Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Antibiotic Resistance and Microbiota Response

Author(s): Luigi Santacroce*, Marina Di Domenico, Monica Montagnani and Emilio Jirillo

Volume 29, Issue 5, 2023

Published on: 29 December, 2022

Page: [356 - 364] Pages: 9

DOI: 10.2174/1381612829666221219093450

Price: $65

Abstract

Use of antibiotics has dramatically eradicated bacterial infections in humans and animals. However, antibiotic overdose and abuse are responsible for the emergence of so-called multi-drug resistant bacteria. Gut microbiota deserves many functions in the host, and among them, integrity of epithelial barrier and enhancement of protective immune responses are included. There is evidence that antibiotic treatment decreases the diversity of gut microbiota species, also provoking metabolic changes, increased susceptibility to colonization and decrease of antimicrobial peptide secretion, leading to antibiotic resistance. In this review, the major mechanisms involved in antibiotic resistance will be illustrated. However, novel findings on the potential use of alternative treatments to overcome antibiotic resistance will be elucidated. In this regard, special emphasis will be placed on microcins, prebiotics, probiotics and postbiotics, as well as phage therapy and fecal microbial transplantation.

Keywords: Antibiotics, antibiotic resistance, gut immunity, gut microbiota, multi-drug resistant bacteria, probiotics.

[1]
Bottalico L, Charitos IA, Potenza MA, Montagnani M, Santacroce L. The war against bacteria, from the past to present and beyond. Expert Rev Anti Infect Ther 2021; 22; 1-26.
[http://dx.doi.org/10.1080/14787210.2022.2013809] [PMID: 34874223]
[2]
World Health Organization (WHO). Antibiotic resistance Fact Sheet. Geneva: WHO 2017.
[3]
Wester CW, Durairaj L, Evans AT, Schwartz DN, Husain S, Martinez E. Antibiotic resistance. Arch Intern Med 2002; 162(19): 2210-6.
[http://dx.doi.org/10.1001/archinte.162.19.2210] [PMID: 12390064]
[4]
Van Boeckel TP, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci 2015; 112(18): 5649-54.
[http://dx.doi.org/10.1073/pnas.1503141112] [PMID: 25792457]
[5]
Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16(7): 457-71.
[http://dx.doi.org/10.1038/nrd.2017.23] [PMID: 28337021]
[6]
Holzbauer S, Chiller T. Antimicrobial resistance in bacteria of animal origin. Emerg Infect Dis 2006; 12(7): 1180-1.
[http://dx.doi.org/10.3201/eid1207.060503]
[7]
Schwarz S, Kehrenberg C, Walsh TR. Use of antimicrobial agents in veterinary medicine and food animal production. Int J Antimicrob Agents 2001; 17(6): 431-7.
[http://dx.doi.org/10.1016/S0924-8579(01)00297-7] [PMID: 11397611]
[8]
Nilsson O. Vancomycin resistant enterococci in farm animals - occurrence and importance. Infect Ecol Epidemiol 2012; 2(1): 16959.
[http://dx.doi.org/10.3402/iee.v2i0.16959] [PMID: 22957131]
[9]
Goldmann DA, Weinstein RA, Wenzel RP, et al. Strategies to prevent and control the emergence and spread of antimicrobial-resistant microorganisms in hospitals. JAMA 1996; 275(3): 234-40.
[http://dx.doi.org/10.1001/jama.1996.03530270074035] [PMID: 8604178]
[10]
Kollef MH, Fraser VJ. Antibiotic resistance in the intensive care unit. Ann Intern Med 2001; 134(4): 298-314.
[http://dx.doi.org/10.7326/0003-4819-134-4-200102200-00014] [PMID: 11182841]
[11]
Lipsitch M, Bergstrom CT, Levin BR. The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions. Proc Natl Acad Sci 2000; 97(4): 1938-43.
[http://dx.doi.org/10.1073/pnas.97.4.1938] [PMID: 10677558]
[12]
Saliba R, Mizrahi A, Gauthier PP, Alban LM, Zahar JR, Pilmis B. Antimicrobial stewardship program: Reducing antibiotic's spectrum of activity is not the solution to limit the emergence of multidrug-resistant bacteria. Antibiotics 2022; 11(1): 70.
[http://dx.doi.org/10.3390/antibiotics11010070] [PMID: 35052947]
[13]
Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG. MyD88- mediated signals induce the bactericidal lectin RegIIII3 and protect mice against intestinal Listeria monocytogenes infection. J Exp Med 2007; 204(8): 1891-900.
[http://dx.doi.org/10.1084/jem.20070563] [PMID: 17635956]
[14]
Brandl K, Plitas G, Mihu CN, et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008; 455(7214): 804-7.
[http://dx.doi.org/10.1038/nature07250] [PMID: 18724361]
[15]
Caballero S, Kim S, Carter RA, et al. Cooperating commensals restore colonization resistance to vancomycin-resistant enterococcus faecium. Cell Host Microbe 2017; 21(5): 592-602.e4.
[http://dx.doi.org/10.1016/j.chom.2017.04.002] [PMID: 28494240]
[16]
Kim YG, Sakamoto K, Seo SU, et al. Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science 2017; 356(6335): 315-9.
[http://dx.doi.org/10.1126/science.aag2029] [PMID: 28428425]
[17]
Walter J, Ley R. The human gut microbiome: Ecology and recent evolutionary changes. Annu Rev Microbiol 2011; 65(1): 411-29.
[http://dx.doi.org/10.1146/annurev-micro-090110-102830] [PMID: 21682646]
[18]
Malard F, Dore J, Gaugler B, Mohty M. Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol 2021; 14(3): 547-54.
[http://dx.doi.org/10.1038/s41385-020-00365-4] [PMID: 33299088]
[19]
Brown H, EsterhA­zy D. Intestinal immune compartmentalization: Implications of tissue specific determinants in health and disease. Mucosal Immunol 2021; 14(6): 1259-70.
[http://dx.doi.org/10.1038/s41385-021-00420-8] [PMID: 34211125]
[20]
Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol 2018; 16(8): 457-70.
[http://dx.doi.org/10.1038/s41579-018-0036-x] [PMID: 29904082]
[21]
Leshem A, Liwinski T, Elinav E. Immune-microbiota interplay and colonization resistance in infection. Mol Cell 2020; 78(4): 597-613.
[http://dx.doi.org/10.1016/j.molcel.2020.03.001] [PMID: 32208169]
[22]
McPherson AC, Pandey SP, Bender MJ, Meisel M. Systemic immunoregulatory consequences of gut commensal translocation. Trends Immunol 2021; 42(2): 137-50.
[http://dx.doi.org/10.1016/j.it.2020.12.005] [PMID: 33422410]
[23]
Goguyer-Deschaumes R, Waeckel L, Killian M, Rochereau N, Paul S. Metabolites and secretory immunoglobulins: Messengers and effectors of the host-microbiota intestinal equilibrium. Trends Immunol 2022; 43(1): 63-77.
[http://dx.doi.org/10.1016/j.it.2021.11.005] [PMID: 34848167]
[24]
Bottalico L, Tatullo M, Marrelli M, Santacroce L. Lights and shadows of dental implants: Focus on mucositis and perimplantitis and their biological markers. J Biol Regul Homeost Agents 2016; 30(3): 859-61.
[PMID: 27655511]
[25]
Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016; 167(5): 1339-1353.e21.
[http://dx.doi.org/10.1016/j.cell.2016.10.043] [PMID: 27863247]
[26]
Kumari R, Yadav Y, Misra R, et al. Emerging frontiers of antibiotics use and their impacts on the human gut microbiome. Microbiol Res 2022; 263: 127127.
[http://dx.doi.org/10.1111/imr.12563]
[27]
Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 2016; 20(2): 202-14.
[http://dx.doi.org/10.1016/j.chom.2016.07.001] [PMID: 27476413]
[28]
Wu W, Sun M, Chen F, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med 2017; 377(13): 1217-27.
[29]
Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 2001; 1(2): 101-14.
[http://dx.doi.org/10.1016/S1473-3099(01)00066-4] [PMID: 11871461]
[30]
Lewis BB, Buffie CG, Carter RA, et al. Loss of microbiota-mediated colonization resistance to clostridium difficile infection with oral vancomycin compared with metronidazole. J Infect Dis 2015; 212(10): 1656-65.
[http://dx.doi.org/10.1093/infdis/jiv256] [PMID: 25920320]
[31]
Duan Y, Liao Y, Li H, et al. Effect of changes in season and temperature on cardiovascular mortality associated with nitrogen dioxide air pollution in Shenzhen, China. Sci Total Environ 2019; 697: 134051.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134051] [PMID: 31487586]
[32]
Isaac S, Scher JU, Djukovic A, et al. Short- and long-term effects of oral vancomycin on the human intestinal microbiota. J Antimicrob Chemother 2017; 72(1): 128-36.
[http://dx.doi.org/10.1093/jac/dkw383] [PMID: 27707993]
[33]
Wuethrich I, W Pelzer B, Khodamoradi Y, Vehreschild MJGT. The role of the human gut microbiota in colonization and infection with multidrug-resistant bacteria. Gut Microbes 2021; 13(1): 1-13.
[http://dx.doi.org/10.1080/19490976.2021.1911279] [PMID: 33870869]
[34]
Santacroce L, Man A, Charitos IA, Haxhirexha K, Topi S. Current knowledge about the connection between health status and gut microbiota from birth to elderly. A narrative review. Front Biosci (Landmark Ed) 2021; 26(6): 135-48.
[http://dx.doi.org/10.52586/4930] [PMID: 34162042]
[35]
Vincent JL, Quintairos e Silva A, Couto L Jr, Taccone FS. The value of blood lactate kinetics in critically ill patients: A systematic review. Crit Care 2016; 20(1): 257.
[http://dx.doi.org/10.1186/s13054-016-1403-5] [PMID: 27520452]
[36]
Rehman A, Heinsen FA, Koenen ME, et al. Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine. BMC Microbiol 2012; 12(1): 47.
[http://dx.doi.org/10.1186/1471-2180-12-47] [PMID: 22452835]
[37]
Adamsson I, Nord CE, Lundquist P, SjAstedt S, Edlund C. Comparative effects of omeprazole, amoxycillin plus metronidazole versus omeprazole, clarithromycin plus metronidazole on the oral, gastric and intestinal microflora in Helicobacter pylori infected patients. J Antimicrob Chemother 1999; 44(5): 629-40.
[http://dx.doi.org/10.1093/jac/44.5.629] [PMID: 10552979]
[38]
Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as major disruptors of gut microbiota. Front Cell Infect Microbiol 2020; 10: 572912.
[http://dx.doi.org/10.3389/fcimb.2020.572912] [PMID: 33330122]
[39]
Marchesi JR, Ravel J. The vocabulary of microbiome research: A proposal. Microbiome 2015; 3(1): 31.
[http://dx.doi.org/10.1186/s40168-015-0094-5] [PMID: 26229597]
[40]
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14(8): e1002533.
[http://dx.doi.org/10.1371/journal.pbio.1002533] [PMID: 27541692]
[41]
Brandtzaeg P. The mucosal immune system and its integration with the mammary glands. J Pediatr 2010; 156(2): S8-S15.
[http://dx.doi.org/10.1016/j.jpeds.2009.11.014] [PMID: 20105666]
[42]
McKenney PT, Pamer EG. From hype to hope: The gut microbiota in enteric infectious disease. Cell 2015; 163(6): 1326-32.
[http://dx.doi.org/10.1016/j.cell.2015.11.032] [PMID: 26638069]
[43]
De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. Nutritional keys for intestinal barrier modulation. Front Immunol 2015; 6: 612.
[http://dx.doi.org/10.3389/fimmu.2015.00612] [PMID: 26697008]
[44]
Magrone T, Jirillo E. The interaction between gut microbiota and age-related changes in immune function and inflammation. Immun Ageing 2013; 10(1): 31.
[http://dx.doi.org/10.1186/1742-4933-10-31] [PMID: 23915308]
[45]
Magrone T, Jirillo E. The interplay between the gut immune system and microbiota in health and disease: nutraceutical intervention for restoring intestinal homeostasis. Curr Pharm Des 2012; 19(7): 1329-42.
[http://dx.doi.org/10.2174/138161213804805793] [PMID: 23151182]
[46]
Pilmis B, Le Monnier A, Zahar JR. Gut microbiota, antibiotic therapy and antimicrobial resistance: A narrative review. Microorganisms 2020; 8(2): 269.
[http://dx.doi.org/10.3390/microorganisms8020269] [PMID: 32079318]
[47]
Zar FA, Bakkanagari SR, Moorthi KMLST, Davis MB. A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile associated diarrhea, stratified by disease severity. Clin Infect Dis 2007; 45(3): 302-7.
[http://dx.doi.org/10.1086/519265] [PMID: 17599306]
[48]
Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am 2009; 23(4): 791-815.
[http://dx.doi.org/10.1016/j.idc.2009.06.008]
[49]
Doan TH, Bernet-Camard MF, Hoÿs S, Janoir C, Péchiné S. Impact of subinhibitory concentrations of metronidazole on morphology, motility, biofilm formation and colonization of Clostridioides difficile. Antibiotics 2022; 11(5): 624.
[http://dx.doi.org/10.3390/antibiotics11050624] [PMID: 35625268]
[50]
Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 2017; 43(3): 304-77.
[http://dx.doi.org/10.1007/s00134-017-4683-6] [PMID: 28101605]
[51]
Gonzalez L, Cravoisy A, Barraud D, et al. Factors influencing the implementation of antibiotic de-escalation and impact of this strategy in critically ill patients. Crit Care 2013; 17(4): R140.
[http://dx.doi.org/10.1186/cc12819] [PMID: 23849321]
[52]
D'Costa VM, King CE, Kalan L, et al. Antibiotic resistance is ancient. Nature 2011; 477(7365): 457-61.
[http://dx.doi.org/10.1038/nature10388] [PMID: 21881561]
[53]
Haan TJ, Drown DM. Unearthing antibiotic resistance associated with disturbance-induced permafrost thaw in interior Alaska. Microorganisms 2021; 9(1): 116.
[http://dx.doi.org/10.3390/microorganisms9010116] [PMID: 33418967]
[54]
Kashuba E, Dmitriev AA, Kamal SM, et al. Ancient permafrost staphylococci carry antibiotic resistance genes. Microb Ecol Health Dis 2017; 28(1): 1345574.
[http://dx.doi.org/10.1080/16512235.2017.1345574] [PMID: 28959177]
[55]
Warinner C, Rodrigues JFM, Vyas R, et al. Pathogens and host immunity in the ancient human oral cavity. Nat Genet 2014; 46(4): 336-44.
[http://dx.doi.org/10.1038/ng.2906] [PMID: 24562188]
[56]
Santiago-Rodriguez TM, Fornaciari G, Luciani S, et al. Gut microbiome of an 11th century a.d. pre-columbian andean mummy. PLoS One 2015; 10(9): e0138135.
[http://dx.doi.org/10.1371/journal.pone.0138135] [PMID: 26422376]
[57]
Mather AE, Baker KS, McGregor H, et al. Bacillary dysentery from world war 1 and nctc1, the first bacterial isolate in the national collection. Lancet 2014; 384(9955): 1720.
[http://dx.doi.org/10.1016/S0140-6736(14)61790-6] [PMID: 25441203]
[58]
Pawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG, Wright GD. A diverse intrinsic antibiotic resistome from a cave bacterium. Nat Commun 2016; 7(1): 13803.
[http://dx.doi.org/10.1038/ncomms13803] [PMID: 27929110]
[59]
Mosca A, Dalfino L, Romanelli F, Stolfa S, Del Prete R, Santacroce L. Effectiveness of colistin with rifampicin and meropenem against colistin-resistant acinetobacter baumannii strains: An in vitro study. Pharmacophore 2020; 11(2): 1-6.
[60]
Benveniste R, Davies J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci 1973; 70(8): 2276-80.
[http://dx.doi.org/10.1073/pnas.70.8.2276] [PMID: 4209515]
[61]
Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A. Beta-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother 2002; 46(9): 3045-9.
[http://dx.doi.org/10.1128/AAC.46.9.3045-3049.2002] [PMID: 12183268]
[62]
Schlatter DC, Kinkel LL. Global biogeography of Streptomyces antibiotic inhibition, resistance, and resource use. FEMS Microbiol Ecol 2014; 88(2): 386-97.
[http://dx.doi.org/10.1111/1574-6941.12307] [PMID: 24580017]
[63]
Li P, Lin H, Mi Z, Tong Y, Wang J. vB_EcoS_IME347 a novel T1-like Escherichia coli bacteriophage. J Basic Microbiol 2018; 58(11): 968-76.
[http://dx.doi.org/10.1002/jobm.201800271] [PMID: 30146706]
[64]
Antonelli M, Mercurio G, Di Nunno S, Recchioni G, Deangelis G. De-escalation antimicrobial chemotherapy in critically III patients: Pros and cons. J Chemother 2001; 1(1 (S2)): 218-23.
[http://dx.doi.org/10.1179/joc.2001.13.Supplement-2.218]
[65]
Rello J, Vidaur L, Sandiumenge A, et al. De-escalation therapy in ventilator-associated pneumonia. Crit Care Med 2004; 32(11): 2183-90.
[http://dx.doi.org/10.1097/01.CCM.0000145997.10438.28] [PMID: 15640629]
[66]
Deresinski S. Principles of antibiotic therapy in severe infections: Optimizing the therapeutic approach by use of laboratory and clinical data. Clin Infect Dis 2007; 45 (Suppl. 3): S177-83.
[http://dx.doi.org/10.1086/519472] [PMID: 17712744]
[67]
Shah T, Baloch Z, Shah Z, Cui X, Xia X. The intestinal microbiota: Impacts of antibiotics therapy, colonization resistance, and diseases. Int J Mol Sci 2021; 22(12): 6597.
[http://dx.doi.org/10.3390/ijms22126597] [PMID: 34202945]
[68]
GiedraitienŽ- A, VitkauskienŽ- A, NaginienŽ- R, Pavilonis A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina 2011; 47(3): 19.
[http://dx.doi.org/10.3390/medicina47030019] [PMID: 21822035]
[69]
Willing BP, Russell SL, Finlay BB. Shifting the balance: Antibiotic effects on host microbiota mutualism. Nat Rev Microbiol 2011; 9(4): 233-43.
[http://dx.doi.org/10.1038/nrmicro2536] [PMID: 21358670]
[70]
Lange K, Buerger M, Stallmach A, Bruns T. Effects of antibiotics on gut microbiota. Dig Dis 2016; 34(3): 260-8.
[http://dx.doi.org/10.1159/000443360] [PMID: 27028893]
[71]
Yassour M, Vatanen T, Siljander H, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 2016; 8(343): 343ra81.
[http://dx.doi.org/10.1126/scitranslmed.aad0917] [PMID: 27306663]
[72]
Palleja A, Mikkelsen KH, Forslund SK, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol 2018; 3(11): 1255-65.
[http://dx.doi.org/10.1038/s41564-018-0257-9] [PMID: 30349083]
[73]
Romanelli F, Stolfa S, Morea A, et al. Meropenem/vaborbactam activity in vitro: A new option for Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae treatment. Future Microbiol 2021; 16(16): 1261-6.
[http://dx.doi.org/10.2217/fmb-2021-0007] [PMID: 34674551]
[74]
Ianiro G, Mullish BH, Kelly CR, et al. Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic. Gut 2020; 69(9): 1555-63.
[http://dx.doi.org/10.1136/gutjnl-2020-321829] [PMID: 32620549]
[75]
Panda S, El khader I, Casellas F, et al. Short-term effect of antibiotics on human gut microbiota. PLoS One 2014; 9(4): e95476.
[http://dx.doi.org/10.1371/journal.pone.0095476] [PMID: 24748167]
[76]
Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012; 488(7413): 621-6.
[http://dx.doi.org/10.1038/nature11400] [PMID: 22914093]
[77]
Choo JM, Kanno T, Zain NMM, et al. Divergent relationships between fecal microbiota and metabolome following distinct antibiotic-induced disruptions. MSphere 2017; 2(1): e00005-17.
[http://dx.doi.org/10.1128/mSphere.00005-17] [PMID: 28194448]
[78]
Vrieze A, Out C, Fuentes S, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 2014; 60(4): 824-31.
[http://dx.doi.org/10.1016/j.jhep.2013.11.034] [PMID: 24316517]
[79]
Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med 2015; 372(16): 1539-48.
[http://dx.doi.org/10.1056/NEJMra1403772] [PMID: 25875259]
[80]
Losacco T, Cagiano R, Bottalico L, et al. Our experience in Helicobacter pylori infection and gastric MALToma. Clin Ter 2008; 159(4): 239-42.
[PMID: 18776980]
[81]
Kim S, Covington A, Pamer EG. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 2017; 279(1): 90-105.
[http://dx.doi.org/10.1111/imr.12563] [PMID: 28856737]
[82]
Kronman MP, Zaoutis TE, Haynes K, Feng R, Coffin SE. Antibiotic exposure and IBD development among children: A population-based cohort study. Pediatrics 2012; 130(4): e794-803.
[http://dx.doi.org/10.1542/peds.2011-3886] [PMID: 23008454]
[83]
Agrawal M, Sabino J, Frias-Gomes C, et al. Early life exposures and the risk of inflammatory bowel disease: Systematic review and meta-analyses. E Clinical Medicine 2021; 36: 100884.
[http://dx.doi.org/10.1016/j.eclinm.2021.100884] [PMID: 34308303]
[84]
Virta L, Auvinen A, Helenius H, Huovinen P, Kolho KL. Association of repeated exposure to antibiotics with the development of pediatric Crohn's disease-a nationwide, register-based finnish case-control study. Am J Epidemiol 2012; 175(8): 775-84.
[http://dx.doi.org/10.1093/aje/kwr400] [PMID: 22366379]
[85]
Feehan A, Garcia-Diaz J. Bacterial, gut microbiome-modifying therapies to defend against multidrug resistant organisms. Microorganisms 2020; 8(2): 166.
[http://dx.doi.org/10.3390/microorganisms8020166] [PMID: 31991615]
[86]
Klaenhammer TR. Bacteriocins of lactic acid bacteria. Biochimie 1988; 70(3): 337-49.
[http://dx.doi.org/10.1016/0300-9084(88)90206-4] [PMID: 3139051]
[87]
Crosa JH, Walsh CT. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 2002; 66(2): 223-49.
[http://dx.doi.org/10.1128/MMBR.66.2.223-249.2002] [PMID: 12040125]
[88]
Telhig S, Ben Said L, Zirah S, Fliss I, Rebuffat S. Bacteriocins to thwart bacterial resistance in gram negative bacteria. Front Microbiol 2020; 11: 586433.
[http://dx.doi.org/10.3389/fmicb.2020.586433] [PMID: 33240239]
[89]
Baquero F, Lanza VF, Baquero MR, del Campo R, Bravo-Vázquez DA. Microcins in Enterobacteriaceae: Peptide antimicrobials in the eco-active intestinal chemosphere. Front Microbiol 2019; 10: 2261.
[http://dx.doi.org/10.3389/fmicb.2019.02261] [PMID: 31649628]
[90]
Palmer JD, Mortzfeld BM, Piattelli E, Silby MW, McCormick BA, Bucci V. Microcin H47: A class IIb microcin with potent activity against multidrug resistant Enterobacteriaceae. ACS Infect Dis 2020; 6(4): 672-9.
[http://dx.doi.org/10.1021/acsinfecdis.9b00302] [PMID: 32096972]
[91]
Ben Said L, Emond-Rheault JG, Soltani S, et al. Phenomic and genomic approaches to studying the inhibition of multiresistant Salmonella enterica by microcin J25. Environ Microbiol 2020; 22(7): 2907-20.
[http://dx.doi.org/10.1111/1462-2920.15045] [PMID: 32363677]
[92]
Eberhart LJ, Deringer JR, Brayton KA, Sawant AA, Besser TE, Call DR. Characterization of a novel microcin that kills enterohemorrhagic Escherichia coli O157:H7 and O26. Appl Environ Microbiol 2012; 78(18): 6592-9.
[http://dx.doi.org/10.1128/AEM.01067-12] [PMID: 22773653]
[93]
Lu SY, GraAa T, Avillan JJ, Zhao Z, Call DR. Microcin PDI inhibits antibiotic-resistant strains of Escherichia coli and Shigella through a mechanism of membrane disruption and protection by homotrimer self-immunity. Appl Environ Microbiol 2019; 85(11): e00371-19.
[http://dx.doi.org/10.1128/AEM.00371-19] [PMID: 30902857]
[94]
Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14(8): 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75] [PMID: 28611480]
[95]
Nagy-Bota MC, Man A, Santacroce L, et al. Essential oils as alternatives for root-canal treatment and infection control against enterococcus faecalis-a preliminary study. Appl Sci 2021; 11(4): 1422.
[http://dx.doi.org/10.3390/app11041422]
[96]
Clifford MN. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med 2004; 70(12): 1103-14.
[http://dx.doi.org/10.1055/s-2004-835835] [PMID: 15643541]
[97]
Crocetto F, Boccellino M, Barone B, et al. The crosstalk between prostate cancer and microbiota inflammation: Nutraceutical products are useful to balance this interplay? Nutrients 2020; 12(9): 2648.
[http://dx.doi.org/10.3390/nu12092648] [PMID: 32878054]
[98]
DueAñas M, MuAñoz GI, Cueva C, et al. A survey of modulation of gut microbiota by dietary polyphenols. BioMed Res Int 2015; 2015: 1-15.
[http://dx.doi.org/10.1155/2015/850902] [PMID: 25793210]
[99]
Elison E, Vigsnaes LK, Rindom Krogsgaard L, et al. Oral supplementation of healthy adults with 2'-O-fucosyllactose and lacto-N- neotetraose is well tolerated and shifts the intestinal microbiota. Br J Nutr 2016; 116(8): 1356-68.
[http://dx.doi.org/10.1017/S0007114516003354] [PMID: 27719686]
[100]
Kulinich A, Liu L. Human milk oligosaccharides: The role in the fine-tuning of innate immune responses. Carbohydr Res 2016; 432: 62-70.
[http://dx.doi.org/10.1016/j.carres.2016.07.009] [PMID: 27448325]
[101]
Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS. Human-milk glycans that inhibit pathogen binding protect breast- feeding infants against infectious diarrhea. J Nutr 2005; 135(5): 1304-7.
[http://dx.doi.org/10.1093/jn/135.5.1304] [PMID: 15867329]
[102]
Santacroce L, Inchingolo F, Topi S, et al. Potential beneficial role of probiotics on the outcome of COVID-19 patients: An evolving perspective. Diabetes Metab Syndr 2021; 15(1): 295-301.
[http://dx.doi.org/10.1016/j.dsx.2020.12.040] [PMID: 33484986]
[103]
Hill C, Guarner F, Reid G, et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11(8): 506-14.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[104]
Charitos IA, Topi S, Gagliano-Candela R, et al. The toxic effects of endocrine disrupting chemicals (EDCs) on gut microbiota: Bisphenol A (BPA) - A review. Endocr Metab Immune Disord Drug Targets 2022; 22(7): 716-27. Epub ahead of print
[http://dx.doi.org/10.2174/1871530322666220325114045] [PMID: 35339192]
[105]
Piewngam P, Zheng Y, Nguyen TH, et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 2018; 562(7728): 532-7.
[http://dx.doi.org/10.1038/s41586-018-0616-y] [PMID: 30305736]
[106]
Inchingolo F, Dipalma G, Cirulli N, et al. Microbiological results of improvement in periodontal condition by administration of oral probiotics. J Biol Regul Homeost Agents 2018; 32(5): 1323-8.
[PMID: 30334433]
[107]
Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR. Bifidobacterium breve BBG-001 in very preterm infants: A randomised controlled phase 3 trial. Lancet 2016; 387(10019): 649-60.
[http://dx.doi.org/10.1016/S0140-6736(15)01027-2] [PMID: 26628328]
[108]
Zipperer A, Konnerth MC, Laux C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 2016; 535(7613): 511-6.
[http://dx.doi.org/10.1038/nature18634] [PMID: 27466123]
[109]
Bitschar K, Sauer B, Focken J, et al. Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors. Nat Commun 2019; 10(1): 2730.
[http://dx.doi.org/10.1038/s41467-019-10646-7] [PMID: 31227691]
[110]
Manley KJ, Fraenkel MB, Mayall BC, Power DA. Probiotic treatment of vancomycin-resistant enterococci: A randomised controlled trial. Med J Aust 2007; 186(9): 454-7.
[http://dx.doi.org/10.5694/j.1326-5377.2007.tb00995.x] [PMID: 17484706]
[111]
Szachta P, Ignyś I, Cichy W. An evaluation of the ability of the probiotic strain Lactobacillus rhamnosus GG to eliminate the gastrointestinal carrier state of vancomycin-resistant enterococci in colonized children. J Clin Gastroenterol 2011; 45(10): 872-7.
[http://dx.doi.org/10.1097/MCG.0b013e318227439f] [PMID: 21814146]
[112]
Salomão MCC, Heluany-Filho MA, Menegueti MG, Kraker MEAD, Martinez R, Bellissimo-Rodrigues F. A randomized clinical trial on the effectiveness of a symbiotic product to decolonize patients harboring multidrug-resistant Gram-negative bacilli. Rev Soc Bras Med Trop 2016; 49(5): 559-66.
[http://dx.doi.org/10.1590/0037-8682-0233-2016] [PMID: 27812649]
[113]
Suez J, Zmora N, Zilberman-Schapira G, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 2018; 174(6): 1406-1423.e16.
[http://dx.doi.org/10.1016/j.cell.2018.08.047] [PMID: 30193113]
[114]
Santacroce L, Sardaro N, Topi S, et al. The pivotal role of oral microbiota in health and disease. J Biol Regul Homeost Agents 2020; 34(2): 733-7.
[http://dx.doi.org/10.23812/20-127-L-45] [PMID: 32492992]
[115]
Imperial ICVJ, Ibana JA. Addressing the antibiotic resistance problem with probiotics: Reducing the risk of its double-edged sword effect. Front Microbiol 2016; 7: 1983.
[http://dx.doi.org/10.3389/fmicb.2016.01983] [PMID: 28018315]
[116]
Soares MP, Yilmaz B. Microbiota control of malaria transmission. Trends Parasitol 2016; 32(2): 120-30.
[http://dx.doi.org/10.1016/j.pt.2015.11.004] [PMID: 26774793]
[117]
Tsilingiri K, Rescigno M. Postbiotics: What else? Benef Microbes 2013; 4(1): 101-7.
[http://dx.doi.org/10.3920/BM2012.0046] [PMID: 23271068]
[118]
Steed AL, Christophi GP, Kaiko GE, et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 2017; 357(6350): 498-502.
[http://dx.doi.org/10.1126/science.aam5336] [PMID: 28774928]
[119]
Fábrega MJ, Aguilera L, Giménez R, et al. Activation of immune and defense responses in the intestinal mucosa by outer membrane vesicles of commensal and probiotic Escherichia coli strains. Front Microbiol 2016; 7: 705.
[http://dx.doi.org/10.3389/fmicb.2016.00705] [PMID: 27242727]
[120]
Ukena SN, Singh A, Dringenberg U, et al. Probiotic Escherichia coli nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2007; 2(12): e1308.
[http://dx.doi.org/10.1371/journal.pone.0001308] [PMID: 18074031]
[121]
Pal C, MaciA­ MD, Oliver A, Schachar I, Buckling A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 2007; 450(7172): 1079-81.
[http://dx.doi.org/10.1038/nature06350] [PMID: 18059461]
[122]
Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA. Phages rarely encode antibiotic resistance genes: A cautionary tale for virome analyses. ISME J 2017; 11(1): 237-47.
[http://dx.doi.org/10.1038/ismej.2016.90] [PMID: 27326545]
[123]
Biswas B, Adhya S, Washart P, et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 2002; 70(1): 204-10.
[http://dx.doi.org/10.1128/IAI.70.1.204-210.2002] [PMID: 11748184]
[124]
Abd El-Aziz AM, Elgaml A, Ali YM. Bacteriophage therapy increases complement-mediated lysis of bacteria and enhances bacterial clearance after acute lung infection with multidrug-resistant Pseudomonas aeruginosa. J Infect Dis 2019; 219(9): 1439-47.
[http://dx.doi.org/10.1093/infdis/jiy678] [PMID: 30476337]
[125]
Hua Y, Luo T, Yang Y, et al. Phage therapy as a promising new treatment for lung infection caused by carbapenem-resistant Acinetobacter baumannii in mice. Front Microbiol 2018; 8: 2659.
[http://dx.doi.org/10.3389/fmicb.2017.02659] [PMID: 29375524]
[126]
Wright A, Hawkins CH, Anggård EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 2009; 34(4): 349-57.
[http://dx.doi.org/10.1111/j.1749-4486.2009.01973.x] [PMID: 19673983]
[127]
Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A. Bacteriophage therapy of venous leg ulcers in humans: Results of a phase i safety trial. J Wound Care 2009; 18(6): 237-243, 240-243.
[http://dx.doi.org/10.12968/jowc.2009.18.6.42801] [PMID: 19661847]
[128]
Rose T, Verbeken G, Vos DD, et al. Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 2014; 4(2): 66-73.
[PMID: 25356373]
[129]
Duplessis C, Biswas B, Hanisch B, et al. Refractory Pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy. J Pediatric Infect Dis Soc 2018; 7(3): 253-6.
[http://dx.doi.org/10.1093/jpids/pix056] [PMID: 28992111]
[130]
Shin JH, Warren CA. Prevention and treatment of recurrent Clostridioides difficile infection. Curr Opin Infect Dis 2019; 32(5): 482-9.
[http://dx.doi.org/10.1097/QCO.0000000000000587] [PMID: 31369420]
[131]
Ianiro G, Maida M, Burisch J, et al. Efficacy of different faecal microbiota transplantation protocols for Clostridium difficile infection: A systematic review and meta-analysis. United European Gastroenterol J 2018; 6(8): 1232-44.
[http://dx.doi.org/10.1177/2050640618780762] [PMID: 30288286]
[132]
Dubberke ER, Mullane KM, Gerding DN, et al. Clearance of vancomycin-resistant enterococcus concomitant with administration of a microbiota-based drug targeted at recurrent Clostridium difficile infection. Open Forum Infect Dis 2016; 3(3): ofw133.
[http://dx.doi.org/10.1093/ofid/ofw133] [PMID: 27703995]
[133]
Davido B, Batista R, Fessi H, Salomon J, Dinh A. Impact of faecal microbiota transplantation to eradicate vancomycin-resistant enterococci (VRE) colonization in humans. J Infect 2017; 75(4): 376-7.
[http://dx.doi.org/10.1016/j.jinf.2017.06.001] [PMID: 28601577]
[134]
Kuijper EJ, Vendrik KEW, Vehreschild MJGT. Manipulation of the microbiota to eradicate multidrug-resistant enterobacteriaceae from the human intestinal tract. Clin Microbiol Infect 2019; 25(7): 786-9.
[http://dx.doi.org/10.1016/j.cmi.2019.03.025] [PMID: 30965098]
[135]
Alagna L, Palomba E, Mangioni D, et al. Multidrug-resistant gram-negative bacteria decolonization in immunocompromised patients: A focus on fecal microbiota transplantation. Int J Mol Sci 2020; 21(16): 5619.
[http://dx.doi.org/10.3390/ijms21165619] [PMID: 32764526]
[136]
Ueckermann V, Hoosien E, De Villiers N, Geldenhuys J. Fecal microbial transplantation for the treatment of persistent multidrug-resistant k lebsiella pneumoniae infection in a critically ill patient. Case Rep Infect Dis 2020; 2020: 1-5.
[http://dx.doi.org/10.1155/2020/8462659] [PMID: 32099702]
[137]
Allegretti JR, Mullish BH, Kelly C, Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet 2019; 394(10196): 420-31.
[http://dx.doi.org/10.1016/S0140-6736(19)31266-8] [PMID: 31379333]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy