Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Overall Role of Contactins Expression in Neurodevelopmental Events and Contribution to Neurological Disorders

Author(s): Antonella Bizzoca, Emilio Jirillo, Paolo Flace and Gianfranco Gennarini*

Volume 22, Issue 8, 2023

Published on: 27 January, 2023

Page: [1176 - 1193] Pages: 18

DOI: 10.2174/1871527322666221212160048

Price: $65

conference banner
Abstract

Background: Neurodegenerative disorders may depend upon a misregulation of the pathways which sustain neurodevelopmental control. In this context, this review article focuses on Friedreich ataxia (FA), a neurodegenerative disorder resulting from mutations within the gene encoding the Frataxin protein, which is involved in the control of mitochondrial function and oxidative metabolism.

Objective: The specific aim of the present study concerns the FA molecular and cellular substrates, for which available transgenic mice models are proposed, including mutants undergoing misexpression of adhesive/morphoregulatory proteins, in particular belonging to the Contactin subset of the immunoglobulin supergene family.

Methods: In both mutant and control mice, neurogenesis was explored by morphological/morphometric analysis through the expression of cell type-specific markers, including b-tubulin, the Contactin-1 axonal adhesive glycoprotein, as well as the Glial Fibrillary Acidic Protein (GFAP).

Results: Specific consequences were found to arise from the chosen misexpression approach, consisting of a neuronal developmental delay associated with glial upregulation. Protective effects against the arising phenotype resulted from antioxidants (essentially epigallocatechin gallate (EGCG)) administration, which was demonstrated through the profiles of neuronal (b-tubulin and Contactin 1) as well as glial (GFAP) markers, in turn indicating the concomitant activation of neurodegeneration and neuro repair processes. The latter also implied activation of the Notch-1 signaling.

Conclusion: Overall, this study supports the significance of changes in morphoregulatory proteins expression in the FA pathogenesis and of antioxidant administration in counteracting it, which, in turn, allows to devise potential therapeutic approaches.

Keywords: Contactins, neural cell interactions, axonal growth control, neural development, neural morphogenesis, neural disorders, neural degeneration, friedreich ataxia.

[1]
Berglund EO, Ranscht B. Molecular cloning and in situ localization of the human contactin gene (CNTN1) on chromosome 12q11-q12. Genomics 1994; 21(3): 571-82.
[http://dx.doi.org/10.1006/geno.1994.1316] [PMID: 7959734]
[2]
Stoeckli ET. Neural circuit formation in the cerebellum is controlled by cell adhesion molecules of the Contactin family. Cell Adhes Migr 2010; 4(4): 523-6.
[http://dx.doi.org/10.4161/cam.4.4.12733] [PMID: 20622526]
[3]
Stoeckli ET, Kilinc D, Kunz B, et al. Analysis of cell-cell contact mediated by Ig superfamily cell adhesion molecules. Curr Protoc Cell Biol 2013; 61(1) 9.5.1-9.5.85
[http://dx.doi.org/10.1002/0471143030.cb0905s61]
[4]
Gennarini G, Bizzoca A, Picocci S, Puzzo D, Corsi P, Furley AJW. The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders. Mol Cell Neurosci 2017; 81: 49-63.
[http://dx.doi.org/10.1016/j.mcn.2016.11.006] [PMID: 27871938]
[5]
Gennarini G, Furley A. Cell adhesion molecules in neural development and disease. Mol Cell Neurosci 2017; 81: 1-3.
[http://dx.doi.org/10.1016/j.mcn.2017.03.010] [PMID: 28385508]
[6]
Picocci S, Bizzoca A, Corsi P, Magrone T, Jirillo E, Gennarini G. Modulation of nerve cell differentiation: Role of polyphenols and of contactin family components. Front Cell Dev Biol 2019; 7(119): 119.
[http://dx.doi.org/10.3389/fcell.2019.00119] [PMID: 31380366]
[7]
Gennarini G, Cibelli G, Rougon G, Mattei MG, Goridis C. The mouse neuronal cell surface protein F3: A phosphatidylinositol-anchored member of the immunoglobulin superfamily related to chicken contactin. J Cell Biol 1989; 109(2): 775-88. [b
[http://dx.doi.org/10.1083/jcb.109.2.775] [PMID: 2474555]
[8]
Gennarini G, Durbec P, Boned A, Rougon G, Goridis C. Transfected F3/F11 neuronal cell surface protein mediates intercellular adhesion and promotes neurite outgrowth. Neuron 1991; 6(4): 595-606.
[9]
Bizzoca A, Corsi P, Gennarini G. The mouse F3/contactin glycoprotein. Cell Adhes Migr 2009; 3(1): 53-63.
[http://dx.doi.org/10.4161/cam.3.1.7462] [PMID: 19372728]
[10]
Zuko A, Bouyain S, van der Zwaag B, Burbach JPH. Contactins. Adv Protein Chem Struct Biol 2011; 84: 143-80.
[http://dx.doi.org/10.1016/B978-0-12-386483-3.00001-X] [PMID: 21846565]
[11]
Teunissen CE, Chatterjee M, Schild D. Contactins in the central nervous system: Role in health and disease. Neural Regen Res 2019; 14(2): 206-16.
[http://dx.doi.org/10.4103/1673-5374.244776] [PMID: 30530999]
[12]
Djannatian M, Timmler S, Arends M, et al. Two adhesive systems cooperatively regulate axon ensheathment and myelin growth in the CNS. Nat Commun 2019; 10(1): 4794.
[http://dx.doi.org/10.1038/s41467-019-12789-z] [PMID: 31641127]
[13]
Savvaki M, Kafetzis G, Kaplanis SI, Ktena N, Theodorakis K, Karagogeos D. Neuronal, but not glial, Contactin 2 negatively regulates axon regeneration in the injured adult optic nerve. Eur J Neurosci 2021; 53(6): 1705-21.
[http://dx.doi.org/10.1111/ejn.15121] [PMID: 33469963]
[14]
Kalafatakis I, Savvaki M, Velona T, Karagogeos D. Implication of contactins in demyelinating pathologies. Life 2021; 11(1): 51.
[http://dx.doi.org/10.3390/life11010051] [PMID: 33451101]
[15]
Brümmendorf T, Rathjen FG. Axonal glycoproteins with immunoglobulin- and fibronectin type III-related domains in vertebrates: Structural features, binding activities, and signal transduction. J Neurochem 1993; 61(4): 1207-19.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb13611.x] [PMID: 8376980]
[16]
Brümmendorf T, Rathjen FG. Structure/function relationships of axon-associated adhesion receptors of the immunoglobulin superfamily. Curr Opin Neurobiol 1996; 6(5): 584-93.
[http://dx.doi.org/10.1016/S0959-4388(96)80089-4] [PMID: 8937821]
[17]
Nakamura A, Morise J, Yabuno-Nakagawa K, Hashimoto Y, Takematsu H, Oka S. Site-specific HNK-1 epitope on alternatively spliced fibronectin type-III repeats in tenascin-C promotes neurite outgrowth of hippocampal neurons through contactin-1. PLoS One 2019; 14(1): e0210193.
[http://dx.doi.org/10.1371/journal.pone.0210193]
[18]
Karagogeos D. Neural GPI anchored cell adhesion molecules. Front Biosci 2003; 8(6): 1214.
[http://dx.doi.org/10.2741/1214] [PMID: 12957835]
[19]
Labasque M, Faivre-Sarrailh C. GPI-anchored proteins at the node of Ranvier. FEBS Lett 2010; 584(9): 1787-92.
[http://dx.doi.org/10.1016/j.febslet.2009.08.025] [PMID: 19703450]
[20]
Elazar N, Vainshtein A, Rechav K, Tsoory M, Eshed-Eisenbach Y, Peles E. Coordinated internodal and paranodal adhesion controls accurate myelination by oligodendrocytes. J Cell Biol 2019; 218(9): 2887-95.
[http://dx.doi.org/10.1083/jcb.201906099] [PMID: 31451613]
[21]
Dityatev A, Bukalo O, Schachner M. Modulation of synaptic transmission and plasticity by cell adhesion and repulsion molecules. Neuron Glia Biol 2008; 4(3): 197-209.
[http://dx.doi.org/10.1017/S1740925X09990111] [PMID: 19674506]
[22]
Ma QH, Futagawa T, Yang WL, et al. A TAG1-APP signalling pathway through Fe65 negatively modulates neurogenesis. Nat Cell Biol 2008; 10(3): 283-94.
[http://dx.doi.org/10.1038/ncb1690] [PMID: 18278038]
[23]
Oguro-Ando A, Zuko A, Kleijer KTE, Burbach JPH. A current view on contactin-4, -5, and -6: Implications in neurodevelopmental disorders. Mol Cell Neurosci 2017; 81: 72-83.
[http://dx.doi.org/10.1016/j.mcn.2016.12.004] [PMID: 28064060]
[24]
Gulisano W, Bizzoca A, Gennarini G, Palmeri A, Puzzo D. Role of the adhesion molecule F3/Contactin in synaptic plasticity and memory. Mol Cell Neurosci 2017; 81: 64-71.
[http://dx.doi.org/10.1016/j.mcn.2016.12.003] [PMID: 28038945]
[25]
Pan S, Chan JR. Regulation and dysregulation of axon infrastructure by myelinating glia. J Cell Biol 2017; 216(12): 3903-16.
[http://dx.doi.org/10.1083/jcb.201702150] [PMID: 29114067]
[26]
Ranscht B. Sequence of contactin, a 130-kD glycoprotein concentrated in areas of interneuronal contact, defines a new member of the immunoglobulin supergene family in the nervous system. J Cell Biol 1988; 107(4): 1561-73.
[http://dx.doi.org/10.1083/jcb.107.4.1561] [PMID: 3049624]
[27]
Gennarini G, Rougon G, Vitiello F, Corsi P, Di Benedetta C, Goridis C. Identification and cDNA cloning of a new member of the L2/HNK-1 family of neural surface glycoproteins. J Neurosci Res 1989; 22(1): 1-12.
[http://dx.doi.org/10.1002/jnr.490220102] [PMID: 2926836]
[28]
Haenisch C, Diekmann H, Klinger M, Gennarini G, Kuwada JY, Stuermer CAO. The neuronal growth and regeneration associated Cntn1 (F3/F11/Contactin) gene is duplicated in fish: Expression during development and retinal axon regeneration. Mol Cell Neurosci 2005; 28(2): 361-74.
[http://dx.doi.org/10.1016/j.mcn.2004.04.013] [PMID: 15691716]
[29]
Shimoda Y, Watanabe K. Contactins. Cell Adhes Migr 2009; 3(1): 64-70.
[http://dx.doi.org/10.4161/cam.3.1.7764] [PMID: 19262165]
[30]
Bizzoca A, Picocci S, Corsi P, et al. The gene encoding the mouse contactin-1 axonal glycoprotein is regulated by the collier/Olf1/EBF family early B-Cell factor 2 transcription factor. Dev Neurobiol 2015; 75(12): 1420-40.
[http://dx.doi.org/10.1002/dneu.22293] [PMID: 25820347]
[31]
Bizzoca A, Caracciolo M, Corsi P, Magrone T, Jirillo E, Gennarini G. Molecular and cellular substrates for the Friedreich Ataxia. Molecules 2020; 25(18): 4085.
[http://dx.doi.org/10.3390/molecules25184085] [PMID: 32906751]
[32]
Cifuentes-Diaz C, Dubourg O, Irinopoulou T, et al. Nodes of ranvier and paranodes in chronic acquired neuropathies. PLoS One 2011; 6(1): e14533.
[http://dx.doi.org/10.1371/journal.pone.0014533] [PMID: 21267074]
[33]
Çolakoğlu G, Bergstrom-Tyrberg U, Berglund EO, Ranscht B. Contactin-1 regulates myelination and nodal/paranodal domain organization in the central nervous system. Proc Natl Acad Sci USA 2014; 111(3): E394-403.
[http://dx.doi.org/10.1073/pnas.1313769110] [PMID: 24385581]
[34]
Amor V, Zhang C, Vainshtein A, et al. The paranodal cytoskeleton clusters Na+ channels at nodes of Ranvier. eLife 2017; 6: e21392.
[http://dx.doi.org/10.7554/eLife.21392] [PMID: 28134616]
[35]
Dubessy AL, Mazuir E, Rappeneau Q, et al. Role of a Contactin multi‐molecular complex secreted by oligodendrocytes in nodal protein clustering in the CNS. Glia 2019; 67(12): 2248-63.
[http://dx.doi.org/10.1002/glia.23681] [PMID: 31328333]
[36]
Manso C, Querol L, Mekaouche M, Illa I, Devaux JJ. Contactin-1 IgG4 antibodies cause paranode dismantling and conduction defects. Brain 2016; 139(6): 1700-12.
[http://dx.doi.org/10.1093/brain/aww062] [PMID: 27017186]
[37]
Walsh F, Doherty P. Glycosylphosphatidylinositol anchored recognition molecules that function in axonal fasciculation, growth and guidance in the nervous system. Cell Biol Int Rep 1991; 15(11): 1151-66.
[http://dx.doi.org/10.1016/0309-1651(91)90061-M] [PMID: 1838307]
[38]
Edelman GM. Morphoregulation EGM. Dev Dyn 1992; 193(1): 210.
[http://dx.doi.org/10.1002/aja.1001930103]
[39]
Edelman GM, Jones FS. Gene regulation of cell adhesion molecules in neural morphogenesis. Acta Paediatr 1997; 86(S422): 12-9.
[http://dx.doi.org/10.1111/j.1651-2227.1997.tb18338.x] [PMID: 9298786]
[40]
Hu QD, Cui XY, Ng YK, Xiao ZC. Axoglial interaction via the notch receptor in oligodendrocyte differentiation. Ann Acad Med Singap 2004; 33(5): 581-8.
[PMID: 15531953]
[41]
Hu QD, Ma QH, Gennarini G, Xiao ZC. Cross-talk between F3/contactin and Notch at axoglial interface: A role in oligodendrocyte development. Dev Neurosci 2006; 28(1-2): 25-33.
[http://dx.doi.org/10.1159/000090750] [PMID: 16508301]
[42]
Bizzoca A, Virgintino D, Lorusso L, et al. Transgenic mice expressing F3/contactin from the TAG-1 promoter exhibit developmentally regulated changes in the differentiation of cerebellar neurons. Development 2003; 130(1): 29-43.
[http://dx.doi.org/10.1242/dev.00183] [PMID: 12441289]
[43]
Yamagata M, Sanes JR. Expanding the Ig superfamily code for laminar specificity in retina: Expression and role of contactins. J Neurosci 2012; 32(41): 14402-14.
[http://dx.doi.org/10.1523/JNEUROSCI.3193-12.2012] [PMID: 23055510]
[44]
Xenaki D, Martin IB, Yoshida L, et al. F3/contactin and TAG1 play antagonistic roles in the regulation of sonic hedgehog-induced cerebellar granule neuron progenitor proliferation. Development 2011; 138(3): 519-29.
[http://dx.doi.org/10.1242/dev.051912] [PMID: 21205796]
[45]
Bizzoca A, Corsi P, Polizzi A, et al. F3/Contactin acts as a modulator of neurogenesis during cerebral cortex development. Dev Biol 2012; 365(1): 133-51.
[http://dx.doi.org/10.1016/j.ydbio.2012.02.011] [PMID: 22360968]
[46]
Karuppan SJ, Vogt A, Fischer Z, et al. Members of the vertebrate contactin and amyloid precursor protein families interact through a conserved interface. J Biol Chem 2022; 298(2): 101541.
[http://dx.doi.org/10.1016/j.jbc.2021.101541] [PMID: 34958801]
[47]
Lamprianou S, Chatzopoulou E, Thomas JL, Bouyain S, Harroch S. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells. Proc Natl Acad Sci USA 2011; 108(42): 17498-503.
[http://dx.doi.org/10.1073/pnas.1108774108] [PMID: 21969550]
[48]
Massaro A, Bizzoca A, Corsi P, Pinto MF, Carratù MR, Gennarini G. Significance of F3/Contactin gene expression in cerebral cortex and nigrostriatal development. Mol Cell Neurosci 2012; 50(3-4): 221-37.
[http://dx.doi.org/10.1016/j.mcn.2012.05.003] [PMID: 22579730]
[49]
Chang S, Rathjen FG, Raper JA. Extension of neurites on axons is impaired by antibodies against specific neural cell surface glycoproteins. J Cell Biol 1987; 104(2): 355-62.
[http://dx.doi.org/10.1083/jcb.104.2.355] [PMID: 3543026]
[50]
Zisch AH, D’Alessandri L, Ranscht B, Falchetto R, Winterhalter KH, Vaughan L. Neuronal cell adhesion molecule contactin/F11 binds to tenascin via its immunoglobulin-like domains. J Cell Biol 1992; 119(1): 203-13.
[http://dx.doi.org/10.1083/jcb.119.1.203] [PMID: 1382076]
[51]
Zisch AH, D’Alessandri L, Amrein K, Ranscht B, Winterhalter KH, Vaughan L. The glypiated neuronal cell adhesion molecule contactin/F11 complexes with src-family protein tyrosine kinase Fyn. Mol Cell Neurosci 1995; 6(3): 263-79.
[http://dx.doi.org/10.1006/mcne.1995]
[52]
Volkmer H, Zacharias U, Nörenberg U, Rathjen FG. Dissection of complex molecular interactions of neurofascin with axonin-1, F11, and tenascin-R, which promote attachment and neurite formation of tectal cells. J Cell Biol 1998; 142(4): 1083-93.
[http://dx.doi.org/10.1083/jcb.142.4.1083] [PMID: 9722619]
[53]
Falk J, Bonnon C, Girault JA, Faivre-Sarrailh C. F3/Contactin, a neuronal cell adhesion molecule implicated in axogenesis and myelination. Biol Cell 2002; 94(6): 327-34.
[http://dx.doi.org/10.1016/S0248-4900(02)00006-0] [PMID: 12500940]
[54]
Doherty P, Ashton SV, Moore SE, Walsh FS. Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L- and N-type neuronal Ca2+ channels. Cell 1991; 67(1): 21-33.
[http://dx.doi.org/10.1016/0092-8674(91)90569-K] [PMID: 1680564]
[55]
Durbec P, Gennarini G, Goridis C, Rougon G. A soluble form of the F3 neuronal cell adhesion molecule promotes neurite outgrowth. J Cell Biol 1992; 117(4): 877-87.
[http://dx.doi.org/10.1083/jcb.117.4.877] [PMID: 1315782]
[56]
Pesheva P, Gennarini G, Goridis C, Schachner M. The F3/11 cell adhesion molecule mediates the repulsion of neurons by the extracellular matrix glycoprotein J1-160/180. Neuron 1993; 10(1): 69-82.
[57]
Berglund EO, Murai KK, Fredette B, et al. Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression. Neuron 1999; 24(3): 739-50.
[http://dx.doi.org/10.1016/S0896-6273(00)81126-5] [PMID: 10595523]
[58]
Fehmi J, Scherer SS, Willison HJ, Rinaldi S. Nodes, paranodes and neuropathies. J Neurol Neurosurg Psychiatry 2018; 89(1): 61-71.
[http://dx.doi.org/10.1136/jnnp-2016-315480] [PMID: 28819062]
[59]
Boyle MET, Berglund EO, Murai KK, Weber L, Peles E, Ranscht B. Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 2001; 30(2): 385-97.
[http://dx.doi.org/10.1016/S0896-6273(01)00296-3] [PMID: 11395001]
[60]
Davisson MT, Bronson RT, Tadenev ALD, et al. A spontaneous mutation in contactin 1 in the mouse. PLoS One 2011; 6(12): e29538.
[http://dx.doi.org/10.1371/journal.pone.0029538] [PMID: 22242131]
[61]
Zoupi L, Savvaki M, Kalemaki K, Kalafatakis I, Sidiropoulou K, Karagogeos D. The function of contactin-2/TAG-1 in oligodendrocytes in health and demyelinating pathology. Glia 2018; 66(3): 576-91.
[http://dx.doi.org/10.1002/glia.23266] [PMID: 29165835]
[62]
Horresh I, Poliak S, Grant S, Bredt D, Rasband MN, Peles E. Multiple molecular interactions determine the clustering of Caspr2 and Kv1 channels in myelinated axons. J Neurosci 2008; 28(52): 14213-22.
[http://dx.doi.org/10.1523/JNEUROSCI.3398-08.2008] [PMID: 19109503]
[63]
Bhat MA, Rios JC, Lu Y, et al. Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 2001; 30(2): 369-83.
[http://dx.doi.org/10.1016/S0896-6273(01)00294-X] [PMID: 11395000]
[64]
Rios JC, Rubin M, Martin MS, et al. Paranodal interactions regulate expression of sodium channel subtypes and provide a diffusion barrier for the node of Ranvier. J Neurosci 2003; 23(18): 7001-11.
[http://dx.doi.org/10.1523/JNEUROSCI.23-18-07001.2003] [PMID: 12904461]
[65]
Crossin KL. Morphoregulatory molecules and selectional dynamics during development. Int Rev Neurobiol 1994; 37: 53-73.
[http://dx.doi.org/10.1016/S0074-7742(08)60239-1] [PMID: 7883487]
[66]
Furley AJ, Morton SB, Manalo D, Karagogeos D, Dodd J, Jessell TM. The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 1990; 61(1): 157-70.
[http://dx.doi.org/10.1016/0092-8674(90)90223-2] [PMID: 2317872]
[67]
Puzzo D, Bizzoca A, Privitera L, et al. F3/Contactin promotes hippocampal neurogenesis, synaptic plasticity, and memory in adult mice. Hippocampus 2013; 23(12): 1367-82.
[http://dx.doi.org/10.1002/hipo.22186] [PMID: 23939883]
[68]
Obayashi S, Tabunoki H, Kim SU, Satoh J. Gene expression profiling of human neural progenitor cells following the serum-induced astrocyte differentiation. Cell Mol Neurobiol 2009; 29(3): 423-38.
[http://dx.doi.org/10.1007/s10571-008-9338-2] [PMID: 19130216]
[69]
Puzzo D, Bizzoca A, Loreto C, et al. Role of F3/Contactin expression profile in synaptic plasticity and memory in aged mice. Neurobiol Aging 2015; 36(4): 1702-15.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.01.004] [PMID: 25659859]
[70]
Engler A, Rolando C, Giachino C, et al. Notch 2 signaling maintains NSC quiescence in the murine ventricular-subventricular zone. Cell Rep 2018; 22(4): 992-1002.
[http://dx.doi.org/10.1016/j.celrep.2017.12.094] [PMID: 29386140]
[71]
Coluccia A, Tattoli M, Bizzoca A, et al. Transgenic mice expressing F3/contactin from the transient axonal glycoprotein promoter undergo developmentally regulated deficits of the cerebellar function. Neuroscience 2004; 123(1): 155-66.
[http://dx.doi.org/10.1016/j.neuroscience.2003.08.025] [PMID: 14667450]
[72]
Cook A, Giunti P. Friedreich’s ataxia: Clinical features, pathogenesis and management. Br Med Bull 2017; 124(1): 19-30.
[http://dx.doi.org/10.1093/bmb/ldx034] [PMID: 29053830]
[73]
Sandi C, Sandi M, Jassal H, et al. Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models. PLoS One 2014; 9(2): e89488.
[http://dx.doi.org/10.1371/journal.pone.0089488] [PMID: 24586819]
[74]
Koeppen AH, Becker AB, Qian J, Feustel PJ. Friedreich Ataxia: Hypoplasia of spinal cord and dorsal root ganglia. J Neuropathol Exp Neurol 2017; 76(2): nlw111.
[http://dx.doi.org/10.1093/jnen/nlw111] [PMID: 28082326]
[75]
Smith FM, Kosman DJ. Molecular defects in Friedreich’s Ataxia. Convergence of oxidative stress and cytoskeletal abnormalities. Front Mol Biosci 2020; 7: 569293.
[76]
Anjomani Virmouni S, Ezzatizadeh V, Sandi C, et al. A novel GAA repeat expansion-based mouse model of Friedreich ataxia. Dis Model Mech 2015; 8(3): dmm.018952.
[http://dx.doi.org/10.1242/dmm.018952] [PMID: 25681319]
[77]
Rocca CJ, Goodman SM, Dulin JN, et al. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. Sci Transl Med 2017; 9(413): 1-26.
[http://dx.doi.org/10.1126/scitranslmed.aaj2347]
[78]
Calatrava-Ferreras L, Gonzalo-Gobernado R, Reimers D, et al. Neuroprotective role of liver growth factor “LGF” in an experimental model of cerebellar ataxia. Int J Mol Sci 2014; 15(10): 19056-73.
[http://dx.doi.org/10.3390/ijms151019056] [PMID: 25338046]
[79]
Jones J, Estirado A, Redondo C, et al. Mesenchymal stem cells improve motor functions and decrease neurodegeneration in ataxic mice. Mol Ther 2015; 23(1): 130-8.
[http://dx.doi.org/10.1038/mt.2014.143] [PMID: 25070719]
[80]
Calatrava-Ferreras L, Gonzalo-Gobernado R, Reimers D, et al. Liver growth factor (LGF) upregulates frataxin protein expression and reduces oxidative stress in Friedreich’s ataxia transgenic mice. Int J Mol Sci 2016; 17(12): 2066.
[http://dx.doi.org/10.3390/ijms17122066] [PMID: 27941692]
[81]
Delatycki MB, Bidichandani SI. Friedreich ataxia- pathogenesis and implications for therapies. Neurobiol Dis 2019; 132: 104606.
[82]
Breuss MW, Leca I, Gstrein T, Hansen AH, Keays DA. Tubulins and brain development - The origins of functional specification. Mol Cell Neurosci 2017; 84: 58-67.
[http://dx.doi.org/10.1016/j.mcn.2017.03.002] [PMID: 28347630]
[83]
Franco C, Genis L, Navarro JA, et al. A role for astrocytes in cerebellar deficits in frataxin deficiency: Protection by insulin-like growth factor I. Mol Cell Neurosci 2017; 80: 100-10.
[http://dx.doi.org/10.1016/j.mcn.2017.02.008] [PMID: 28286293]
[84]
Pandolfo M, Pastore A. The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 2009; 256(S1): 9-17.
[http://dx.doi.org/10.1007/s00415-009-1003-2] [PMID: 19283345]
[85]
Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P. Clinical features of Friedreich’s ataxia: Classical and atypical phenotypes. J Neurochem 2013; 126(S1): 103-17.
[http://dx.doi.org/10.1111/jnc.12317] [PMID: 23859346]
[86]
Koeppen AH, Ramirez RL, Becker AB, Mazurkiewicz JE. Dorsal root ganglia in Friedreich ataxia: Satellite cell proliferation and inflammation. Acta Neuropathol Commun 2016; 4(1): 46.
[http://dx.doi.org/10.1186/s40478-016-0288-5]
[87]
Koeppen AH. The neuropathology of the adult cerebellum. Handb Clin Neurol 2018; 154: 129-49.
[http://dx.doi.org/10.1016/B978-0-444-63956-1.00008-4] [PMID: 29903436]
[88]
Lupoli F, Vannocci T, Longo G, Niccolai N, Pastore A. The role of oxidative stress in Friedreich’s ataxia. FEBS Lett 2018; 592(5): 718-27.
[http://dx.doi.org/10.1002/1873-3468.12928] [PMID: 29197070]
[89]
Tamarit J, Obis È, Ros J. Oxidative stress and altered lipid metabolism in Friedreich ataxia. Free Radic Biol Med 2016; 100: 138-46.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.06.007] [PMID: 27296838]
[90]
Pastore A, Puccio H. Frataxin: A protein in search for a function. J Neurochem 2013; 126(S1): 43-52.
[http://dx.doi.org/10.1111/jnc.12220] [PMID: 23859340]
[91]
Morral JA, Davis AN, Qian J, Gelman BB, Koeppen AH. Pathology and pathogenesis of sensory neuropathy in Friedreich’s ataxia. Acta Neuropathol 2010; 120(1): 97-108.
[http://dx.doi.org/10.1007/s00401-010-0675-0] [PMID: 20339857]
[92]
Piermarini E, Cartelli D, Pastore A, et al. Frataxin silencing alters microtubule stability in motor neurons: Implications for Friedreich’s ataxia. Hum Mol Genet 2016; 25(19): 4288-301.
[http://dx.doi.org/10.1093/hmg/ddw260] [PMID: 27516386]
[93]
Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: Costs and benefits. Physiol Rev 2014; 94(4): 1077-98.
[http://dx.doi.org/10.1152/physrev.00041.2013] [PMID: 25287860]
[94]
Pekny M, Pekna M. Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1862(3): 483-91.
[http://dx.doi.org/10.1016/j.bbadis.2015.11.014] [PMID: 26655603]
[95]
Chiang S, Kalinowski DS, Jansson PJ, Richardson DR, Huang MLH. Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich’s ataxia. Neurochem Int 2018; 117: 35-48.
[http://dx.doi.org/10.1016/j.neuint.2017.08.002] [PMID: 28782591]
[96]
Selvadurai LP, Harding IH, Corben LA, Georgiou-Karistianis N. Cerebral abnormalities in Friedreich ataxia: A review. Neurosci Biobehav Rev 2018; 84: 394-406.
[http://dx.doi.org/10.1016/j.neubiorev.2017.08.006] [PMID: 28823857]
[97]
Selvadurai LP, Corben LA, Delatycki MB, et al. Multiple mechanisms underpin cerebral and cerebellar white matter deficits in Friedreich ataxia: The IMAGE‐FRDA study. Hum Brain Mapp 2020; 41(7): 1920-33.
[http://dx.doi.org/10.1002/hbm.24921] [PMID: 31904895]
[98]
Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y. Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res 2018; 126: 39-43.
[http://dx.doi.org/10.1016/j.neures.2017.10.004] [PMID: 29054466]
[99]
Diotel N, Lübke L, Strähle U, Rastegar S. Common and distinct features of adult neurogenesis and regeneration in the telencephalon of zebrafish and mammals. Front Neurosci 2020; 14: 568930.
[http://dx.doi.org/10.3389/fnins.2020.568930] [PMID: 33071740]
[100]
Pekna M, Pekny M. The complement system: A powerful modulator and effector of astrocyte function in the healthy and diseased central nervous system. Cells 2021; 10(7): 1812.
[http://dx.doi.org/10.3390/cells10071812] [PMID: 34359981]
[101]
Singh NA, Mandal AKA, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 2015; 15(1): 60.
[http://dx.doi.org/10.1186/s12937-016-0179-4] [PMID: 27268025]
[102]
Guo Y, Zhao Y, Nan Y, Wang X, Chen Y, Wang S. (−)- Epigallocatechin-3-gallate ameliorates memory impairment and rescues the abnormal synaptic protein levels in the frontal cortex and hippocampus in a mouse model of Alzheimer’s disease. Neuroreport 2017; 28(10): 590-7.
[http://dx.doi.org/10.1097/WNR.0000000000000803] [PMID: 28520620]
[103]
Zhang R, Engler A, Taylor V. Notch: an interactive player in neurogenesis and disease. Cell Tissue Res 2018; 371(1): 73-89.
[http://dx.doi.org/10.1007/s00441-017-2641-9] [PMID: 28620760]
[104]
Hang L, Basil AH, Lim KL. Nutraceuticals in Parkinson’s Disease. Neuromolecular Med 2016; 18(3): 306-21.
[http://dx.doi.org/10.1007/s12017-016-8398-6] [PMID: 27147525]
[105]
Xu Q, Langley M, Kanthasamy AG, Reddy MB. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson Disease. J Nutr 2017; 147(10): 1926-31.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[106]
Chatterjee M, Teunissen C. Contactins & Alzheimer’s disease: Synaptic proteins, contactins may contribute to the pathology of Alzheimer’s disease. Neuroscience 2020; 424: 182-3.
[http://dx.doi.org/10.1016/j.neuroscience.2019.10.042] [PMID: 31682946]
[107]
Molino S, Dossena M, Buonocore D, et al. Polyphenols in dementia: From molecular basis to clinical trials. Life Sci 2016; 161: 69-77.
[http://dx.doi.org/10.1016/j.lfs.2016.07.021] [PMID: 27493077]
[108]
Pervin M, Unno K, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Beneficial effects of green tea catechins on neurodegenerative diseases. Molecules 2018; 23(6): 1297.
[http://dx.doi.org/10.3390/molecules23061297] [PMID: 29843466]
[109]
Mori T, Koyama N, Tan J, Segawa T, Maeda M, Town T. Combined treatment with the phenolics (−)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer-like pathology in mice. J Biol Chem 2019; 294(8): 2714-5444.
[http://dx.doi.org/10.1074/jbc.RA118.004280] [PMID: 30563837]
[110]
Faivre-Sarrailh C, Devaux JJ. Neuro-glial interactions at the nodes of Ranvier: Implication in health and diseases. Front Cell Neurosci 2013; 7: 196.
[http://dx.doi.org/10.3389/fncel.2013.00196] [PMID: 24194699]
[111]
Torres VI, Vallejo D, Inestrosa NC. Emerging synaptic molecules as candidates in the etiology of neurological disorders. Neural Plast 2017; 2017: 1-25.
[http://dx.doi.org/10.1155/2017/8081758] [PMID: 28331639]
[112]
Hu QD, Ang BT, Karsak M, et al. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 2003; 115(2): 163-75.
[http://dx.doi.org/10.1016/S0092-8674(03)00810-9] [PMID: 14567914]
[113]
Gu LT, Yang J, Su SZ, Liu WW, Shi ZG, Wang QR. Green tea polyphenols protects cochlear hair cells from ototoxicity by inhibiting notch signalling. Neurochem Res 2015; 40(6): 1211-9.
[http://dx.doi.org/10.1007/s11064-015-1584-3] [PMID: 25896296]
[114]
Compton AG, Albrecht DE, Seto JT, et al. Mutations in contactin-1, a neural adhesion and neuromuscular junction protein, cause a familial form of lethal congenital myopathy. Am J Hum Genet 2008; 83(6): 714-24.
[http://dx.doi.org/10.1016/j.ajhg.2008.10.022] [PMID: 19026398]
[115]
Ocklenburg S, Gerding WM, Arning L, et al. Myelin genes and the corpus callosum: Proteolipid Protein 1 (PLP1) and Contactin 1 (CNTN1) gene variation modulates interhemispheric integration. Mol Neurobiol 2017; 54(10): 7908-16.
[http://dx.doi.org/10.1007/s12035-016-0285-5] [PMID: 27864734]
[116]
Sun X, Takagishi Y, Okabe E, et al. A novel Caspr mutation causes the shambling mouse phenotype by disrupting axoglial interactions of myelinated nerves. J Neuropathol Exp Neurol 2009; 68(11): 1207-18.
[http://dx.doi.org/10.1097/NEN.0b013e3181be2e96] [PMID: 19816196]
[117]
Zarei-Kheirabadi M, Hesaraki M, Kiani S, Baharvand H. In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor. Stem Cell Res Ther 2019; 10(1): 380.
[http://dx.doi.org/10.1186/s13287-019-1448-x] [PMID: 31842989]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy