Generic placeholder image

Current Mechanics and Advanced Materials

Editor-in-Chief

ISSN (Print): 2666-1845
ISSN (Online): 2666-1853

Research Article

Contact Characteristics of Knee-joint Cartilage During Gait Based on Finite Element Analysis

Author(s): Pengge Fu, Geng Liu*, Li Zhang, Yuzhou Yan, Yuxin Wang and Hui Li

Volume 2, Issue 1, 2022

Published on: 17 January, 2023

Article ID: e301122211386 Pages: 10

DOI: 10.2174/2666184502666221130111007

Price: $65

Abstract

Background: As a common clinical disease, knee osteoarthritis (KOA) is characterized by chronic changes and articular cartilage wear, while the in vivo cartilage contact characteristics of the knee joint during walking are still unclear. It is difficult to implement real-time assistance and treatment for KOA patients accurately.

Objective: To investigate the contact biomechanics of knee cartilage during gait and predict the mechanism and location of cartilage damage, aiming to provide theoretical support for real-time rehabilitation assistance for KOA patients.

Methods: In this study, the subject-specific finite element (FE) method was used to predict the contact characteristics during the stance phase of the gait. A healthy volunteer prepared an intact geometric left knee model based on magnetic resonance scans. The kinematic and dynamic data were collected in a gait experiment and simulated using the personalized musculoskeletal model.

Results: Throughout the gait cycle, the contact pressure, contact area and principal Green- Lagrangian strain in the tibiofemoral joint show two obvious peaks concentrated on the 25% and 75% stance phase. The maximum values were 15.32 MPa, 400.607 mm2, and 24.35% on the tibial side, while 15.58 MPa, 683.538 mm2, and 29.68% on the femoral side, respectively. The contact characteristics were significantly greater in the medial compartment than in the lateral.

Conclusion: A FE simulation method was developed in this study to forecast the contact characteristics of the human knee joint. The prevention, rehabilitation, and treatment of KOA should focus more on the medial compartment close to the intercondylar eminence, both for the femoral and tibial cartilages.

Keywords: Osteoarthritis, knee, finite element, biomechanics, articular cartilage, gait.

Graphical Abstract
[1]
A. Dell’Isola, S.L. Smith, M.S. Andersen, and M. Steultjens, "Knee internal contact force in a varus malaligned phenotype in knee osteoarthritis (KOA)", Osteoarthr. Cartil., vol. 25, no. 12, pp. 2007-2013, 2017.
[http://dx.doi.org/10.1016/j.joca.2017.08.010] [PMID: 28882753]
[2]
H.J. Bennett, G. Shen, H.E. Cates, and S. Zhang, "Effects of toe-in and toe-in with wider step width on level walking knee biomechanics in varus, valgus, and neutral knee alignments", Knee, vol. 24, no. 6, pp. 1326-1334, 2017.
[http://dx.doi.org/10.1016/j.knee.2017.08.058] [PMID: 28970124]
[3]
A. Huang, M.L. Hull, S.M. Howell, and T.H. Donahue, "Identification of cross-sectional parameters of lateral meniscal allografts that predict tibial contact pressure in human cadaveric knees", J. Biomech. Eng., vol. 124, no. 5, pp. 481-489, 2002.
[http://dx.doi.org/10.1115/1.1503061] [PMID: 12405589]
[4]
J.T. Bingham, R. Papannagari, S.K. Van de Velde, C. Gross, T.J. Gill, D.T. Felson, H.E. Rubash, and G. Li, "In vivo cartilage contact deformation in the healthy human tibiofemoral joint", Rheumatology (Oxford), vol. 47, no. 11, pp. 1622-1627, 2008.
[http://dx.doi.org/10.1093/rheumatology/ken345] [PMID: 18775967]
[5]
G. Li, L.E. DeFrate, S.E. Park, T.J. Gill, and H.E. Rubash, "In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models", Am. J. Sports Med., vol. 33, no. 1, pp. 102-107, 2005.
[http://dx.doi.org/10.1177/0363546504265577] [PMID: 15611005]
[6]
F. Liu, M. Kozanek, A. Hosseini, S.K. Van de Velde, T.J. Gill, H.E. Rubash, and G. Li, "In vivo tibiofemoral cartilage deformation during the stance phase of gait", J. Biomech., vol. 43, no. 4, pp. 658-665, 2010.
[http://dx.doi.org/10.1016/j.jbiomech.2009.10.028] [PMID: 19896131]
[7]
E.M. Abdel-Rahman, and M.S. Hefzy, "Three-dimensional dynamic behaviour of the human knee joint under impact loading", Med. Eng. Phys., vol. 20, no. 4, pp. 276-290, 1998.
[http://dx.doi.org/10.1016/S1350-4533(98)00010-1] [PMID: 9728679]
[8]
S. Park, S. Lee, J. Yoon, and S.W. Chae, "Finite element analysis of knee and ankle joint during gait based on motion analysis", Med. Eng. Phys., vol. 63, pp. 33-41, 2019.
[http://dx.doi.org/10.1016/j.medengphy.2018.11.003] [PMID: 30482441]
[9]
M. Adouni, and A. Shirazi-Adl, "Consideration of equilibrium equations at the hip joint alongside those at the knee and ankle joints has mixed effects on knee joint response during gait", J. Biomech., vol. 46, no. 3, pp. 619-624, 2013.
[http://dx.doi.org/10.1016/j.jbiomech.2012.09.035] [PMID: 23123074]
[10]
M. Adouni, and A. Shirazi-Adl, "Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment", J. Biomech., vol. 47, no. 7, pp. 1696-1703, 2014.
[http://dx.doi.org/10.1016/j.jbiomech.2014.02.028] [PMID: 24636718]
[11]
L. Shu, K. Yamamoto, R. Yoshizaki, J. Yao, T. Sato, and N. Sugita, "Multiscale finite element musculoskeletal model for intact knee dynamics", Comput. Biol. Med., vol. 141, p. 105023, 2022.
[http://dx.doi.org/10.1016/j.compbiomed.2021.105023] [PMID: 34772508]
[12]
M.A. Baldwin, C.W. Clary, C.K. Fitzpatrick, J.S. Deacy, L.P. Maletsky, and P.J. Rullkoetter, "Dynamic finite element knee simulation for evaluation of knee replacement mechanics", J. Biomech., vol. 45, no. 3, pp. 474-483, 2012.
[http://dx.doi.org/10.1016/j.jbiomech.2011.11.052] [PMID: 22209313]
[13]
H. Naghibi Beidokhti, D. Janssen, S. van de Groes, J. Hazrati, T. Van den Boogaard, and N. Verdonschot, "The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint", J. Biomech., vol. 65, pp. 1-11, 2017.
[http://dx.doi.org/10.1016/j.jbiomech.2017.08.030] [PMID: 28917580]
[14]
E. Peña, B. Calvo, M.A. Martínez, and M. Doblaré, "A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint", J. Biomech., vol. 39, no. 9, pp. 1686-1701, 2006.
[http://dx.doi.org/10.1016/j.jbiomech.2005.04.030] [PMID: 15993414]
[15]
P. Beillas, P.C. Begeman, K.H. Yang, A.I. King, P.J. Arnoux, H.S. Kang, K. Kayvantash, C. Brunet, C. Cavallero, and P. Prasad, "Lower Limb: Advanced FE model and new experimental data", Stapp Car Crash J., vol. 45, pp. 469-494, 2001.
[http://dx.doi.org/10.4271/2001-22-0022] [PMID: 17458759]
[16]
P. Beillas, G. Papaioannou, S. Tashman, and K.H. Yang, "A new method to investigate in vivo knee behavior using a finite element model of the lower limb", J. Biomech., vol. 37, no. 7, pp. 1019-30, 2004.
[http://dx.doi.org/10.1016/j.jbiomech.2003.11.022]
[17]
J. Yoon, S. Ha, S. Lee, and S.W. Chae, "Analysis of contact pressure at knee cartilage during gait with respect to foot progression angle", Int. J. Precis. Eng. Manuf., vol. 19, no. 5, pp. 761-766, 2018.
[http://dx.doi.org/10.1007/s12541-018-0091-2]
[18]
L. Zhang, G. Liu, B. Han, Y. Yan, J. Fei, J. Ma, and Y. Zhang, "A comparison of dynamic and static hip-knee-ankle angle during gait in knee osteoarthritis patients and healthy individuals", Appl. Bionics Biomech., vol. 2021, pp. 1-11, 2021.
[http://dx.doi.org/10.1155/2021/6231406] [PMID: 34853606]
[19]
(a) M.H. Doweidar, B. Calvo, I. Alfaro, P. Groenenboom, and M. Doblaré, "A comparison of implicit and explicit natural element methods in large strains problems: Application to soft biological tissues modeling", Comput. Methods Appl. Mech. Eng., vol. 199, no. 25-28, pp. 1691-1700, 2010.
[http://dx.doi.org/10.1016/j.cma.2010.01.022];
(b) P.S. Walker, M.T. Lowry, and A. Kumar, "The effect of geometric variations in posterior-stabilized knee designs on motion characteristics measured in a knee loading machine", Clin. Orthop. Relat. Res., vol. 472, no. 1, pp. 238-247, 2014.
[http://dx.doi.org/10.1007/s11999-013-3088-2] [PMID: 23917990];
(c) K.L. Johnson, Contact mechanics., Cambrige University Press: New York, 1985, pp. 84-104.
[http://dx.doi.org/10.1017/CBO9781139171731.005]
[20]
S. Gross, and E.W. Abel, "A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur", J. Biomech., vol. 34, no. 8, pp. 995-1003, 2001.
[http://dx.doi.org/10.1016/S0021-9290(01)00072-0] [PMID: 11448691]
[21]
S. Hirokawa, and R. Tsuruno, "Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament", J. Biomech., vol. 33, no. 9, pp. 1069-1077, 2000.
[http://dx.doi.org/10.1016/S0021-9290(00)00073-7] [PMID: 10854879]
[22]
C.G. Armstrong, W.M. Lai, and V.C. Mow, "An analysis of the unconfined compression of articular cartilage", J. Biomech. Eng., vol. 106, no. 2, pp. 165-173, 1984.
[http://dx.doi.org/10.1115/1.3138475] [PMID: 6738022]
[23]
A.W. Eberhardt, L.M. Keer, J.L. Lewis, and V. Vithoontien, "An analytical model of joint contact", J. Biomech. Eng., vol. 112, no. 4, pp. 407-413, 1990.
[http://dx.doi.org/10.1115/1.2891204] [PMID: 2273867]
[24]
N.H. Yang, P.K. Canavan, H. Nayeb-Hashemi, B. Najafi, and A. Vaziri, "Protocol for constructing subject-specific biomechanical models of knee joint", Comput. Methods Biomech. Biomed. Engin., vol. 13, no. 5, pp. 589-603, 2010.
[http://dx.doi.org/10.1080/10255840903389989] [PMID: 20521186]
[25]
J.A. Weiss, J.C. Gardiner, and C. Bonifasi-Lista, "Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading", J. Biomech., vol. 35, no. 7, pp. 943-950, 2002.
[http://dx.doi.org/10.1016/S0021-9290(02)00041-6] [PMID: 12052396]
[26]
D.L. Butler, M.Y. Sheh, D.C. Stouffer, V.A. Samaranayake, and M.S. Levy, "Surface strain variation in human patellar tendon and knee cruciate ligaments", J. Biomech. Eng., vol. 112, no. 1, pp. 38-45, 1990.
[http://dx.doi.org/10.1115/1.2891124] [PMID: 2308302]
[27]
J.C. Gardiner, and J.A. Weiss, "Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading", J. Orthop. Res., vol. 21, no. 6, pp. 1098-1106, 2003.
[http://dx.doi.org/10.1016/S0736-0266(03)00113-X] [PMID: 14554224]
[28]
T.L. Haut Donahue, M.L. Hull, M.M. Rashid, and C.R. Jacobs, "A finite element model of the human knee joint for the study of tibio-femoral contact", J. Biomech. Eng., vol. 124, no. 3, pp. 273-280, 2002.
[http://dx.doi.org/10.1115/1.1470171] [PMID: 12071261]
[29]
G. Bergmann, A. Bender, F. Graichen, J. Dymke, A. Rohlmann, A. Trepczynski, M.O. Heller, and I. Kutzner, "Standardized loads acting in knee implants", PLoS One, vol. 9, no. 1, p. e86035, 2014.
[http://dx.doi.org/10.1371/journal.pone.0086035] [PMID: 24465856]
[30]
S. Gilbert, T. Chen, I.D. Hutchinson, D. Choi, C. Voigt, R.F. Warren, and S.A. Maher, "Dynamic contact mechanics on the tibial plateau of the human knee during activities of daily living", J. Biomech., vol. 47, no. 9, pp. 2006-2012, 2014.
[http://dx.doi.org/10.1016/j.jbiomech.2013.11.003] [PMID: 24296275]
[31]
D. Shriram, G. Yamako, E. Chosa, and K. Subburaj, "Biomechanical evaluation of isotropic and shell-core composite meniscal implants for total meniscus replacement: a nonlinear finite element study", IEEE Access, vol. 7, no. 2019, pp. 140084-140101, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2943689]
[32]
J.E. Jeffrey, D.W. Gregory, and R.M. Aspden, "Matrix damage and chondrocyte viability following a single impact load on articular cartilage", Arch. Biochem. Biophys., vol. 322, no. 1, pp. 87-96, 1995.
[http://dx.doi.org/10.1006/abbi.1995.1439] [PMID: 7574698]
[33]
W. Wilson, C. van Burken, C. van Donkelaar, P. Buma, B. van Rietbergen, and R. Huiskes, "Causes of mechanically induced collagen damage in articular cartilage", J. Orthop. Res., vol. 24, no. 2, pp. 220-228, 2006.
[http://dx.doi.org/10.1002/jor.20027] [PMID: 16435355]
[34]
R.U. Repo, and J.B. Finlay, "Survival of articular cartilage after controlled impact", J. Bone Joint Surg., Am., vol. 59, no. 8, pp. 1068-1076, 1977.
[http://dx.doi.org/10.2106/00004623-197759080-00012] [PMID: 591538]
[35]
S.D. Wangerin, Development and validation of a human knee joint finite element model for tissue stress and strain predictions during exercise, M.S. thesis, California Polytechnic State University, San Luis Obispo, California, USA, 2013.
[http://dx.doi.org/10.15368/theses.2013.209]
[36]
N.H. Yang, H. Nayeb-Hashemi, P.K. Canavan, and A. Vaziri, "Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait", J. Orthop. Res., vol. 28, no. 12, pp. 1539-1547, 2010.
[http://dx.doi.org/10.1002/jor.21174] [PMID: 20973057]
[37]
D.L. Robinson, M.E. Kersh, N.C. Walsh, D.C. Ackland, R.N. de Steiger, and M.G. Pandy, "Mechanical properties of normal and osteoarthritic human articular cartilage", J. Mech. Behav. Biomed. Mater., vol. 61, pp. 96-109, 2016.
[http://dx.doi.org/10.1016/j.jmbbm.2016.01.015] [PMID: 26851527]
[38]
N.H. Yang, P.K. Canavan, and H. Nayeb-Hashemi, "The effect of the frontal plane tibiofemoral angle and varus knee moment on the contact stress and strain at the knee cartilage", J. Appl. Biomech., vol. 26, no. 4, pp. 432-443, 2010.
[http://dx.doi.org/10.1123/jab.26.4.432] [PMID: 21245503]
[39]
K. Daszkiewicz, and P. Łuczkiewicz, "Biomechanics of the medial meniscus in the osteoarthritic knee joint", PeerJ, vol. 9, p. e12509, 2021.
[http://dx.doi.org/10.7717/peerj.12509] [PMID: 34900428]
[40]
K.N. Hauch, D.F. Villegas, and T.L. Haut Donahue, "Geometry, time-dependent and failure properties of human meniscal attachments", J. Biomech., vol. 43, no. 3, pp. 463-468, 2010.
[http://dx.doi.org/10.1016/j.jbiomech.2009.09.043] [PMID: 19896669]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy