019, 63(21), 1801230.
[http://dx.doi.org/10.1002/mnfr.201801230] [PMID: 31374144]
[77]
Wang, J.; Fan, S.M.; Zhang, J. Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute lung injury by suppression of TLR4/NF-kappaB signaling activation. Rev. Bras. Pesqui. Med. Biol., 2019, 52(7), e8092.
[PMID: 31241712]
[78]
Qu, Z.; Jia, L.; Xie, T.; Zhen, J.; Si, P.; Cui, Z.; Xue, Y.; Sun, C.; Wang, W. (–)-Epigallocatechin-3-gallate protects against lithium-pilocarpine-induced epilepsy by inhibiting the toll-like receptor 4 (tlr4)/nuclear factor-κb (nf-κb) signaling pathway. Med. Sci. Monit., 2019, 25, 1749-1758.
[http://dx.doi.org/10.12659/MSM.915025] [PMID: 30843525]
[79]
Bing, X.; Xuelei, L.; Wanwei, D.; Linlang, L.; Keyan, C. EGCG maintains th1/th2 balance and mitigates ulcerative colitis induced by dextran sulfate sodium through tlr4/myd88/nf- κ b signaling pathway in rats. Can. J. Gastroenterol. Hepatol., 2017, 2017, 1-9.
[http://dx.doi.org/10.1155/2017/3057268] [PMID: 29404307]
[80]
Shen, H.; Wu, N.; Liu, Z.; Zhao, H.; Zhao, M. Epigallocatechin-3-gallate alleviates paraquat-induced acute lung injury and inhibits upregulation of toll-like receptors. Life Sci., 2017, 170, 25-32.
[http://dx.doi.org/10.1016/j.lfs.2016.11.021] [PMID: 27890776]
[81]
Liu, D.; Zhang, X.; Jiang, L.; Guo, Y.; Zheng, C. Epigallocatechin-3-gallate (EGCG) attenuates concanavalin A-induced hepatic injury in mice. Acta Histochem., 2014, 116(4), 654-662.
[http://dx.doi.org/10.1016/j.acthis.2013.12.002] [PMID: 24373695]
[82]
Zhang, J.L.; Fei, S.J.; Qin, X.; Ye, H.H.; Liu, H.X.; Dai, X.J.; Zhang, Y.M. Propofol inhibits hypoxia/reoxygenation-induced human gastric epithelial cell injury by suppressing the Toll-like receptor 4 pathway. Kaohsiung J. Med. Sci., 2013, 29(6), 289-298.
[http://dx.doi.org/10.1016/j.kjms.2012.10.006] [PMID: 23684133]
[83]
Lee, K.M.; Yeo, M.; Choue, J.S.; Jin, J.H.; Park, S.J.; Cheong, J.Y.; Lee, K.J.; Kim, J.H.; Hahm, K.B. Protective mechanism of epigallocatechin-3-gallate against Helicobacter pylori-induced gastric epithelial cytotoxicity via the blockage of TLR-4 signaling. Helicobacter, 2004, 9(6), 632-642.
[http://dx.doi.org/10.1111/j.1083-4389.2004.00281.x] [PMID: 15610077]
[84]
Wu, P.; Sun, W.; Wu, P. Hyperoside exerts potent anticancer activity in skin cancer. Front. Biosci., 2020, 25(3), 463-479.
[http://dx.doi.org/10.2741/4814] [PMID: 31585897]
[85]
Chen, Y.; Ye, L.; Li, W.; Li, D.; Li, F. Hyperoside protects human kidney 2 cells against oxidative damage induced by oxalic acid. Mol. Med. Rep., 2018, 18(1), 486-494.
[http://dx.doi.org/10.3892/mmr.2018.8948] [PMID: 29750296]
[86]
Wu, L.; Li, Q.; Liu, S.; An, X.; Huang, Z.; Zhang, B.; Yuan, Y.; Xing, C. Protective effect of hyperoside against renal ischemia-reperfusion injury via modulating mitochondrial fission, oxidative stress, and apoptosis. Free Radic. Res., 2019, 53(7), 727-736.
[http://dx.doi.org/10.1080/10715762.2019.1623883] [PMID: 31130024]
[87]
Liu, B.; Tu, Y.; He, W.; Liu, Y.; Wu, W.; Fang, Q.; Tang, H.; Tang, R.; Wan, Z.; Sun, W.; Wan, Y. Hyperoside attenuates renal aging and injury induced by D-galactose via inhibiting AMPK-ULK1 signaling-mediated autophagy. Aging (Albany NY), 2018, 10(12), 4197-4212.
[http://dx.doi.org/10.18632/aging.101723] [PMID: 30585174]
[88]
Chen, Z.; An, X.; Liu, X.; Qi, J.; Ding, D.; Zhao, M.; Duan, S.; Huang, Z.; Zhang, C.; Wu, L.; Zhang, B.; Zhang, A.; Yuan, Y.; Xing, C. Hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission. Oncotarget, 2017, 8(51), 88792-88803.
[http://dx.doi.org/10.18632/oncotarget.21287] [PMID: 29179476]
[89]
Zhang, L.; He, S.; Yang, F.; Yu, H.; Xie, W.; Dai, Q.; Zhang, D.; Liu, X.; Zhou, S.; Zhang, K. Hyperoside ameliorates glomerulosclerosis in diabetic nephropathy by downregulating miR-21. Can. J. Physiol. Pharmacol., 2016, 94(12), 1249-1256.
[http://dx.doi.org/10.1139/cjpp-2016-0066] [PMID: 27704873]
[90]
Yan, Y.; Feng, Y.; Li, W.; Che, J.P.; Wang, G.C.; Liu, M.; Zheng, J.H. Protective effects of quercetin and hyperoside on renal fibrosis in rats with unilateral ureteral obstruction. Exp. Ther. Med., 2014, 8(3), 727-730.
[http://dx.doi.org/10.3892/etm.2014.1841] [PMID: 25120589]
[91]
Chunzhi, G.; Zunfeng, L.; Chengwei, Q.; Xiangmei, B.; Jingui, Y. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways. Oncotarget, 2016, 7(50), 82602-82608.
[http://dx.doi.org/10.18632/oncotarget.13010] [PMID: 27813491]
[92]
Zhou, Y.; Zhao, Y.; Zhao, X.; Liang, C.; Xu, Y.; Li, L.; Liu, Y.; Yang, H. Hyperoside suppresses lipopolysaccharide-induced inflammation and apoptosis in human umbilical vein endothelial cells. Curr. Med. Sci., 2018, 38(2), 222-228.
[http://dx.doi.org/10.1007/s11596-018-1869-2] [PMID: 30074179]
[93]
Chauhan, A.K.; Kim, J.; Lee, Y.; Balasubramanian, P.K.; Kim, Y. Isorhamnetin has potential for the treatment of Escherichia coli-induced sepsis. Molecules, 2019, 24(21), 3984.
[http://dx.doi.org/10.3390/molecules24213984] [PMID: 31689976]
[94]
Luo, Y.; Sun, G.; Dong, X.; Wang, M.; Qin, M.; Yu, Y.; Sun, X. Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction. PLoS One, 2015, 10(3), e0120259.
[http://dx.doi.org/10.1371/journal.pone.0120259] [PMID: 25799286]
[95]
Choi, Y.H. Isorhamnetin induces ROS-dependent cycle arrest at G2/M phase and apoptosis in human hepatocarcinoma Hep3B cells. Gen. Physiol. Biophys., 2019, 38(6), 473-484.
[http://dx.doi.org/10.4149/gpb_2019038] [PMID: 31588915]
[96]
Bhattacharya, D.; Ghosh, D.; Bhattacharya, S.; Sarkar, S.; Karmakar, P.; Koley, H.; Gachhui, R. Antibacterial activity of polyphenolic fraction of Kombucha against Vibrio cholerae: targeting cell membrane. Lett. Appl. Microbiol., 2018, 66(2), 145-152.
[http://dx.doi.org/10.1111/lam.12829] [PMID: 29193174]
[97]
Kim, S.Y.; Jin, C.Y.; Kim, C.H.; Yoo, Y.H.; Choi, S.H.; Kim, G.Y.; Yoon, H.M.; Park, H.T.; Choi, Y.H. Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-κB, blocking the TLR4 pathway and reducing ROS generation. Int. J. Mol. Med., 2019, 43(2), 682-692.
[PMID: 30483725]
[98]
Li, X.Y.; Tang, H.J.; Zhang, L.; Yang, L.; Li, P.; Chen, J. A selective knockout method for discovery of minor active components from plant extracts: Feasibility and challenges as illustrated by an application to Salvia miltiorrhiza. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1068-1069, 253-260.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.011] [PMID: 29132906]
[99]
Chen, B.; Dang, L.; Zhang, X.; Fang, W.; Hou, M.; Liu, T.; Wang, Z. Physicochemical properties and micro-structural characteristics in starch from kudzu root as affected by cross-linking. Food Chem., 2017, 219, 93-101.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.128] [PMID: 27765264]
[100]
Zhou, X.; Bai, C.; Sun, X.; Gong, X.; Yang, Y.; Chen, C.; Shan, G.; Yao, Q. Puerarin attenuates renal fibrosis by reducing oxidative stress induced-epithelial cell apoptosis via MAPK signal pathways in vivo and in vitro. Ren. Fail., 2017, 39(1), 423-431.
[http://dx.doi.org/10.1080/0886022X.2017.1305409] [PMID: 28335679]
[101]
Ma, X.; Yan, L.; Zhu, Q.; Shao, F. Puerarin attenuates cisplatin-induced rat nephrotoxicity: The involvement of TLR4/NF-κB signaling pathway. PLoS One, 2017, 12(2), e0171612.
[http://dx.doi.org/10.1371/journal.pone.0171612] [PMID: 28182789]
[102]
Wang, L.Y.; Fan, R.F.; Yang, D.B.; Zhang, D.; Wang, L. Puerarin reverses cadmium-induced lysosomal dysfunction in primary rat proximal tubular cells via inhibiting Nrf2 pathway. Biochem. Pharmacol., 2019, 162, 132-141.
[http://dx.doi.org/10.1016/j.bcp.2018.10.016] [PMID: 30347204]
[103]
Ma, J.Q.; Ding, J.; Xiao, Z.H.; Liu, C.M. Puerarin ameliorates carbon tetrachloride-induced oxidative DNA damage and inflammation in mouse kidney through ERK/Nrf2/ARE pathway. Food Chem. Toxicol., 2014, 71, 264-271.
[104]
Song, X.B.; Liu, G.; Wang, Z.Y.; Wang, L. Puerarin protects against cadmium-induced proximal tubular cell apoptosis by restoring mitochondrial function. Chem. Biol. Interact., 2016, 260, 219-231.
[http://dx.doi.org/10.1016/j.cbi.2016.10.006] [PMID: 27717697]
[105]
Liu, Q.; Liu, Z.; Huo, X.; Wang, C.; Meng, Q.; Sun, H.; Sun, P.; Peng, J.; Ma, X.; Liu, K. Puerarin improves methotrexate-induced renal damage by up-regulating renal expression of Oat1 and Oat3 in vivo and in vitro. Biomed. Pharmacother., 2018, 103, 915-922.
[106]
Xu, X.; Zheng, N.; Chen, Z.; Huang, W.; Liang, T.; Kuang, H. Puerarin, isolated from Pueraria lobata (Willd.), protects against diabetic nephropathy by attenuating oxidative stress. Gene, 2016, 591(2), 411-416.
[http://dx.doi.org/10.1016/j.gene.2016.06.032] [PMID: 27317894]
[107]
Wang, L.; Lin, S.; Li, Z.; Yang, D.; Wang, Z. Protective effects of puerarin on experimental chronic lead nephrotoxicity in immature female rats. Hum. Exp. Toxicol., 2013, 32(2), 172-185.
[http://dx.doi.org/10.1177/0960327112462729] [PMID: 23315276]
[108]
Gao, S.; Li, L.; Li, L.; Ni, J.; Guo, R.; Mao, J.; Fan, G. Effects of the combination of tanshinone IIA and puerarin on cardiac function and inflammatory response in myocardial ischemia mice. J. Mol. Cell. Cardiol., 2019, 137, 59-70.
[http://dx.doi.org/10.1016/j.yjmcc.2019.09.012] [PMID: 31629735]
[109]
Ling, C.; Liang, J.; Zhang, C.; Li, R.; Mou, Q.; Qin, J.; Li, X.; Wang, J. Synergistic effects of salvianolic acid B and puerarin on cerebral ischemia reperfusion injury. Molecules, 2018, 23(3), 564.
[http://dx.doi.org/10.3390/molecules23030564] [PMID: 29498696]
[110]
Xiao, Y.; Huang, J.; Xu, J.; Zeng, L.; Tian, J.; Lou, Y.; Liu, Y.; Hu, B.; Tong, F.; Shen, R. Targeted delivery of puerarin/glycyrrhetinic acid-PEG-PBLA complex attenuated liver ischemia/reperfusion injury via modulating Toll-like receptor 4/nuclear factor-κB pathway. Ther. Deliv., 2018, 9(4), 245-255.
[http://dx.doi.org/10.4155/tde-2017-0106] [PMID: 29540127]
[111]
Li, R.; Song, J.; Wu, W.; Wu, X.; Su, M. Puerarin exerts the protective effect against chemical induced dysmetabolism in rats. Gene, 2016, 595(2), 168-174.
[http://dx.doi.org/10.1016/j.gene.2016.09.036] [PMID: 27677221]
[112]
Wang, C.; Wang, W.; Jin, X.; Shen, J.; Hu, W.; Jiang, T. Puerarin attenuates inflammation and oxidation in mice with collagen antibody-induced arthritis via TLR4/NF-κB signaling. Mol. Med. Rep., 2016, 14(2), 1365-1370.
[http://dx.doi.org/10.3892/mmr.2016.5357] [PMID: 27278131]
[113]
Liu, C.M.; Ma, J.Q.; Liu, S.S.; Feng, Z.J.; Wang, A.M. Puerarin protects mouse liver against nickel-induced oxidative stress and inflammation associated with the TLR4/p38/CREB pathway. Chem. Biol. Interact., 2016, 243, 29-34.
[http://dx.doi.org/10.1016/j.cbi.2015.11.017] [PMID: 26607348]
[114]
Zhang, H.; Zhai, Z.; Zhou, H.; Li, Y.; Li, X.; Lin, Y.; Li, W.; Shi, Y.; Zhou, M.S. Puerarin inhibits oxLDL-induced macrophage activation and foam cell formation in human THP1 macrophage. BioMed Res. Int., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/403616] [PMID: 26576421]
[115]
Parasuraman, S.; Anand David, A.V.; Arulmoli, R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[116]
Yang, H.; Song, Y.; Liang, Y.; Li, R. Quercetin treatment improves renal function and protects the kidney in a rat model of adenine-induced chronic kidney disease. Med. Sci. Monit., 2018, 24, 4760-4766.
[http://dx.doi.org/10.12659/MSM.909259] [PMID: 29987270]
[117]
Lu, H.; Wu, L.; Liu, L.; Ruan, Q.; Zhang, X.; Hong, W.; Wu, S.; Jin, G.; Bai, Y. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization. Biochem. Pharmacol., 2018, 154, 203-212.
[http://dx.doi.org/10.1016/j.bcp.2018.05.007] [PMID: 29753749]
[118]
Owumi, S.E.; Danso, O.F.; Effiong, M.E. Dietary quercetin abrogates hepatorenal oxidative damage associated with dichloromethane exposure in rats. Acta Biochim. Pol., 2019, 66(2), 201-206.
[http://dx.doi.org/10.18388/abp.2018_2771] [PMID: 30958872]
[119]
Cao, Y.; Hu, J.; Sui, J.; Jiang, L.; Cong, Y.; Ren, G. Quercetin is able to alleviate TGF β induced fibrosis in renal tubular epithelial cells by suppressing miR 21. Exp. Ther. Med., 2018, 16(3), 2442-2448.
[http://dx.doi.org/10.3892/etm.2018.6489] [PMID: 30210596]
[120]
Lu, Q.; Ji, X.J.; Zhou, Y.X.; Yao, X.Q.; Liu, Y.Q.; Zhang, F.; Yin, X.X. Quercetin inhibits the mTORC1/p70S6K signaling-mediated renal tubular epithelial–mesenchymal transition and renal fibrosis in diabetic nephropathy. Pharmacol. Res., 2015, 99, 237-247.
[http://dx.doi.org/10.1016/j.phrs.2015.06.006] [PMID: 26151815]
[121]
Yuksel, Y.; Yuksel, R.; Yagmurca, M.; Haltas, H.; Erdamar, H.; Toktas, M.; Ozcan, O. Effects of quercetin on methotrexate-induced nephrotoxicity in rats. Hum. Exp. Toxicol., 2017, 36(1), 51-61.
[http://dx.doi.org/10.1177/0960327116637414] [PMID: 27005763]
[122]
Erboga, M.; Aktas, C.; Erboga, Z.F.; Donmez, Y.B.; Gurel, A. Quercetin ameliorates methotrexate-induced renal damage, apoptosis and oxidative stress in rats. Ren. Fail., 2015, 37(9), 1492-1497.
[http://dx.doi.org/10.3109/0886022X.2015.1074521] [PMID: 26338102]
[123]
Meng, F.D.; Li, Y.; Tian, X.; Ma, P.; Sui, C.G.; Fu, L.Y.; Jiang, Y.H. Synergistic effects of snail and quercetin on renal cell carcinoma Caki-2 by altering AKT/mTOR/ERK1/2 signaling pathways. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6157-6168.
[PMID: 26261493]
[124]
Alhusaini, A.; Fadda, L.M.; Ali, H.M.; Hasan, I.H.; Ali, R.A.; Zakaria, E.A. Mitigation of acetamiprid - induced renotoxicity by natural antioxidants via the regulation of ICAM, NF-kB and TLR 4 pathways. Pharmacol. Rep., 2019, 71(6), 1088-1094.
[125]
Liu, X.; Sun, N.; Mo, N.; Lu, S.; Song, E.; Ren, C.; Li, Z. Quercetin inhibits kidney fibrosis and the epithelial to mesenchymal transition of the renal tubular system involving suppression of the Sonic Hedgehog signaling pathway. Food Funct., 2019, 10(6), 3782-3797.
[http://dx.doi.org/10.1039/C9FO00373H] [PMID: 31180394]
[126]
Liu, Y.; Dai, E.; Yang, J. Quercetin suppresses glomerulosclerosis and TGF β signaling in a rat model. Mol. Med. Rep., 2019, 19(6), 4589-4596.
[http://dx.doi.org/10.3892/mmr.2019.10118] [PMID: 30942399]
[127]
Gholampour, F.; Saki, N. Hepatic and renal protective effects of quercetin in ferrous sulfate-induced toxicity. Gen. Physiol. Biophys., 2019, 38(1), 27-38.
[http://dx.doi.org/10.4149/gpb_2018038] [PMID: 30657458]
[128]
Al-Asmari, A.K.; Khan, H.A.; Manthiri, R.A.; Al-Khlaiwi, A.A.; Al-Asmari, B.A.; Ibrahim, K.E. Protective effects of a natural herbal compound quercetin against snake venom-induced hepatic and renal toxicities in rats. Food Chem. Toxicol., 2018, 118, 105-110.
[129]
Zhu, Y.; Teng, T.; Wang, H.; Guo, H.; Du, L.; Yang, B.; Yin, X.; Sun, Y. Quercetin inhibits renal cyst growth in vitro and via parenteral injection in a polycystic kidney disease mouse model. Food Funct., 2018, 9(1), 389-396.
[http://dx.doi.org/10.1039/C7FO01253E] [PMID: 29215110]
[130]
Sanchez-Gonzalez, P. D.; Lopez-Hernandez, F. J.; Duenas, M.; Prieto, M.; Sanchez-Lopez, E.; Thomale, J.; Ruiz-Ortega, M.; Lopez-Novoa, J. M.; Morales, A. I. Differential effect of quercetin on cisplatin-induced toxicity in kidney and tumor tissues. Food. Chem. Toxicol., 2017, 107(Pt A), 226-236.
[131]
Xu, M.X.; Wang, M.; Yang, W.W. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-kB signaling and Nrf2 pathway in high fat diet fed mice. Int. J. Nanomedicine, 2017, 12, 327-345.
[http://dx.doi.org/10.2147/IJN.S116010] [PMID: 28115850]
[132]
Gomes, I.B.S.; Porto, M.L.; Santos, M.C.L.F.S.; Campagnaro, B.P.; Gava, A.L.; Meyrelles, S.S.; Pereira, T.M.C.; Vasquez, E.C. The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice. Front. Physiol., 2015, 6, 247.
[http://dx.doi.org/10.3389/fphys.2015.00247] [PMID: 26388784]
[133]
Hamza, R.Z.; El-Shenawy, N.S.; Ismail, H.A. Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat. J. Basic Clin. Physiol. Pharmacol., 2015, 26(3), 237-251.
[PMID: 25918918]
[134]
Olayinka, E.T.; Ore, A.; Ola, O.S.; Adeyemo, O.A. Protective effect of quercetin on melphalan-induced oxidative stress and impaired renal and hepatic functions in rat. Chemother. Res. Pract., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/936526] [PMID: 25574394]
[135]
El-Shafey, M.M.; Abd-Allah, G.M.; Mohamadin, A.M.; Harisa, G.I.; Mariee, A.D. Quercetin protects against acetaminophen-induced hepatorenal toxicity by reducing reactive oxygen and nitrogen species. Pathophysiology, 2015, 22(1), 49-55.
[136]
Tan, J.; He, J.; Qin, W.; Zhao, L. Quercetin alleviates lipopolysaccharide-induced acute kidney injury in mice by suppressing TLR4/NF-kappaB pathway. J. Southern Medical University, 2019, 39(5), 598-602.
[137]
Wei, C.B.; Zhou, L.D.; Zhang, J.W.; Zhang, Q.H.; Tao, K. Rotective Effects of Quercetin Against the Triptolide Induced Liver Injury and Relevant Mechanism Study. Sichuan Da Xue Xue Bao Yi Xue Ban, 2019, 50(5), 684-687.
[PMID: 31762238]
[138]
Byun, E.B.; Yang, M.S.; Choi, H.G.; Sung, N.Y.; Song, D.S.; Sin, S.J.; Byun, E.H. Quercetin negatively regulates TLR4 signaling induced by lipopolysaccharide through Tollip expression. Biochem. Biophys. Res. Commun., 2013, 431(4), 698-705.
[http://dx.doi.org/10.1016/j.bbrc.2013.01.056] [PMID: 23353651]
[139]
Wu, M.; Liu, F.; Guo, Q. Quercetin attenuates hypoxia-ischemia induced brain injury in neonatal rats by inhibiting TLR4/NF-κB signaling pathway. Int. Immunopharmacol., 2019, 74, 105704.
[http://dx.doi.org/10.1016/j.intimp.2019.105704] [PMID: 31228815]
[140]
Junyuan, Z.; Hui, X.; Chunlan, H.; Junjie, F.; Qixiang, M.; Yingying, L.; Lihong, L.; Xingpeng, W.; Yue, Z. Quercetin protects against intestinal barrier disruption and inflammation in acute necrotizing pancreatitis through TLR4/MyD88/p38MAPK and ERS inhibition. Pancreatology, 2018, 18(7), 742-752.
[141]
Dong, L.Y.; Chen, F.; Xu, M.; Yao, L.P.; Zhang, Y.J.; Zhuang, Y. Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway. Am. J. Transl. Res., 2018, 10(5), 1273-1283.
[PMID: 29887944]
[142]
Porras, D.; Nistal, E.; Martínez-Flórez, S.; Pisonero-Vaquero, S.; Olcoz, J.L.; Jover, R.; González-Gallego, J.; García-Mediavilla, M.V.; Sánchez-Campos, S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic. Biol. Med., 2017, 102, 188-202.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.037] [PMID: 27890642]
[143]
Li, X.; Jin, Q.; Yao, Q.; Xu, B.; Li, Z.; Tu, C. Quercetin attenuates the activation of hepatic stellate cells and liver fibrosis in mice through modulation of HMGB1-TLR2/4-NF-κB signaling pathways. Toxicol. Lett., 2016, 261, 1-12.
[http://dx.doi.org/10.1016/j.toxlet.2016.09.002] [PMID: 27601294]
[144]
Bhaskar, S.; Sudhakaran, P.R.; Helen, A. Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway. Cell. Immunol., 2016, 310, 131-140.
[http://dx.doi.org/10.1016/j.cellimm.2016.08.011] [PMID: 27585526]
[145]
Li, X.; Liu, H.; Yao, Q.; Xu, B.; Zhang, S.; Tu, C. Quercetin protects mice from ConA-induced hepatitis by inhibiting HMGB1-TLR expression and down-regulating the nuclear factor kappa B pathway. Inflammation, 2016, 39(1), 96-106.
[http://dx.doi.org/10.1007/s10753-015-0227-9] [PMID: 26267064]
[146]
Ma, J.Q.; Li, Z.; Xie, W.R.; Liu, C.M.; Liu, S.S. Quercetin protects mouse liver against CCl4-induced inflammation by the TLR2/4 and MAPK/NF-κB pathway. Int. Immunopharmacol., 2015, 28(1), 531-539.
[http://dx.doi.org/10.1016/j.intimp.2015.06.036] [PMID: 26218279]
[147]
Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Pitchaimani, V.; Sreedhar, R.; Afrin, R.; Harima, M.; Suzuki, H.; Nomoto, M.; Miyashita, S.; Suzuki, K.; Nakamura, M.; Watanabe, K. Modulation of HMGB1 translocation and RAGE/NF κ B cascade by quercetin treatment mitigates atopic dermatitis in NC/Nga transgenic mice. Exp. Dermatol., 2015, 24(6), 418-423.
[http://dx.doi.org/10.1111/exd.12685] [PMID: 25739980]
[148]
Marcolin, E.; San-Miguel, B.; Vallejo, D.; Tieppo, J.; Marroni, N.; González-Gallego, J.; Tuñón, M.J. Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic steatohepatitis. J. Nutr., 2012, 142(10), 1821-1828.
[http://dx.doi.org/10.3945/jn.112.165274] [PMID: 22915297]
[149]
Khajevand-Khazaei, M.R.; Mohseni-Moghaddam, P.; Hosseini, M.; Gholami, L.; Baluchnejadmojarad, T.; Roghani, M. Rutin, a quercetin glycoside, alleviates acute endotoxemic kidney injury in C57BL/6 mice via suppression of inflammation and up-regulation of antioxidants and SIRT1. Eur. J. Pharmacol., 2018, 833, 307-313.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.019] [PMID: 29920283]
[150]
Mahmoud, A.; Ahmed, R.; Soliman, H.; Salah, M. Ruta graveolens and its active constituent rutin protect against diethylnitrosamineinduced nephrotoxicity through modulation of oxidative stress. J. App. Pharm. Sci., 2015, 16-21.
[151]
Ahmed, O.M.; Moneim, A.A.; Mahmoud, A.M.; Yazid, I.A. Antihyperglycemic, antihyperlipidemic and antioxidant effects and the probable mechanisms of action of Ruta graveolens infusion and rutin in nicotinamide-streptozotocin-induced diabetic rats. Diabetol. Croat. Diabetologia Croatica, 2010, 39(1), 15-35.
[152]
Huang, R.; Shi, Z.; Chen, L.; Zhang, Y.; Li, J.; An, Y. Rutin alleviates diabetic cardiomyopathy and improves cardiac function in diabetic ApoEknockout mice. Eur. J. Pharmacol., 2017, 814, 151-160.
[http://dx.doi.org/10.1016/j.ejphar.2017.08.023] [PMID: 28826911]
[153]
Qu, S.; Dai, C.; Guo, H.; Wang, C.; Hao, Z.; Tang, Q.; Wang, H.; Zhang, Y. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress. Phytother. Res., 2019, 33(8), 2056-2063.
[http://dx.doi.org/10.1002/ptr.6391] [PMID: 31209949]
[154]
Al-Harbi, N.O.; Imam, F.; Al-Harbi, M.M.; Al-Shabanah, O.A.; Alotaibi, M.R.; As Sobeai, H.M.; Afzal, M.; Kazmi, I.; Al Rikabi, A.C. Rutin inhibits carfilzomib-induced oxidative stress and inflammation via the NOS-mediated NF-κB signaling pathway. Inflammopharmacology, 2019, 27(4), 817-827.
[http://dx.doi.org/10.1007/s10787-018-0550-5] [PMID: 30600471]
[155]
Ganesan, D.; Holkar, A.; Albert, A.; Paul, E.; Mariakuttikan, J.; Sadasivam Selvam, G. Combination of ramipril and rutin alleviate alloxan induced diabetic nephropathy targeting multiple stress pathways in vivo. Biomed. Pharmacother., 2018, 108, 1338-1346.
[156]
Zhang, Y.; Wang, Q.; Wang, Y-D.; Sun, B.; Leng, X-W.; Li, Q.; Ren, L-Q. Effect of rutin on cisplatin-induced damage in human mesangial cells via apoptotic pathway. Hum. Exp. Toxicol., 2019, 38(1), 118-128.
[http://dx.doi.org/10.1177/0960327118785233] [PMID: 29962303]
[157]
Abarikwu, S.O.; Njoku, R.C.; Lawrence, C.J.; Charles, I.A.; Ikewuchi, J.C. Rutin ameliorates oxidative stress and preserves hepatic and renal functions following exposure to cadmium and ethanol. Pharm. Biol., 2017, 55(1), 2161-2169.
[http://dx.doi.org/10.1080/13880209.2017.1387575] [PMID: 29025321]
[158]
Wang, X.; Zhao, X.; Feng, T.; Jin, G.; Li, Z. Rutin prevents high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the ROS/RHOA/ROCK signaling pathway. Planta Med., 2016, 82(14), 1252-1257.
[http://dx.doi.org/10.1055/s-0042-110859] [PMID: 27552253]
[159]
Wang, B.; Liu, D.; Zhu, Q.; Li, M.; Chen, H.; Guo, Y.; Fan, L.; Yue, L.; Li, L.; Zhao, M. Rutin ameliorates kidney interstitial fibrosis in rats with obstructive nephropathy. Int. Immunopharmacol., 2016, 35, 77-84.
[http://dx.doi.org/10.1016/j.intimp.2016.03.029] [PMID: 27035719]
[160]
Han, Y.; Lu, J.S.; Xu, Y.; Zhang, L.; Hong, B.F. Rutin ameliorates renal fibrosis and proteinuria in 5/6-nephrectomized rats by anti-oxidation and inhibiting activation of TGFβ1-smad signaling. Int. J. Clin. Exp. Pathol., 2015, 8(5), 4725-4734.
[PMID: 26191162]
[161]
Kandemir, F.M.; Ozkaraca, M.; Yildirim, B.A.; Hanedan, B.; Kirbas, A.; Kilic, K.; Aktas, E.; Benzer, F. Rutin attenuates gentamicin-induced renal damage by reducing oxidative stress, inflammation, apoptosis, and autophagy in rats. Ren. Fail., 2015, 37(3), 518-525.
[http://dx.doi.org/10.3109/0886022X.2015.1006100] [PMID: 25613739]
[162]
Chen, Y.S.; Hu, Q.H.; Zhang, X.; Zhu, Q.; Kong, L.D. Beneficial effect of rutin on oxonate-induced hyperuricemia and renal dysfunction in mice. Pharmacology, 2013, 92(1-2), 75-83.
[http://dx.doi.org/10.1159/000351703] [PMID: 23942050]
[163]
Korkmaz, A.; Kolankaya, D. Inhibiting inducible nitric oxide synthase with rutin reduces renal ischemia/reperfusion injury. Can. J. Surg., 2013, 56(1), 6-14.
[164]
Korkmaz, A.; Kolankaya, D. Protective effect of rutin on the ischemia/reperfusion induced damage in rat kidney. J. Surg. Res., 2010, 164(2), 309-315.
[http://dx.doi.org/10.1016/j.jss.2009.03.022] [PMID: 19592016]
[165]
Khan, R.A.; Khan, M.R.; Sahreen, S. Protective effects of rutin against potassium bromate induced nephrotoxicity in rats. BMC Complement. Altern. Med., 2012, 12(1), 204.
[http://dx.doi.org/10.1186/1472-6882-12-204] [PMID: 23116356]
[166]
Hu, Q.H.; Wang, C.; Li, J.M.; Zhang, D.M.; Kong, L.D. Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. Am. J. Physiol. Renal Physiol., 2009, 297(4), F1080-F1091.
[http://dx.doi.org/10.1152/ajprenal.90767.2008] [PMID: 19605544]
[167]
Al-Rejaie, S.; Abuohashish, H.; Alkhamees, O.; Aleisa, A.; Alroujayee, A.S. Gender difference following high cholesterol diet induced renal injury and the protective role of rutin and ascorbic acid combination in Wistar albino rats. Lipids Health Dis., 2012, 11(1), 41.
[http://dx.doi.org/10.1186/1476-511X-11-41] [PMID: 22423898]
[168]
Pawar, A.; Deshmukh, C.; Bhanudas, B.; Ghodasara, J. Inhibitory effect of rutin and curcumin on experimentally-induced calcium oxalate urolithiasis in rats. Pharmacognosy Res., 2010, 2(6), 388-392.
[http://dx.doi.org/10.4103/0974-8490.75462] [PMID: 21713144]
[169]
Li, Q.; Dong, D.D.; Huang, Q.P.; Li, J.; Du, Y.Y.; Li, B.; Li, H.Q.; Huyan, T. The anti-inflammatory effect of Sonchus oleraceus aqueous extract on lipopolysaccharide stimulated RAW 264.7 cells and mice. Pharm. Biol., 2017, 55(1), 799-809.
[http://dx.doi.org/10.1080/13880209.2017.1280514] [PMID: 28112016]
[170]
Zhang, Z.; Liu, J.; Shen, P.; Cao, Y.; Lu, X.; Gao, X.; Fu, Y.; Liu, B.; Zhang, N. Zanthoxylum bungeanum pericarp extract prevents dextran sulfate sodium-induced experimental colitis in mice via the regulation of TLR4 and TLR4-related signaling pathways. Int. Immunopharmacol., 2016, 41, 127-135.
[http://dx.doi.org/10.1016/j.intimp.2016.10.021] [PMID: 27843005]
[171]
Fu, W.; Chen, L.; Wang, Z.; Zhao, C.; Chen, G.; Liu, X.; Dai, Y.; Cai, Y.; Li, C.; Zhou, J.; Liang, G. Determination of the binding mode for anti-inflammatory natural product xanthohumol with myeloid differentiation protein 2. Drug Des. Devel. Ther., 2016, 10, 455-463.
[PMID: 26869767]
[172]
Li, F.; Yao, Y.; Huang, H.; Hao, H.; Ying, M. Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways. Int. Immunopharmacol., 2018, 61, 277-282.
[http://dx.doi.org/10.1016/j.intimp.2018.05.017] [PMID: 29906742]
[173]
Abd Malek, S.N.; Yong, W.K.; Ho, Y.F. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. Pharmacogn. Mag., 2015, 11(44)(Suppl. 2), 275.
[http://dx.doi.org/10.4103/0973-1296.166069] [PMID: 26664015]
[174]
Luís, C.; Costa, R.; Rodrigues, I.; Castela, Â.; Coelho, P.; Guerreiro, S.; Gomes, J.; Reis, C.; Soares, R. Xanthohumol and 8-prenylnaringenin reduce type 2 diabetes–associated oxidative stress by downregulating galectin-3. Porto Biomed. J., 2019, 4(1), e23.
[http://dx.doi.org/10.1016/j.pbj.0000000000000023] [PMID: 31595252]
[175]
Pinto, C.; Cestero, J.J.; Rodríguez-Galdón, B.; Macías, P. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus L.), protects rat tissues against oxidative damage after acute ethanol administration. Toxicol. Rep., 2014, 1, 726-733.
[http://dx.doi.org/10.1016/j.toxrep.2014.09.004] [PMID: 28962286]
[176]
Peluso, M.; Miranda, C.; Hobbs, D.; Proteau, R.; Stevens, J. Xanthohumol and related prenylated flavonoids inhibit inflammatory cytokine production in LPS-activated THP-1 monocytes: structure-activity relationships and in silico binding to myeloid differentiation protein-2 (MD-2). Planta Med., 2010, 76(14), 1536-1543.
[http://dx.doi.org/10.1055/s-0029-1241013] [PMID: 20309792]
[177]
Cho, Y.C.; Kim, H.J.; Kim, Y.J.; Lee, K.Y.; Choi, H.J.; Lee, I.S.; Kang, B.Y. Differential anti-inflammatory pathway by xanthohumol in IFN-γ and LPS-activated macrophages. Int. Immunopharmacol., 2008, 8(4), 567-573.
[http://dx.doi.org/10.1016/j.intimp.2007.12.017] [PMID: 18328448]
[178]
Langcake, P.; Pryce, R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol., 1976, 9(1), 77-86.
[http://dx.doi.org/10.1016/0048-4059(76)90077-1]
[179]
Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50(11), 3337-3340.
[http://dx.doi.org/10.1021/jf0112973] [PMID: 12010007]
[180]
Li, J.; Li, L.; Wang, S.; Zhang, C.; Zheng, L.; Jia, Y.; Xu, M.; Zhu, T.; Zhang, Y.; Rong, R. Resveratrol alleviates inflammatory responses and oxidative stress in rat kidney ischemia-reperfusion injury and H2O2-induced NRK-52E cells via the Nrf2/TLR4/NF-kappaB pathway. Cell. Physiol. Biochem., 2018, 45(4), 1677-1689.
[181]
Lançon, A.; Frazzi, R.; Latruffe, N. Anti-oxidant, anti-inflammatory and anti-angiogenic properties of resveratrol in ocular diseases. Molecules, 2016, 21(3), 304.
[http://dx.doi.org/10.3390/molecules21030304] [PMID: 26950104]
[182]
Xu, D.; Li, Y.; Zhang, B.; Wang, Y.; Liu, Y.; Luo, Y.; Niu, W.; Dong, M.; Liu, M.; Dong, H.; Zhao, P.; Li, Z. Resveratrol alleviate hypoxic pulmonary hypertension via anti-inflammation and anti-oxidant pathways in rats. Int. J. Med. Sci., 2016, 13(12), 942-954.
[http://dx.doi.org/10.7150/ijms.16810] [PMID: 27994500]
[183]
Ramalingam, A.; Santhanathas, T.; Shaukat Ali, S.; Zainalabidin, S. Resveratrol supplementation protects against nicotine-induced kidney injury. Int. J. Environ. Res. Public Health, 2019, 16(22), 4445.
[http://dx.doi.org/10.3390/ijerph16224445] [PMID: 31726798]
[184]
Tian, B.; Liu, J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric., 2019.
[PMID: 31756276]
[185]
AlBasher, G.; Abdel-Daim, M.M.; Almeer, R.; Ibrahim, K.A.; Hamza, R.Z.; Bungau, S.; Aleya, L. Synergistic antioxidant effects of resveratrol and curcumin against fipronil-triggered oxidative damage in male albino rats. Environ. Sci. Pollut. Res. Int., 2019.
[PMID: 31873888]
[186]
Arici, M.A.; Sahin, A.; Cavdar, Z.; Ergur, B.U.; Ural, C.; Akokay, P.; Kalkan, S.; Tuncok, Y. Effects of resveratrol on alpha-amanitin-induced nephrotoxicity in BALB/c mice. Hum. Exp. Toxicol., 2020, 39(3), 328-337.
[PMID: 31726883]
[187]
Zargar, S.; Alonazi, M.; Rizwana, H.; Wani, T.A. Resveratrol reverses thioacetamide-induced renal assault with respect to oxidative stress, renal function, DNA damage, and cytokine release in wistar rats. Oxid. Med. Cell. Longev., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/1702959] [PMID: 31583036]
[188]
Baltaci, A.K.; Gokbudak, H.; Baltaci, S.B.; Mogulkoc, R.; Avunduk, M.C. The effects of resveratrol administration on lipid oxidation in experimental renal ischemia-reperfusion injury in rats. Biotech. Histochem., 2019, 94(8), 592-599.
[189]
Cheng, K.; Song, Z.; Chen, Y.; Li, S.; Zhang, Y.; Zhang, H.; Zhang, L.; Wang, C.; Wang, T. Resveratrol protects against renal damage via attenuation of inflammation and oxidative stress in high-fat-diet-induced obese mice. Inflammation, 2019, 42(3), 937-945.
[http://dx.doi.org/10.1007/s10753-018-0948-7] [PMID: 30554371]
[190]
Ibrahim, A.; Al-Hizab, F.A.; Abushouk, A.I.; Abdel-Daim, M.M. Nephroprotective effects of benzyl isothiocyanate and resveratrol against cisplatin-induced oxidative stress and inflammation. Front. Pharmacol., 2018, 9, 1268.
[http://dx.doi.org/10.3389/fphar.2018.01268] [PMID: 30524274]
[191]
Yuan, D.; Liu, X.M.; Fang, Z.; Du, L.L.; Chang, J.; Lin, S.H. Protective effect of resveratrol on kidney in rats with diabetic nephropathy and its effect on endoplasmic reticulum stress. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(5), 1485-1493.
[PMID: 29565511]
[192]
Qiao, Y.; Gao, K.; Wang, Y.; Wang, X.; Cui, B. Resveratrol ameliorates diabetic nephropathy in rats through negative regulation of the p38 MAPK/TGF-β1 pathway. Exp. Ther. Med., 2017, 13(6), 3223-3230.
[http://dx.doi.org/10.3892/etm.2017.4420] [PMID: 28588674]
[193]
Kim, E.N.; Lim, J.H.; Kim, M.Y.; Ban, T.H.; Jang, I.A.; Yoon, H.E.; Park, C.W.; Chang, Y.S.; Choi, B.S. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging (Albany NY), 2018, 10(1), 83-99.
[http://dx.doi.org/10.18632/aging.101361] [PMID: 29326403]
[194]
Chen, L.; Yang, S.; Zumbrun, E.E.; Guan, H.; Nagarkatti, P.S.; Nagarkatti, M. Resveratrol attenuates lipopolysaccharide-induced acute kidney injury by suppressing inflammation driven by macrophages. Mol. Nutr. Food Res., 2015, 59(5), 853-864.
[http://dx.doi.org/10.1002/mnfr.201400819] [PMID: 25643926]
[195]
Shang, X.; Lin, K.; Yu, R.; Zhu, P.; Zhang, Y.; Wang, L.; Xu, J.; Chen, K. Resveratrol protects the myocardium in sepsis by activating the phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and inhibiting the nuclear factor-κB (NF-κB) signaling pathway. Med. Sci. Monit., 2019, 25, 9290-9298.
[http://dx.doi.org/10.12659/MSM.918369] [PMID: 31806860]
[196]
Liang, Y.; Zhou, J.; Ji, K.; Liu, H.; Degen, A.; Zhai, M.; Jiao, D.; Guo, J.; Zhao, Z.; Yang, G. Protective effect of resveratrol improves systemic inflammation responses in LPS-injected lambs. Animals (Basel), 2019, 9(11), 872.
[http://dx.doi.org/10.3390/ani9110872] [PMID: 31661768]
[197]
Wang, G.; Hu, Z.; Fu, Q.; Song, X.; Cui, Q.; Jia, R.; Zou, Y.; He, C.; Li, L.; Yin, Z. Resveratrol mitigates lipopolysaccharide-mediated acute inflammation in rats by inhibiting the TLR4/NF-κBp65/MAPKs signaling cascade. Sci. Rep., 2017, 7(1), 45006.
[http://dx.doi.org/10.1038/srep45006] [PMID: 28322346]
[198]
Jiang, H.; Duan, J.; Xu, K.; Zhang, W. Resveratrol protects against asthma induced airway inflammation and remodeling by inhibiting the HMGB1/TLR4/NF κB pathway. Exp. Ther. Med., 2019, 18(1), 459-466.
[http://dx.doi.org/10.3892/etm.2019.7594] [PMID: 31258683]
[199]
Lei, J.R.; Tu, X.K.; Wang, Y.; Tu, D.W.; Shi, S.S. Resveratrol downregulates the TLR4 signaling pathway to reduce brain damage in a rat model of focal cerebral ischemia. Exp. Ther. Med., 2019, 17(4), 3215-3221.
[http://dx.doi.org/10.3892/etm.2019.7324] [PMID: 30936996]
[200]
Huo, X.; Zhang, T.; Meng, Q.; Li, C.; You, B. Resveratrol effects on a diabetic rat model with coronary heart disease. Med. Sci. Monit., 2019, 25, 540-546.
[http://dx.doi.org/10.12659/MSM.910996] [PMID: 30658350]
[201]
Chen, J.; Cao, X.; Cui, Y.; Zeng, G.; Chen, J.; Zhang, G. Resveratrol alleviates lysophosphatidylcholine-induced damage and inflammation in vascular endothelial cells. Mol. Med. Rep., 2018, 17(3), 4011-4018.
[PMID: 29257345]
[202]
Zhou, Z.X.; Mou, S.F.; Chen, X.Q.; Gong, L.L.; Ge, W.S. Anti-inflammatory activity of resveratrol prevents inflammation by inhibiting NF κB in animal models of acute pharyngitis. Mol. Med. Rep., 2018, 17(1), 1269-1274.
[PMID: 29115472]
[203]
Gu, H.; Jiao, Y.; Yu, X.; Li, X.; Wang, W.; Ding, L.; Liu, L. Resveratrol inhibits the IL-1β-induced expression of MMP-13 and IL-6 in human articular chondrocytes via TLR4/MyD88-dependent and -independent signaling cascades. Int. J. Mol. Med., 2017, 39(3), 734-740.
[http://dx.doi.org/10.3892/ijmm.2017.2885] [PMID: 28204817]
[204]
Feng, Y.; Cui, Y.; Gao, J.L.; Li, M.H.; Li, R.; Jiang, X.H.; Tian, Y.X.; Wang, K.J.; Cui, C.M.; Cui, J.Z. Resveratrol attenuates neuronal autophagy and inflammatory injury by inhibiting the TLR4/NF-κB signaling pathway in experimental traumatic brain injury. Int. J. Mol. Med., 2016, 37(4), 921-930.
[http://dx.doi.org/10.3892/ijmm.2016.2495] [PMID: 26936125]
[205]
Zhang, D.Q.; Sun, P.; Jin, Q.; Li, X.; Zhang, Y.; Zhang, Y.J.; Wu, Y.L.; Nan, J.X.; Lian, L.H. Resveratrol regulates activated hepatic stellate cells by modulating NF-ΚB and the PI3K/AKT signaling pathway. J. Food Sci., 2016, 81(1), H240-H245.
[http://dx.doi.org/10.1111/1750-3841.13157] [PMID: 26613251]
[206]
Zhen, L.; Fan, D.; Zhang, Y.; Cao, X.; Wang, L. Resveratrol ameliorates experimental periodontitis in diabetic mice through negative regulation of TLR4 signaling. Acta Pharmacol. Sin., 2015, 36(2), 221-228.
[http://dx.doi.org/10.1038/aps.2014.131] [PMID: 25530164]
[207]
Li, J.; Xie, C.; Zhuang, J.; Li, H.; Yao, Y.; Shao, C.; Wang, H. Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: Role of the TLR4/NF-κB signaling pathway. Mol. Med. Rep., 2015, 11(2), 1120-1126.
[PMID: 25405531]
[208]
Zhang, C.; Lin, G.; Wan, W.; Li, X.; Zeng, B.; Yang, B.; Huang, C. Resveratrol, a polyphenol phytoalexin, protects cardiomyocytes against anoxia/reoxygenation injury via the TLR4/NF-κB signaling pathway. Int. J. Mol. Med., 2012, 29(4), 557-563.
[http://dx.doi.org/10.3892/ijmm.2012.885] [PMID: 22246136]
[209]
Zhang, Z.; Chen, N.; Liu, J.B.; Wu, J.B.; Zhang, J.; Zhang, Y.; Jiang, X. Protective effect of resveratrol against acute lung injury induced by lipopolysaccharide via inhibiting the myd88-dependent Toll-like receptor 4 signaling pathway. Mol. Med. Rep., 2014, 10(1), 101-106.
[http://dx.doi.org/10.3892/mmr.2014.2226] [PMID: 24818579]
[210]
Kim, S.; Jin, Y.; Choi, Y.; Park, T. Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem. Pharmacol., 2011, 81(11), 1343-1351.
[http://dx.doi.org/10.1016/j.bcp.2011.03.012] [PMID: 21439945]
[211]
Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic Acid: therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr., 2007, 40(2), 92-100.
[http://dx.doi.org/10.3164/jcbn.40.92] [PMID: 18188410]
[212]
Mahmoud, A.M.; Hussein, O.E.; Hozayen, W.G.; Bin-Jumah, M.; Abd El-Twab, S.M. Ferulic acid prevents oxidative stress, inflammation, and liver injury via upregulation of Nrf2/HO-1 signaling in methotrexate-induced rats. Environ. Sci. Pollut. Res. Int., 2020, 27(8), 7910-7921.
[http://dx.doi.org/10.1007/s11356-019-07532-6] [PMID: 31889292]
[213]
Mahmoud, A.M.; Hussein, O.E.; Abd El-Twab, S.M.; Hozayen, W.G. Ferulic acid protects against methotrexate nephrotoxicity via activation of Nrf2/ARE/HO-1 signaling and PPARγ and suppression of NF-κB/NLRP3 inflammasome axis. Food Funct., 2019, 10(8), 4593-4607.
[http://dx.doi.org/10.1039/C9FO00114J] [PMID: 31289794]
[214]
Mir, S.M.; Ravuri, H.G.; Pradhan, R.K.; Narra, S.; Kumar, J.M.; Kuncha, M.; Kanjilal, S.; Sistla, R. Ferulic acid protects lipopolysaccharide-induced acute kidney injury by suppressing inflammatory events and upregulating antioxidant defenses in Balb/c mice. Biomed. Pharmacother., 2018, 100, 304-315.
[215]
McCarty, M.F.; Iloki-Assanga, S.; Lujany, L.M.L. Nutraceutical targeting of TLR4 signaling has potential for prevention of cancer cachexia. Med. Hypotheses, 2019, 132, 109326.
[http://dx.doi.org/10.1016/j.mehy.2019.109326] [PMID: 31421423]
[216]
Rehman, S.U.; Ali, T.; Alam, S.I.; Ullah, R.; Zeb, A.; Lee, K.W.; Rutten, B.P.F.; Kim, M.O. Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 receptor in the mouse hippocampus. Mol. Neurobiol., 2019, 56(4), 2774-2790.
[http://dx.doi.org/10.1007/s12035-018-1280-9] [PMID: 30058023]
[217]
Ren, Z.; Zhang, R.; Li, Y.; Li, Y.; Yang, Z.; Yang, H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int. J. Mol. Med., 2017, 40(5), 1444-1456.
[http://dx.doi.org/10.3892/ijmm.2017.3127] [PMID: 28901374]
[218]
Yuan, J.; Ge, K.; Mu, J.; Rong, J.; Zhang, L.; Wang, B.; Wan, J.; Xia, G. Ferulic acid attenuated acetaminophen-induced hepatotoxicity though down-regulating the cytochrome P 2E1 and inhibiting toll-like receptor 4 signaling-mediated inflammation in mice. Am. J. Transl. Res., 2016, 8(10), 4205-4214.
[PMID: 27830004]
[219]
Huang, F.; Deng, H.M.; Zhu, M.M.; Xiao, F.; Yang, L.; Zhang, Z.J.; Xiao, Y.; Nie, H. Inhibitory effect of ferulic acid on inflammatory response in microglia induced by lipopolysaccharides. Zool. Res., 2011, 32(3), 311-316.
[PMID: 21698798]
[220]
Xu, L.N.; Wei, Y.L.; Peng, J.Y. [Advances in study of dioscin--a natural product] Zhongguo Zhongyao Zazhi, 2015, 40(1), 36-41.
[PMID: 25993784]
[221]
Hu, Y.; Mao, Z.; Xu, L.; Yin, L.; Tao, X.; Tang, Z.; Qi, Y.; Sun, P.; Peng, J. Protective effect of dioscin against intestinal ischemia/reperfusion injury via adjusting miR-351-5p-mediated oxidative stress. Pharmacol. Res., 2018, 137, 56-63.
[http://dx.doi.org/10.1016/j.phrs.2018.09.016] [PMID: 30240824]
[222]
Zeng, H.; Yang, L.; Zhang, X.; Chen, Y.; Cai, J. Dioscin prevents LPS induced acute lung injury through inhibiting the TLR4/MyD88 signaling pathway via upregulation of HSP70. Mol. Med. Rep., 2018, 17(5), 6752-6758.
[http://dx.doi.org/10.3892/mmr.2018.8667] [PMID: 29512786]
[223]
Qi, M.; Zheng, L.; Qi, Y.; Han, X.; Xu, Y.; Xu, L.; Yin, L.; Wang, C.; Zhao, Y.; Sun, H.; Liu, K.; Peng, J. Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70. Pharmacol. Res., 2015, 100, 341-352.
[http://dx.doi.org/10.1016/j.phrs.2015.08.025] [PMID: 26348276]
[224]
Aumsuwan, P.; Khan, S.I.; Khan, I.A.; Ali, Z.; Avula, B.; Walker, L.A.; Shariat-Madar, Z.; Helferich, W.G.; Katzenellenbogen, B.S.; Dasmahapatra, A.K. The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 in vitro. Arch. Biochem. Biophys., 2016, 591, 98-110.
[http://dx.doi.org/10.1016/j.abb.2015.12.001] [PMID: 26682631]
[225]
Tao, X.; Xu, L.; Yin, L.; Han, X.; Qi, Y.; Xu, Y.; Song, S.; Zhao, Y.; Peng, J. RETRACTED ARTICLE: Dioscin induces prostate cancer cell apoptosis through activation of estrogen receptor-β. Cell Death Dis., 2017, 8(8), e2989.
[http://dx.doi.org/10.1038/cddis.2017.391] [PMID: 28796245]
[226]
Zhang, Y.; Tao, X.; Yin, L.; Xu, L.; Xu, Y.; Qi, Y.; Han, X.; Song, S.; Zhao, Y.; Lin, Y.; Liu, K.; Peng, J. Protective effects of dioscin against cisplatin-induced nephrotoxicity via the microRNA-34a/sirtuin 1 signalling pathway. Br. J. Pharmacol., 2017, 174(15), 2512-2527.
[http://dx.doi.org/10.1111/bph.13862] [PMID: 28514495]
[227]
Qiao, Y.; Xu, L.; Tao, X.; Yin, L.; Qi, Y.; Xu, Y.; Han, X.; Tang, Z.; Ma, X.; Liu, K.; Peng, J. Protective effects of dioscin against fructose-induced renal damage via adjusting Sirt3-mediated oxidative stress, fibrosis, lipid metabolism and inflammation. Toxicol. Lett., 2018, 284, 37-45.
[http://dx.doi.org/10.1016/j.toxlet.2017.11.031] [PMID: 29197622]
[228]
Zhang, Y.; Xu, Y.; Qi, Y.; Xu, L.; Song, S.; Yin, L.; Tao, X.; Zhen, Y.; Han, X.; Ma, X.; Liu, K.; Peng, J. Protective effects of dioscin against doxorubicin-induced nephrotoxicity via adjusting FXR-mediated oxidative stress and inflammation. Toxicology, 2017, 378, 53-64.
[http://dx.doi.org/10.1016/j.tox.2017.01.007] [PMID: 28082111]
[229]
Qi, M.; Yin, L.; Xu, L.; Tao, X.; Qi, Y.; Han, X.; Wang, C.; Xu, Y.; Sun, H.; Liu, K.; Peng, J. Dioscin alleviates lipopolysaccharide-induced inflammatory kidney injury via the microRNA let-7i/TLR4/MyD88 signaling pathway. Pharmacol. Res., 2016, 111, 509-522.
[http://dx.doi.org/10.1016/j.phrs.2016.07.016] [PMID: 27431331]
[230]
Yao, H.; Sun, Y.; Song, S.; Qi, Y.; Tao, X.; Xu, L.; Yin, L.; Han, X.; Xu, Y.; Li, H.; Sun, H.; Peng, J. Protective effects of dioscin against lipopolysaccharide-induced acute lung injury through inhibition of oxidative stress and inflammation. Front. Pharmacol., 2017, 8, 120.
[http://dx.doi.org/10.3389/fphar.2017.00120] [PMID: 28377715]
[231]
Zhu, S.; Tang, S.; Su, F. Dioscin inhibits ischemic stroke induced inflammation through inhibition of the TLR4/MyD88/NF κB signaling pathway in a rat model. Mol. Med. Rep., 2018, 17(1), 660-666.
[PMID: 29115455]
[232]
Yang, R.; Chen, W.; Lu, Y.; Li, Y.; Du, H.; Gao, S.; Dong, X.; Yuan, H. Dioscin relieves endotoxemia induced acute neuro-inflammation and protect neurogenesis via improving 5-HT metabolism. Sci. Rep., 2017, 7(1), 40035.
[http://dx.doi.org/10.1038/srep40035] [PMID: 28059131]
[233]
Zhang, W.; Yin, L.; Tao, X.; Xu, L.; Zheng, L.; Han, X.; Xu, Y.; Wang, C.; Peng, J. Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation. Environ. Toxicol. Pharmacol., 2016, 45, 193-201.
[http://dx.doi.org/10.1016/j.etap.2016.06.002] [PMID: 27317992]
[234]
Tao, X.; Qi, Y.; Xu, L.; Yin, L.; Han, X.; Xu, Y.; Wang, C.; Sun, H.; Peng, J. Dioscin reduces ovariectomy-induced bone loss by enhancing osteoblastogenesis and inhibiting osteoclastogenesis. Pharmacol. Res., 2016, 108, 90-101.
[http://dx.doi.org/10.1016/j.phrs.2016.05.003] [PMID: 27155058]
[235]
Yao, H.; Hu, C.; Yin, L.; Tao, X.; Xu, L.; Qi, Y.; Han, X.; Xu, Y.; Zhao, Y.; Wang, C.; Peng, J. Dioscin reduces lipopolysaccharide-induced inflammatory liver injury via regulating TLR4/MyD88 signal pathway. Int. Immunopharmacol., 2016, 36, 132-141.
[http://dx.doi.org/10.1016/j.intimp.2016.04.023] [PMID: 27135544]
[236]
Liu, M.; Xu, Y.; Han, X.; Yin, L.; Xu, L.; Qi, Y.; Zhao, Y.; Liu, K.; Peng, J. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway. Sci. Rep., 2016, 5(1), 18038.
[http://dx.doi.org/10.1038/srep18038] [PMID: 26655640]
[237]
Tao, X.; Sun, X.; Yin, L.; Han, X.; Xu, L.; Qi, Y.; Xu, Y.; Li, H.; Lin, Y.; Liu, K.; Peng, J. Dioscin ameliorates cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via HMGB-1 inhibition. Free Radic. Biol. Med., 2015, 84, 103-115.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.003] [PMID: 25772012]
[238]
Nagatoshi, M.; Terasaka, K.; Nagatsu, A.; Mizukami, H. Iridoid-specific glucosyltransferase from Gardenia jasminoides. J. Biol. Chem., 2011, 286(37), 32866-32874.
[http://dx.doi.org/10.1074/jbc.M111.242586] [PMID: 21799001]
[239]
Kwon, S.H.; Kim, J.A.; Hong, S.I.; Jung, Y.H.; Kim, H.C.; Lee, S.Y.; Jang, C.G. Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK, p38, and ERK 1/2 MAPKs in SH-SY5Y cells. Neurochem. Int., 2011, 58(4), 533-541.
[http://dx.doi.org/10.1016/j.neuint.2011.01.012] [PMID: 21241762]
[240]
Kim, M.J.; Bae, G.S.; Jo, I.J.; Choi, S.B.; Kim, D.G.; Shin, J.Y.; Lee, S.K.; Kim, M.J.; Shin, S.; Song, H.J.; Park, S.J. Loganin protects against pancreatitis by inhibiting NF-κB activation. Eur. J. Pharmacol., 2015, 765, 541-550.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.019] [PMID: 26407655]
[241]
Li, Y.; Li, Z.; Shi, L.; Zhao, C.; Shen, B.; Tian, Y.; Feng, H. Loganin inhibits the inflammatory response in mouse 3T3L1 adipocytes and mouse model. Int. Immunopharmacol., 2016, 36, 173-179.
[http://dx.doi.org/10.1016/j.intimp.2016.04.026] [PMID: 27155393]
[242]
Liu, K.; Xu, H.; Lv, G.; Liu, B.; Lee, M.K.K.; Lu, C.; Lv, X.; Wu, Y. Loganin attenuates diabetic nephropathy in C57BL/6J mice with diabetes induced by streptozotocin and fed with diets containing high level of advanced glycation end products. Life Sci., 2015, 123, 78-85.
[http://dx.doi.org/10.1016/j.lfs.2014.12.028] [PMID: 25623853]
[243]
Zhao, M.; Tao, J.; Qian, D.; Liu, P.; Shang, E.; Jiang, S.; Guo, J.; Su, S.; Duan, J.; Du, L. Simultaneous determination of loganin, morroniside, catalpol and acteoside in normal and chronic kidney disease rat plasma by UPLC–MS for investigating the pharmacokinetics of Rehmannia glutinosa and Cornus officinalis Sieb drug pair extract. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1009-1010, 122-129.
[http://dx.doi.org/10.1016/j.jchromb.2015.12.020] [PMID: 26720701]
[244]
Li, J.; Tan, Y.; Wang, M.; Sun, Y.; Li, G.; Wang, Q.; Yao, J.; Yue, J.; Liu, Z.; Zhang, G.; Ren, Y. LOGANETIN protects against rhabdomyolysis-induced acute kidney injury by modulating the toll-like receptor 4 signalling pathway. Br. J. Pharmacol., 2019, 176(8), 1106-1121.
[http://dx.doi.org/10.1111/bph.14595] [PMID: 30706443]
[245]
Fan, H.Y.; Qi, D.; Yu, C.; Zhao, F.; Liu, T.; Zhang, Z.K.; Yang, M.Y.; Zhang, L.M.; Chen, D.Q.; Du, Y. Paeonol protects endotoxin-induced acute kidney injury: potential mechanism of inhibiting TLR4-NF-κB signal pathway. Oncotarget, 2016, 7(26), 39497-39510.
[http://dx.doi.org/10.18632/oncotarget.8347] [PMID: 27027358]
[246]
Ding, Y.; Li, Q.; Xu, Y.; Chen, Y.; Deng, Y.; Zhi, F.; Qian, K. Attenuating oxidative stress by paeonol protected against acetaminophen-induced hepatotoxicity in mice. PLoS One, 2016, 11(5), e0154375.
[http://dx.doi.org/10.1371/journal.pone.0154375] [PMID: 27144271]
[247]
Wu, J.; Xu, L.; Sun, C.; Zhang, B.; Li, J.; Sun, J.; Zhang, Y.; Sun, D. Paeonol alleviates epirubicin-induced renal injury in mice by regulating Nrf2 and NF-κB pathways. Eur. J. Pharmacol., 2017, 795, 84-93.
[http://dx.doi.org/10.1016/j.ejphar.2016.12.005] [PMID: 27940053]
[248]
Zhang, L.; Chen, Z.; Gong, W.; Zou, Y.; Xu, F.; Chen, L.; Huang, H. Paeonol ameliorates diabetic renal fibrosis through promoting the activation of the Nrf2/ARE pathway via up-regulating sirt1. Front. Pharmacol., 2018, 9, 512.
[http://dx.doi.org/10.3389/fphar.2018.00512] [PMID: 29867511]
[249]
Gao, L.; Wang, Z.; Lu, D.; Huang, J.; Liu, J.; Hong, L. Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells. Cell Death Dis., 2019, 10(8), 609.
[http://dx.doi.org/10.1038/s41419-019-1849-x] [PMID: 31406198]
[250]
Zhou, H.; Qiu, Z.Z.; Yu, Z.H.; Gao, L.; He, J.M.; Zhang, Z.W.; Zheng, J. Paeonol reverses promoting effect of the HOTAIR/miR-124/Notch1 axis on renal interstitial fibrosis in a rat model. J. Cell. Physiol., 2019, 234(8), 14351-14363.
[http://dx.doi.org/10.1002/jcp.28137] [PMID: 30714138]
[251]
Liu, C.M.; Yang, H.X.; Ma, J.Q.; Yang, W.; Feng, Z.J.; Sun, J.M.; Cheng, C.; Li, J.; Jiang, H. Role of AMPK pathway in lead-induced endoplasmic reticulum stress in kidney and in paeonol-induced protection in mice. Food Chem. Toxicol., 2018, 122, 87-94.
[252]
Lee, H.; Lee, G.; Kim, H.; Bae, H. Paeonol, a major compound of moutan cortex, attenuates Cisplatin-induced nephrotoxicity in mice. Evidence-based complementary and alternative medicine : eCAM. 2013, 2013, 310989.
[253]
Zhou, J.; Liu, Q.; Qian, R.; Liu, S.; Hu, W.; Liu, Z. Paeonol antagonizes oncogenesis of osteosarcoma by inhibiting the function of TLR4/MAPK/NF-κB pathway. Acta Histochem., 2020, 122(1), 151455.
[http://dx.doi.org/10.1016/j.acthis.2019.151455] [PMID: 31587886]
[254]
Wang, F.; Zhu, M.; Jiang, N.; Zhang, M.; Feng, L.; Jia, X. Paeonol ameliorates lipopolysaccharides-induced acute lung injury by regulating TLR4/MyD88/NF-κB signaling pathway. Pharmazie, 2019, 74(2), 101-106.
[PMID: 30782259]
[255]
Tang, Y.; Huang, W.; Song, Q.; Zheng, X.; He, R.; Liu, J. Paeonol ameliorates ovalbumin-induced asthma through the inhibition of TLR4/NF-kappaB and MAPK signaling. Evid. Based Complement. Alternat. Med., 2018, 2018, 3063145.
[256]
Choy, K.W.; Lau, Y.S.; Murugan, D.; Vanhoutte, P.M.; Mustafa, M.R. Paeonol attenuates LPS-induced endothelial dysfunction and apoptosis by inhibiting BMP4 and TLR4 signaling simultaneously but independently. J. Pharmacol. Exp. Ther., 2018, 364(3), 420-432.
[http://dx.doi.org/10.1124/jpet.117.245217] [PMID: 29259041]
[257]
Zhai, K.; Duan, H.; Luo, L.; Cao, W.; Han, F.; Shan, L.; Fang, X. Protective effects of paeonol on inflammatory response in IL-1β-induced human fibroblast-like synoviocytes and rheumatoid arthritis progression via modulating NF-κB pathway. Inflammopharmacology, 2017, 25(5), 523-532.
[http://dx.doi.org/10.1007/s10787-017-0385-5] [PMID: 28799079]
[258]
Liao, W.Y.; Tsai, T.H.; Ho, T.Y.; Lin, Y.W.; Cheng, C.Y.; Hsieh, C.L. Neuroprotective effect of paeonol mediates anti-inflammation via suppressing toll-like receptor 2 and toll-like receptor 4 signaling pathways in cerebral ischemia-reperfusion injured rats. Evid. Based Complement. Alternat. Med., 2016, 2016, 3704647.
[259]
He, L.X.; Tong, X.; Zeng, J.; Tu, Y.; Wu, S.; Li, M.; Deng, H.; Zhu, M.; Li, X.; Nie, H.; Yang, L.; Huang, F. Paeonol suppresses neuroinflammatory responses in LPS-activated microglia cells. Inflammation, 2016, 39(6), 1904-1917.
[http://dx.doi.org/10.1007/s10753-016-0426-z] [PMID: 27624059]
[260]
Kong, C.S.; Jeong, C.H.; Choi, J.S.; Kim, K.J.; Jeong, J.W. Antiangiogenic effects of p-coumaric acid in human endothelial cells. Phytother. Res., 2013, 27(3), 317-323.
[http://dx.doi.org/10.1002/ptr.4718] [PMID: 22585412]
[261]
Bag, A.; Chattopadhyay, R.R. Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p -coumaric acid against food-borne bacteria Bacillus cereus and Salmonella typhimurium. Lett. Appl. Microbiol., 2017, 65(5), 366-372.
[http://dx.doi.org/10.1111/lam.12793] [PMID: 28815637]
[262]
Zabad, O.M.; Samra, Y.A.; Eissa, L.A. P-Coumaric acid alleviates experimental diabetic nephropathy through modulation of Toll like receptor-4 in rats. Life Sci., 2019, 238, 116965.
[http://dx.doi.org/10.1016/j.lfs.2019.116965] [PMID: 31629762]
[263]
Chen, J.J.; Deng, J.S.; Huang, C.C.; Li, P.Y.; Liang, Y.C.; Chou, C.Y.; Huang, G.J. p -coumaric-acid-containing Adenostemma lavenia ameliorates acute lung injury by activating AMPK/Nrf2/HO-1 signaling and improving the anti-oxidant response. Am. J. Chin. Med., 2019, 47(7), 1483-1506.
[http://dx.doi.org/10.1142/S0192415X19500769] [PMID: 31645126]
[264]
Mozaffari Godarzi, S.; Valizade Gorji, A.; Gholizadeh, B.; Mard, S.A.; Mansouri, E. Antioxidant effect of p-coumaric acid on interleukin 1-beta and tumor necrosis factor-alpha in rats with renal ischemic reperfusion. Nefrologia, 2019, 40(3)
[265]
Navaneethan, D.; Rasool, M.K. An experimental study to investigate the impact of p-coumaric acid, a common dietary polyphenol, on cadmium chloride-induced renal toxicity. Food Funct., 2014, 5(10), 2438-2445.
[http://dx.doi.org/10.1039/C4FO00346B] [PMID: 25098664]
[266]
Titomanlio, F.; Perfumi, M.; Mattioli, L. Rhodiola rosea L. extract and its active compound salidroside antagonized both induction and reinstatement of nicotine place preference in mice. Psychopharmacology (Berl.), 2014, 231(10), 2077-2086.
[http://dx.doi.org/10.1007/s00213-013-3351-y] [PMID: 24264566]
[267]
Wang, Y.; Su, Y.; Lai, W.; Huang, X.; Chu, K.; Brown, J.; Hong, G. Salidroside restores an anti-inflammatory endothelial phenotype by selectively inhibiting endothelial complement after oxidative stress. Inflammation, 2020, 43(1), 310-325.
[PMID: 31701353]
[268]
Leng, W.; Chen, M.; Liu, C.; Shang, C. Effects and mechanism of salidroside on streptozotocin-induced mode rats of diabetic nephropathy. Wei Sheng Yen Chiu, 2019, 48(3), 366-373.
[PMID: 31133117]
[269]
Kosakowska, O.; Bączek, K.; Przybył, J.L.; Pióro-Jabrucka, E.; Czupa, W.; Synowiec, A.; Gniewosz, M.; Costa, R.; Mondello, L.; Węglarz, Z. Antioxidant and antibacterial activity of roseroot (Rhodiola rosea L.) dry extracts. Molecules, 2018, 23(7), 1767.
[http://dx.doi.org/10.3390/molecules23071767] [PMID: 30022015]
[270]
Huang, X.; Xue, H.; Ma, J.; Zhang, Y.; Zhang, J.; Liu, Y.; Qin, X.; Sun, C. Salidroside ameliorates Adriamycin nephropathy in mice by inhibiting β-catenin activity. J. Cell. Mol. Med., 2019, 23(6), 4443-4453.
[http://dx.doi.org/10.1111/jcmm.14340] [PMID: 30993911]
[271]
Liu, G.; He, L. Salidroside attenuates adriamycin-induced focal segmental glomerulosclerosis by inhibiting the hypoxia-inducible factor-1α expression through phosphatidylinositol 3-kinase/protein kinase b pathway. Nephron J., 2019, 142(3), 243-252.
[http://dx.doi.org/10.1159/000497821] [PMID: 30840958]
[272]
Lv, C.; Huang, Y.; Liu, Z.X.; Yu, D.; Bai, Z.M. Salidroside reduces renal cell carcinoma proliferation by inhibiting JAK2/STAT3 signaling. Cancer Biomark., 2016, 17(1), 41-47.
[http://dx.doi.org/10.3233/CBM-160615] [PMID: 27314291]
[273]
Li, R.; Guo, Y.; Zhang, Y.; Zhang, X.; Zhu, L.; Yan, T. Salidroside ameliorates renal interstitial fibrosis by inhibiting the TLR4/NF-κB and MAPK signaling pathways. Int. J. Mol. Sci., 2019, 20(5), 1103.
[http://dx.doi.org/10.3390/ijms20051103] [PMID: 30836660]
[274]
Sun, Y.; Xun, L.; Jin, G.; Shi, L. Salidroside protects renal tubular epithelial cells from hypoxia/reoxygenation injury in vitro. J. Pharmacol. Sci., 2018, 137(2), 170-176.
[http://dx.doi.org/10.1016/j.jphs.2018.05.011] [PMID: 29960844]
[275]
Lu, R.; Wu, Y.; Guo, H.; Huang, X. Salidroside protects lipopolysaccharide-induced acute lung injury in mice. Dose Response, 2016, 14(4)
[http://dx.doi.org/10.1177/1559325816678492] [PMID: 27928219]
[276]
Sun, P.; Song, S.Z.; Jiang, S.; Li, X.; Yao, Y.L.; Wu, Y.L.; Lian, L.H.; Nan, J.X. Salidroside regulates inflammatory response in Raw 264.7 Macrophages via TLR4/TAK1 and ameliorates inflammation in alcohol binge drinking-induced liver injury. Molecules, 2016, 21(11), 1490.
[http://dx.doi.org/10.3390/molecules21111490] [PMID: 27834881]
[277]
Huang, Q.; Hu, X.L. Effects of salidroside on the secretion of inflammatory mediators induced by lipopolysaccharide in murine macrophage cell line J774.1. Acta Physiolog Sinica, 2017, 69(1), 41-46.
[278]
Zhu, L.; Wei, T.; Gao, J.; Chang, X.; He, H.; Luo, F.; Zhou, R.; Ma, C.; Liu, Y.; Yan, T. The cardioprotective effect of salidroside against myocardial ischemia reperfusion injury in rats by inhibiting apoptosis and inflammation. Apoptosis, 2015, 20(11), 1433-1443.
[279]
Lu, L.; Zhang, H.; Qian, Y.; Yuan, Y. Isolation of salvianolic acid A, a minor phenolic carboxylic acid of Salvia miltiorrhiza Nat. Prod. Commun., 2010, 5(5), 1934578X1000500.
[http://dx.doi.org/10.1177/1934578X1000500525] [PMID: 20521551]
[280]
Zeng, X.; Chen, X.; Qin, H.; Han, Y.; Chen, X.; Han, Z.; Zhao, W. Preventive effects of a natural anti-inflammatory agent Salvianolic acid A on acute kidney injury in mice. Food Chem. Toxicol., 2020, 135, 110901.
[281]
Wang, X.; Qi, D.; Fu, F.; Li, X.; Liu, Y.; Ji, K.; Gao, Z.; Kong, L.; Yu, C.; Xie, H.; Yue, G.; Zhu, H.; Liu, K.; Fan, H. Therapeutic and antiproteinuric effects of salvianolic acid A in combined with low-dose prednisone in minimal change disease rats: Involvement of PPARγ/Angptl4 and Nrf2/HO-1 pathways. Eur. J. Pharmacol., 2019, 858, 172342.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.023] [PMID: 31129156]
[282]
Qian, W.; Wang, Z.; Xu, T.; Li, D. Anti-apoptotic effects and mechanisms of salvianolic acid A on cardiomyocytes in ischemia-reperfusion injury. Histol. Histopathol., 2019, 34(3), 223-231.
[PMID: 30255492]
[283]
Qin, T.; Rasul, A.; Sarfraz, A.; Sarfraz, I.; Hussain, G.; Anwar, H.; Riaz, A.; Liu, S.; Wei, W.; Li, J.; Li, X. Salvianolic acid A & B: potential cytotoxic polyphenols in battle against cancer via targeting multiple signaling pathways. Int. J. Biol. Sci., 2019, 15(10), 2256-2264.
[http://dx.doi.org/10.7150/ijbs.37467] [PMID: 31592132]
[284]
Zhang, Z.; Qi, D.; Wang, X.; Gao, Z.; Li, P.; Liu, W.; Tian, X.; Liu, Y.; Yang, M.; Liu, K.; Fan, H. Protective effect of Salvianolic acid A on ischaemia-reperfusion acute kidney injury in rats through protecting against peritubular capillary endothelium damages. Phytother. Res., 2018, 32(1), 103-114.
[http://dx.doi.org/10.1002/ptr.5954] [PMID: 29071768]
[285]
Hou, B.; Qiang, G.; Zhao, Y.; Yang, X.; Chen, X.; Yan, Y.; Wang, X.; Liu, C.; Zhang, L.; Du, G. Salvianolic acid a protects against diabetic nephropathy through ameliorating glomerular endothelial dysfunction via inhibiting AGE-RAGE signaling. Cell. Physiol. Biochem., 2017, 44(6), 2378-2394.
[286]
Lin, Y.; Yan, Y.; Zhang, H.; Chen, Y.; He, Y.; Wang, S.; Fang, L.; Lv, Y.; Du, G. Salvianolic acid A alleviates renal injury in systemic lupus erythematosus induced by pristane in BALB/c mice. Acta Pharm. Sin. B, 2017, 7(2), 159-166.
[http://dx.doi.org/10.1016/j.apsb.2016.07.001] [PMID: 28303221]
[287]
Li, J.; Gu, T.; Fu, X.; Zhao, R. Effect of salvianolic acid A and C compatibility on inflammatory cytokines in rats with unilateral ureteral obstruction. J. Tradit. Chin. Med., 2015, 33(5), 564-570.
[288]
Fan, H.Y.; Yang, M.Y.; Qi, D.; Zhang, Z.K.; Zhu, L.; Shang-Guan, X.X.; Liu, K.; Xu, H.; Che, X. Salvianolic acid A as a multifunctional agent ameliorates doxorubicin-induced nephropathy in rats. Sci. Rep., 2015, 5(1), 12273.
[http://dx.doi.org/10.1038/srep12273] [PMID: 26194431]
[289]
Yang, L.; Jiang, L.; Jiang, D.; Liu, B.; Jin, S. The protective effects of salvianolic acid A against hepatic ischemia-reperfusion injury via inhibiting expression of toll-like receptor 4 in rats. Arch. Med. Sci., 2019, 15(6), 1599-1607.
[http://dx.doi.org/10.5114/aoms.2019.87412] [PMID: 31749890]
[290]
Liu, H.; Ma, S.; Xia, H.; Lou, H.; Zhu, F.; Sun, L. Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from Salvia miltiorrhiza f. alba roots in THP-1 macrophages. J. Ethnopharmacol., 2018, 222, 201-207.
[http://dx.doi.org/10.1016/j.jep.2018.05.008] [PMID: 29751125]
[291]
Mahmoud, A.M.; Ahmed, O.M.; Galaly, S.R. Thymoquinone and curcumin attenuate gentamicin-induced renal oxidative stress, inflammation and apoptosis in rats. EXCLI J., 2014, 13, 98-110.
[PMID: 26417245]
[292]
Galaly, S.R.; Ahmed, O.M.; Mahmoud, A.M. Thymoquinone and curcumin prevent gentamicin-induced liver injury by attenuating oxidative stress, inflammation and apoptosis. J. Physiol. Pharmacol., 2014, 65(6), 823-832.
[293]
Saghir, S.A.M.; Al-Gabri, N.A.; Ali, A.A.; Al-Attar, A.S.R.; Al-Sobarry, M.; Al-shargi, O.Y.A.; Alotaibi, A.; Al-zharani, M.; Nasr, F.A.; Al-Balagi, N.; Abdulghani, M.A.M.; Alnaimat, S.M.; Althunibat, O.Y.; Mahmoud, A.M. Ameliorative effect of Thymoquinone-loaded PLGA nanoparticles on chronic lung injury induced by repetitive intratracheal instillation of lipopolysaccharide in rats. Oxid. Med. Cell. Longev., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/5511523] [PMID: 34136063]
[294]
Ahmad, A.; Mishra, R.K.; Vyawahare, A.; Kumar, A.; Rehman, M.U.; Qamar, W.; Khan, A.Q.; Khan, R. Thymoquinone (2-Isoprpyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharm. J., 2019, 27(8), 1113-1126.
[295]
Shahin, Y.R.; Elguindy, N.M.; Abdel Bary, A.; Balbaa, M. The protective mechanism of Nigella sativa against diethylnitrosamine-induced hepatocellular carcinoma through its antioxidant effect and EGFR/ERK1/2 signaling. Environ. Toxicol., 2018, 33(8), 885-898.
[http://dx.doi.org/10.1002/tox.22574] [PMID: 29923357]
[296]
Akter, Z.; Ahmed, F.R.; Tania, M.; Khan, M.A. Targeting inflammatory mediators: An anticancer mechanism of thymoquinone action. Curr. Med. Chem., 2021, 28(1), 80-92.
[PMID: 31604405]
[297]
Dera, A. A.; Rajagopalan, P.; Alfhili, M. A.; Ahmed, I.; Chandramoorthy, H. C. Thymoquinone attenuates oxidative stress of kidney mitochondria and exerts nephroprotective effects in oxonic acid-induced hyperuricemia rats. BioFactors (Oxford, England), 2019.
[298]
Ozer, M.K.; Bilgic, S.; Armagan, I.; Savran, M. Thymoquinone protection from amikacin induced renal injury in rats. Biotech. Histochem., 2019, 1-8.
[299]
Liou, Y.F.; Chen, P.N.; Chu, S.C.; Kao, S.H.; Chang, Y.Z.; Hsieh, Y.S.; Chang, H.R. Thymoquinone suppresses the proliferation of renal cell carcinoma cells via reactive oxygen species-induced apoptosis and reduces cell stemness. Environ. Toxicol., 2019, 34(11), 1208-1220.
[http://dx.doi.org/10.1002/tox.22822] [PMID: 31298468]
[300]
Hosseinian, S.; Shahraki, S.; Ebrahimzadeh Bideskan, A.; Shafei, M.N.; Sadeghnia, H.R.; Soukhtanloo, M.; Rahmani, F.; Khajavi Rad, A. Thymoquinone alleviates renal interstitial fibrosis and kidney dysfunction in rats with unilateral ureteral obstruction. Phytother. Res., 2019, 33(8), 2023-2033.
[http://dx.doi.org/10.1002/ptr.6376] [PMID: 31215078]
[301]
Mabrouk, A. Thymoquinone attenuates lead-induced nephropathy in rats. J. Biochem. Mol. Toxicol., 2018, e22238.
[PMID: 30290066]
[302]
Aycan, I.O.; Elpek, O.; Akkaya, B.; Kirac, E.; Tuzcu, H.; Kaya, S.; Coskunfirat, N.; Aslan, M. Diclofenac induced gastrointestinal and renal toxicity is alleviated by thymoquinone treatment. Food Chem. Toxicol., 2018, 118, 795-804.
[303]
Abdel-Daim, M.M.; Shaheen, H.M.; Abushouk, A.I.; Toraih, E.A.; Fawzy, M.S.; Alansari, W.S.; Aleya, L.; Bungau, S. Thymoquinone and diallyl sulfide protect against fipronil-induced oxidative injury in rats. Environ. Sci. Pollut. Res. Int., 2018, 25(24), 23909-23916.
[http://dx.doi.org/10.1007/s11356-018-2386-3] [PMID: 29881965]
[304]
Hammad, F.T.; Lubbad, L. The effect of thymoquinone on the renal functions following ischemia-reperfusion injury in the rat. Int. J. Physiol. Pathophysiol. Pharmacol., 2016, 8(4), 152-159.
[PMID: 28078054]
[305]
Sener, U.; Uygur, R.; Aktas, C.; Uygur, E.; Erboga, M.; Balkas, G.; Caglar, V.; Kumral, B.; Gurel, A.; Erdogan, H. Protective effects of thymoquinone against apoptosis and oxidative stress by arsenic in rat kidney. Ren. Fail., 2016, 38(1), 117-123.
[http://dx.doi.org/10.3109/0886022X.2015.1103601] [PMID: 26513487]
[306]
Erboga, M.; Kanter, M.; Aktas, C.; Sener, U.; Fidanol Erboga, Z.; Bozdemir Donmez, Y.; Gurel, A. Thymoquinone ameliorates cadmium-induced nephrotoxicity, apoptosis, and oxidative stress in rats is based on its anti-apoptotic and anti-oxidant properties. Biol. Trace Elem. Res., 2016, 170(1), 165-172.
[http://dx.doi.org/10.1007/s12011-015-0453-x] [PMID: 26226832]
[307]
Samarghandian, S.; Azimi-Nezhad, M.; Mehrad-Majd, H.; Mirhafez, S.R. Thymoquinone ameliorates acute renal failure in gentamicin-treated adult male rats. Pharmacology, 2015, 96(3-4), 112-117.
[http://dx.doi.org/10.1159/000436975] [PMID: 26202209]
[308]
Basarslan, F.; Yilmaz, N.; Ates, S.; Ozgur, T.; Tutanc, M.; Motor, V.K.; Arica, V.; Yilmaz, C.; Inci, M.; Buyukbas, S. Protective effects of thymoquinone on vancomycin-induced nephrotoxicity in rats. Hum. Exp. Toxicol., 2012, 31(7), 726-733.
[http://dx.doi.org/10.1177/0960327111433185] [PMID: 22318306]
[309]
Alhusaini, A.M.; Faddah, L.M.; El Orabi, N.F.; Hasan, I.H. Role of some natural antioxidants in the modulation of some proteins expressions against sodium fluoride-induced renal injury. BioMed Res. Int., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/5614803] [PMID: 30050936]
[310]
Arjumand, S.; Shahzad, M.; Shabbir, A.; Yousaf, M.Z. Thymoquinone attenuates rheumatoid arthritis by downregulating TLR2, TLR4, TNF-alpha, IL-1, and NFkappaB expression levels. Biomed. Pharmacother., 2019, 111, 958-963.
[311]
Abulfadl, Y.S.; El-Maraghy, N.N.; Ahmed, A.A.E.; Nofal, S.; Abdel-Mottaleb, Y.; Badary, O.A. Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signaling. Hum. Exp. Toxicol., 2018, 37(10), 1092-1104.
[http://dx.doi.org/10.1177/0960327118755256] [PMID: 29405769]
[312]
Bai, T.; Yang, Y.; Wu, Y.L.; Jiang, S.; Lee, J.J.; Lian, L.H.; Nan, J.X. Thymoquinone alleviates thioacetamide-induced hepatic fibrosis and inflammation by activating LKB1–AMPK signaling pathway in mice. Int. Immunopharmacol., 2014, 19(2), 351-357.
[http://dx.doi.org/10.1016/j.intimp.2014.02.006] [PMID: 24560906]
[313]
Bai, T.; Lian, L.H.; Wu, Y.L.; Wan, Y.; Nan, J.X. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells. Int. Immunopharmacol., 2013, 15(2), 275-281.
[http://dx.doi.org/10.1016/j.intimp.2012.12.020] [PMID: 23318601]
[314]
Shishodia, S.; Majumdar, S.; Banerjee, S.; Aggarwal, B.B. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res., 2003, 63(15), 4375-4383.
[PMID: 12907607]
[315]
Katashima, C.K.; Silva, V.R.; Gomes, T.L.; Pichard, C.; Pimentel, G.D. Ursolic acid and mechanisms of actions on adipose and muscle tissue: a systematic review. Obes. Rev., 2017, 18(6), 700-711.
[http://dx.doi.org/10.1111/obr.12523] [PMID: 28335087]
[316]
Li, J.; Li, N.; Yan, S.; Liu, M.; Sun, B.; Lu, Y.; Shao, Y. Ursolic acid alleviates inflammation and against diabetes induced nephropathy through TLR4 mediated inflammatory pathway. Mol. Med. Rep., 2018, 18(5), 4675-4681.
[http://dx.doi.org/10.3892/mmr.2018.9429] [PMID: 30221655]
[317]
Zhao, J.; Zheng, H.; Sui, Z.; Jing, F.; Quan, X.; Zhao, W.; Liu, G. Ursolic acid exhibits anti-inflammatory effects through blocking TLR4-MyD88 pathway mediated by autophagy. Cytokine, 2019, 123, 154726.
[http://dx.doi.org/10.1016/j.cyto.2019.05.013] [PMID: 31302461]
[318]
Bacanlı, M.; Basaran, A.A.; Basaran, N. The antioxidant, cytotoxic, and antigenotoxic effects of galangin, puerarin, and ursolic acid in mammalian cells. Drug Chem. Toxicol., 2017, 40(3), 256-262.
[http://dx.doi.org/10.1080/01480545.2016.1209680] [PMID: 27461151]
[319]
do Nascimento, P.; Lemos, T.; Bizerra, A.; Arriaga, Â.; Ferreira, D.; Santiago, G.; Braz-Filho, R.; Costa, J. Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules, 2014, 19(1), 1317-1327.
[http://dx.doi.org/10.3390/molecules19011317] [PMID: 24451251]
[320]
Castrejón-Jiménez, N.S.; Leyva-Paredes, K.; Baltierra-Uribe, S.L.; Castillo-Cruz, J.; Campillo-Navarro, M.; Hernández-Pérez, A.D.; Luna-Angulo, A.B.; Chacón-Salinas, R.; Coral-Vázquez, R.M.; Estrada-García, I.; Sánchez-Torres, L.E.; Torres-Torres, C.; García-Pérez, B.E. Ursolic and oleanolic acids induce mitophagy in a549 human lung cancer cells. Molecules, 2019, 24(19), 3444.
[http://dx.doi.org/10.3390/molecules24193444] [PMID: 31547522]
[321]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[322]
Kim, H.M.; Park, B.S.; Kim, J.I.; Kim, S.E.; Lee, J.; Oh, S.C.; Enkhbayar, P.; Matsushima, N.; Lee, H.; Yoo, O.J.; Lee, J.O. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell, 2007, 130(5), 906-917.
[http://dx.doi.org/10.1016/j.cell.2007.08.002] [PMID: 17803912]
[323]
Neal, M.D.; Jia, H.; Eyer, B.; Good, M.; Guerriero, C.J.; Sodhi, C.P.; Afrazi, A.; Prindle, T., Jr; Ma, C.; Branca, M.; Ozolek, J.; Brodsky, J.L.; Wipf, P.; Hackam, D.J. Discovery and validation of a new class of small molecule Toll-like receptor 4 (TLR4) inhibitors. PLoS One, 2013, 8(6), e65779.
[http://dx.doi.org/10.1371/journal.pone.0065779] [PMID: 23776545]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy