Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Potential of Nanotechnology-based Formulations in Combating Pulmonary Infectious Diseases: A Current Scenario

Author(s): Manisha Patel, Rupa Mazumder*, Rakhi Mishra and Kamal Kant Kaushik

Volume 28, Issue 42, 2022

Published on: 24 November, 2022

Page: [3413 - 3427] Pages: 15

DOI: 10.2174/1381612829666221116143138

Price: $65

Abstract

Background: Pulmonary microbial infection is mainly caused by microbes like atypical bacteria, viruses, and fungi, on both the upper and lower respiratory tracts. One of the demands of the present is the use of nanotechnology-based treatments to fight various lung infections.

Aim: The main aim of the study is to explore all pulmonary infectious diseases and to compare the advanced and novel treatment approaches with the conventional methods which are available to treat infections.

Methods: This work sheds light on pulmonary infectious diseases with their conventional and present treatment approaches along with a focus on the advantageous roles of nano-based formulations. In the literature, it has been reported that the respiratory system is the key target of various infectious diseases which gives rise to various challenges in the treatment of pulmonary infections.

Results: The present review article describes the global situation of pulmonary infections and the different strategies which are available for their management, along with their limitations. The article also highlights the advantages and different examples of nanoformulations currently combating the limitations of conventional therapies.

Conclusion: The content of the present article further reflects on the summary of recently published research and review works on pulmonary infections, conventional methods of treatment with their limitations, and the role of nano-based approaches to combat the existing infectious diseases which will jointly help the researchers to produce effective drug formulations with desired pharmacological activities.

Keywords: Pulmonary, infectious, nano-based formulations, conventional dosage, patent, biocompatibility, lung infections.

Next »
[1]
Lim YH, Tiemann KM, Hunstad DA, Elsabahy M, Wooley KL. Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(6): 842-71.
[http://dx.doi.org/10.1002/wnan.1401] [PMID: 27016134]
[2]
Atkinson TP, Balish MF, Waites KB. Epidemiology, clinical manifestations, pathogenesis and laboratory detection of Mycoplasma pneumoniae infections: Figure 1. FEMS Microbiol Rev 2008; 32(6): 956-73.
[http://dx.doi.org/10.1111/j.1574-6976.2008.00129.x] [PMID: 18754792]
[3]
Murdoch DR. Impact of rapid microbiological testing on the management of lower respiratory tract infection. Clin Infect Dis 2005; 41(10): 1445-7.
[http://dx.doi.org/10.1086/497145] [PMID: 16231255]
[4]
Doroudian M, O’ Neill A, Mac Loughlin R, Prina-Mello A, Volkov Y, Donnelly SC. Nanotechnology in pulmonary medicine. Curr Opin Pharmacol 2021; 56: 85-92.
[http://dx.doi.org/10.1016/j.coph.2020.11.002] [PMID: 33341460]
[5]
Zhu W, Wei Z, Han C, Weng X. Nanomaterials as promising theranostic tools in nanomedicine and their applications in clinical disease diagnosis and treatment. Nanomaterials (Basel) 2021; 11(12): 3346.
[http://dx.doi.org/10.3390/nano11123346] [PMID: 34947695]
[6]
Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 2012; 112(5): 841-52.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05253.x] [PMID: 22324439]
[7]
Rai M, Ingle AP, Gade A, Duran N. Synthesis of silver nanoparticles by Phoma gardeniae and in vitro evaluation of their efficacy against human disease-causing bacteria and fungi. IET Nanobiotechnol 2015; 9(2): 71-5.
[http://dx.doi.org/10.1049/iet-nbt.2014.0013] [PMID: 25829172]
[8]
Crane MJ, Lee KM, FitzGerald ES, Jamieson AM. Surviving deadly lung infections: innate host tolerance mechanisms in the pulmonary system. Front Immunol 2018; 9: 1421.
[http://dx.doi.org/10.3389/fimmu.2018.01421] [PMID: 29988424]
[9]
Hartl D, Tirouvanziam R, Laval J, et al. Innate immunity of the lung: from basic mechanisms to translational medicine. J Innate Immun 2018; 10(5-6): 487-501.
[http://dx.doi.org/10.1159/000487057] [PMID: 29439264]
[10]
FitzGerald ES, Luz NF, Jamieson AM. Competitive cell death interactions in pulmonary infection: host modulation versus pathogen manipulation. Front Immunol 2020; 11: 814.
[http://dx.doi.org/10.3389/fimmu.2020.00814] [PMID: 32508813]
[11]
Rock JR, Randell SH, Hogan BLM. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 2010; 3(9-10): 545-56.
[http://dx.doi.org/10.1242/dmm.006031] [PMID: 20699479]
[12]
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25(3): 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[13]
Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 2000; 45(3): 528-37.
[http://dx.doi.org/10.1016/S0008-6363(99)00384-3] [PMID: 10728374]
[14]
van Heerde W, Robert-Offerman S, Dumont E, et al. Markers of apoptosis in cardiovascular tissues focus on Annexin V. Cardiovasc Res 2000; 45(3): 549-59.
[http://dx.doi.org/10.1016/S0008-6363(99)00396-X] [PMID: 10728376]
[15]
Nair P, Lu M, Petersen S, Ashkenazi A. Apoptosis initiation through the cell-extrinsic pathway. Methods Enzymol 2014; 544: 99-128.
[http://dx.doi.org/10.1016/B978-0-12-417158-9.00005-4] [PMID: 24974288]
[16]
Nair H, Brooks WA, Katz M, et al. Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet 2011; 378(9807): 1917-30.
[http://dx.doi.org/10.1016/S0140-6736(11)61051-9] [PMID: 22078723]
[17]
Gopinath SC, Lakshmipriya T, Hashim U, Arshad MM, Ayub RM, Adam T. Influenza viral infection in the respiratory system—potential ways of monitoring. The Microbiol Respirat Sys Infec. 2016; pp. 33-43.
[18]
Kreijtz JHCM, Fouchier RAM, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res 2011; 162(1-2): 19-30.
[http://dx.doi.org/10.1016/j.virusres.2011.09.022] [PMID: 21963677]
[19]
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113(5): 3516-604.
[http://dx.doi.org/10.1021/cr100264t] [PMID: 23432396]
[20]
Tarighi P, Eftekhari S, Chizari M, Sabernavaei M, Jafari D, Mirzabeigi P. A review of potential suggested drugs for coronavirus disease (COVID-19) treatment. Eur J Pharmacol 2021; 895: 173890.
[http://dx.doi.org/10.1016/j.ejphar.2021.173890] [PMID: 33482181]
[21]
Mukherjee S, Mazumder P, Joshi M, Joshi C, Dalvi SV, Kumar M. Biomedical application, drug delivery and metabolic pathway of antiviral nanotherapeutics for combating viral pandemic: A review. Environ Res 2020; 191: 110119.
[http://dx.doi.org/10.1016/j.envres.2020.110119] [PMID: 32846177]
[22]
Niederman MS, Mandell LA, Anzueto A, et al. Guidelines for the management of adults with community-acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am J Respir Crit Care Med 2001; 163(7): 1730-54.
[http://dx.doi.org/10.1164/ajrccm.163.7.at1010] [PMID: 11401897]
[23]
Álvarez-Lerma F, Torres A. Severe community-acquired pneumonia. Curr Opin Crit Care 2004; 10(5): 369-74.
[http://dx.doi.org/10.1097/01.ccx.0000140949.05643.34] [PMID: 15385753]
[25]
Zaman K. Tuberculosis: a global health problem. J Health Popul Nutr 2010; 28(2): 111-3.
[http://dx.doi.org/10.3329/jhpn.v28i2.4879] [PMID: 20411672]
[26]
Kochi A. The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle 1991; 72(1): 1-6.
[http://dx.doi.org/10.1016/0041-3879(91)90017-M] [PMID: 1882440]
[27]
Adherence to long-term therapies: evidence for action. 2003. Available from: https://www.who.int/chp/knowledge/publications/adherence (Accessed on:2022 January 20).
[28]
Tapiainen T, Aittoniemi J, Immonen J, et al. Finnish guidelines for the treatment of laryngitis, wheezing bronchitis and bronchiolitis in children. Acta Paediatr 2016; 105(1): 44-9.
[http://dx.doi.org/10.1111/apa.13162] [PMID: 26295564]
[29]
Kim V, Criner GJ. Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 187(3): 228-37.
[http://dx.doi.org/10.1164/rccm.201210-1843CI] [PMID: 23204254]
[30]
Smith SM, Schroeder K, Fahey T. Cochrane review: Over-the- counter medications for acute cough in children and adults in ambulatory settings. Evidence-Based Child Health: A Cochrane Rev J 2009; 4(1): 65-95.
[31]
Harms HK, Zimmer K-P, Kurnik K, Bertele-Harms RM, Weidinger S, Reiter K. Oral mannose therapy persistently corrects the severe clinical symptoms and biochemical abnormalities of phosphomannose isomerase deficiency. Acta Paediatr 2002; 91(10): 1065-72.
[http://dx.doi.org/10.1111/j.1651-2227.2002.tb00101.x] [PMID: 12434892]
[32]
Bernard DW, Goepp JG, Duggan AK, Serwint JR, Rowe PC. Is oral albuterol effective for acute cough in non-asthmatic children? Acta Paediatr 1999; 88(4): 465-7.
[http://dx.doi.org/10.1111/j.1651-2227.1999.tb01142.x] [PMID: 10342550]
[33]
Oduwole O, Udoh EE, Oyo-Ita A, Meremikwu MM. Honey for acute cough in children. Cochrane Database Syst Rev 2018; 4(4): CD007094.
[PMID: 29633783]
[34]
Bergeron A, Porcher R, Sulahian A, et al. The strategy for the diagnosis of invasive pulmonary aspergillosis should depend on both the underlying condition and the leukocyte count of patients with hematologic malignancies. Blood 2012; 119(8): 1831-7.
[http://dx.doi.org/10.1182/blood-2011-04-351601] [PMID: 22010103]
[35]
Tunnicliffe G, Schomberg L, Walsh S, Tinwell B, Harrison T, Chua F. Airway and parenchymal manifestations of pulmonary aspergillosis. Respir Med 2013; 107(8): 1113-23.
[http://dx.doi.org/10.1016/j.rmed.2013.03.016] [PMID: 23702091]
[36]
Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review. Eur Respir Rev 2011; 20(121): 156-74.
[http://dx.doi.org/10.1183/09059180.00001011] [PMID: 21881144]
[37]
Restrepo-Gualteros SM, Jaramillo-Barberi LE, Rodríguez-Martínez CE, Camacho-Moreno G, Niño G. Invasive pulmonary aspergillosis: A case report. Biomédica 2015; 35(2): 171-6.
[http://dx.doi.org/10.7705/biomedica.v35i2.2357] [PMID: 26535538]
[38]
Walsh TJ, Anaissie EJ, Denning DW, et al. Treatment of aspergillosis: clinical practice guidelines of the infectious diseases society of America. Clin Infect Dis 2008; 46(3): 327-60.
[http://dx.doi.org/10.1086/525258] [PMID: 18177225]
[39]
Barnes PJ. Inhaled Corticosteroids. Pharmaceuticals (Basel) 2010; 3(3): 514-40.
[http://dx.doi.org/10.3390/ph3030514] [PMID: 27713266]
[40]
Sampson A, Holgate S. Leukotriene modifiers in the treatment of asthma. BMJ 1998; 316(7140): 1257-8.
[http://dx.doi.org/10.1136/bmj.316.7140.1257] [PMID: 9554892]
[41]
Barnes PJ. Theophylline. Pharmaceuticals (Basel) 2010; 3(3): 725-47.
[http://dx.doi.org/10.3390/ph3030725] [PMID: 27713276]
[42]
Almadhoun K, Sharma S. Bronchodilators. StatPearls. Treasure Island (FL): StatPearls Publishing 2022.
[43]
Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet 2017; 389(10082): 1941-52.
[http://dx.doi.org/10.1016/S0140-6736(17)30866-8] [PMID: 28365056]
[44]
Gadgeel SM, Ramalingam SS, Kalemkerian GP. Treatment of lung cancer. Radiol Clin North Am 2012; 50(5): 961-74.
[http://dx.doi.org/10.1016/j.rcl.2012.06.003] [PMID: 22974781]
[45]
Teixeira DF, Santos AM, Oliveira AMS, et al. Pharmaceuticals agents for preventing NSAID-induced gastric ulcers: a patent review. Expert Rev Clin Pharmacol 2021; 14(6): 677-86.
[http://dx.doi.org/10.1080/17512433.2021.1909475] [PMID: 33843400]
[46]
Jartti T, Korppi M. Rhinovirus-induced bronchiolitis and asthma development. Pediatr Allergy Immunol 2011; 22(4): 350-5.
[http://dx.doi.org/10.1111/j.1399-3038.2011.01170.x] [PMID: 21535176]
[47]
Johnson MM, Odell JA. Nontuberculous mycobacterial pulmonary infections. J Thorac Dis 2014; 6(3): 210-20.
[PMID: 24624285]
[48]
Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175(4): 367-416.
[http://dx.doi.org/10.1164/rccm.200604-571ST] [PMID: 17277290]
[49]
Pierre-Audigier C, Ferroni A, Sermet-Gaudelus I, et al. Age-related prevalence and distribution of nontuberculous mycobacterial species among patients with cystic fibrosis. J Clin Microbiol 2005; 43(7): 3467-70.
[http://dx.doi.org/10.1128/JCM.43.7.3467-3470.2005] [PMID: 16000480]
[50]
Olivier KN, Shaw PA, Glaser TS, et al. Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann Am Thorac Soc 2014; 11(1): 30-5.
[http://dx.doi.org/10.1513/AnnalsATS.201307-231OC] [PMID: 24460437]
[51]
Fung TS, Liu DX. Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol 2014; 5: 296.
[http://dx.doi.org/10.3389/fmicb.2014.00296] [PMID: 24987391]
[52]
Zainab S, Hassan SM, Noor R, Khalid F, Ojha MP. Prognosis and the global impact of the COVID-19 pandemic-A comprehensive review. RADS J Pharm Pharmaceut Sci 2021; 9(1): 66-83.
[http://dx.doi.org/10.37962/jpps.v9i1.487]
[53]
Dash AP, Nina PB. Hydroxychloroquine as prophylaxis or treatment for COVID-19: What does the evidence say? Indian J Public Health 2020; 64(6) (Suppl.): 125.
[http://dx.doi.org/10.4103/ijph.IJPH_496_20] [PMID: 32496241]
[54]
Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents 2020; 55(5): 105951.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105951] [PMID: 32234466]
[55]
Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19. N Engl J Med 2020; 383(19): 1813-26.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[56]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[57]
Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol 2005; 23(9): 1147-57.
[http://dx.doi.org/10.1038/nbt1137] [PMID: 16151408]
[58]
Xie X, Jiang Y, Zeng Y, Liu H. Combination antiviral therapy with lopinavir/ritonavir, arbidol and interferon-α1b for COVID-19. Antivir Ther 2020; 25(4): 233-9.
[http://dx.doi.org/10.3851/IMP3362] [PMID: 32496210]
[59]
Wang X, Coljee VW, Maynard JA. Back to the future: recombinant polyclonal antibody therapeutics. Curr Opin Chem Eng 2013; 2(4): 405-15.
[http://dx.doi.org/10.1016/j.coche.2013.08.005] [PMID: 24443710]
[60]
Nejadmoghaddam MR, Minai-Tehrani A, Ghahremanzadeh R, Mahmoudi M, Dinarvand R, Zarnani AH. Antibody-drug conjugates: possibilities and challenges. Avicenna J Med Biotechnol 2019; 11(1): 3-23.
[PMID: 30800238]
[61]
Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 2000; 13(3): 155-68.
[http://dx.doi.org/10.1016/S0924-8579(99)00121-1] [PMID: 10724019]
[62]
Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 2003; 16(3): 463-96.
[http://dx.doi.org/10.1128/CMR.16.3.463-496.2003] [PMID: 12857778]
[63]
Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 2017; 4(4): 105-31.
[http://dx.doi.org/10.1177/2049936117713593] [PMID: 28748089]
[64]
Tolman JA, Williams RO III. Advances in the pulmonary delivery of poorly water-soluble drugs: influence of solubilization on pharmacokinetic properties. Drug Dev Ind Pharm 2010; 36(1): 1-30.
[http://dx.doi.org/10.3109/03639040903092319] [PMID: 19640248]
[65]
Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007; 2(3): 289-300.
[PMID: 18019829]
[66]
Bi R, Shao W, Wang Q, Zhang N. Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery. J Biomed Nanotechnol 2009; 5(1): 84-92.
[http://dx.doi.org/10.1166/jbn.2009.036] [PMID: 20055110]
[67]
Nassimi M, Schleh C, Lauenstein HD, et al. Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models. Inhal Toxicol 2009; 21(sup1): 104-9.
[68]
Trapani A, Esteban MÁ, Curci F, et al. Solid lipid nanoparticles administering antioxidant grape seed-derived polyphenol compounds: A potential application in aquaculture. Molecules 2022; 27(2): 344.
[http://dx.doi.org/10.3390/molecules27020344] [PMID: 35056658]
[69]
Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel) 2019; 9(3): 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[70]
Maretti E, Costantino L, Buttini F, et al. Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Drug Deliv Transl Res 2019; 9(1): 298-310.
[http://dx.doi.org/10.1007/s13346-018-00607-w] [PMID: 30484257]
[71]
Arana L, Gallego L, Alkorta I. Incorporation of Antibiotics into Solid Lipid Nanoparticles: A Promising Approach to Reduce Antibiotic Resistance Emergence. Nanomaterials (Basel) 2021; 11(5): 1251.
[http://dx.doi.org/10.3390/nano11051251] [PMID: 34068834]
[72]
Duret C, Wauthoz N, Sebti T, Vanderbist F, Amighi K. New inhalation-optimized itraconazole nanoparticle-based dry powders for the treatment of invasive pulmonary aspergillosis. Int J Nanomedicine 2012; 7: 5475-89.
[http://dx.doi.org/10.2147/IJN.S34091] [PMID: 23093903]
[73]
Emilian Leucuta S. Nanotechnology for delivery of drugs and biomedical applications. Curr Clin Pharmacol 2010; 5(4): 257-80.
[http://dx.doi.org/10.2174/157488410793352003] [PMID: 20925643]
[74]
Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 381-91.
[http://dx.doi.org/10.3109/21691401.2014.953633] [PMID: 25222036]
[75]
Oberholzer T, Luisi PL. The use of liposomes for constructing cell models. J Biol Phys 2002; 28(4): 733-44.
[http://dx.doi.org/10.1023/A:1021267512805] [PMID: 23345810]
[76]
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015; 6: 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[77]
Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994; 54(4): 987-92.
[PMID: 8313389]
[78]
Madni A, Sarfraz M, Rehman M, et al. Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci 2014; 17(3): 401-26.
[http://dx.doi.org/10.18433/J3CP55] [PMID: 25224351]
[79]
Mehta M, Deeksha , Tewari D, et al. Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem Biol Interact 2019; 308: 206-15.
[http://dx.doi.org/10.1016/j.cbi.2019.05.028] [PMID: 31136735]
[80]
Lee WH, Loo CY, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. Asian Journal of Pharmaceutical Sciences 2015; 10(6): 481-9.
[http://dx.doi.org/10.1016/j.ajps.2015.08.009]
[81]
Palmerston Mendes L, Pan J, Torchilin V. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017; 22(9): 1401.
[http://dx.doi.org/10.3390/molecules22091401] [PMID: 28832535]
[82]
Bellini RG, Guimarães AP, Pacheco MAC, et al. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model 2015; 60: 34-42.
[http://dx.doi.org/10.1016/j.jmgm.2015.05.012] [PMID: 26093506]
[83]
Luo MX, Hua S, Shang QY. Application of nanotechnology in drug delivery systems for respiratory diseases (Review). Mol Med Rep 2021; 23(5): 325.
[http://dx.doi.org/10.3892/mmr.2021.11964] [PMID: 33760125]
[84]
Conti DS, Brewer D, Grashik J, Avasarala S, da Rocha SRP. Poly(amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol Pharm 2014; 11(6): 1808-22.
[http://dx.doi.org/10.1021/mp4006358] [PMID: 24811243]
[85]
Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SRP. Conjugation to poly (amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm 2016; 13(7): 2363-75.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00126] [PMID: 27253493]
[86]
Inapagolla R, Guru BR, Kurtoglu YE, et al. In vivo efficacy of dendrimer–methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm 2010; 399(1-2): 140-7.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.030] [PMID: 20667503]
[87]
Satija S, Kaur H, Tambuwala MM, et al. Hypoxia-inducible factor (HIF): fuel for cancer progression. Curr Mol Pharmacol 2021; 14(3): 321-32.
[http://dx.doi.org/10.2174/1874467214666210120154929] [PMID: 33494692]
[88]
Ortega D, Sacido ÁA. Engineering iron oxide nanoparticles for clinical settings. Nano biomed 2014; 1: 2.
[89]
Yhee J, Im J, Nho R. Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery. J Clin Med 2016; 5(9): 82.
[http://dx.doi.org/10.3390/jcm5090082] [PMID: 27657144]
[90]
Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for health-related applications. Chem Sci (Camb) 2020; 11(4): 923-36.
[http://dx.doi.org/10.1039/C9SC06497D] [PMID: 34084347]
[91]
v R, Pal K, Zaheer T, et al. Gold nanoparticles against respiratory diseases: oncogenic and viral pathogens review. Ther Deliv 2020; 11(8): 521-34.
[http://dx.doi.org/10.4155/tde-2020-0071] [PMID: 32757745]
[92]
Gu YJ, Cheng J, Man CWY, Wong WT, Cheng SH. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine 2012; 8(2): 204-11.
[http://dx.doi.org/10.1016/j.nano.2011.06.005] [PMID: 21704592]
[93]
Lew TTS, Aung KMM, Ow SY, et al. Epitope-functionalized gold nanoparticles for rapid and selective detection of SARS-CoV-2 IgG antibodies. ACS Nano 2021; 15(7): 12286-97.
[http://dx.doi.org/10.1021/acsnano.1c04091] [PMID: 34133128]
[94]
Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 2018; 19(7): 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[95]
Grumezescu AM, Stoica AE, Dima-Bălcescu MȘ, et al. Electrospun polyethylene terephthalate nanofibers loaded with silver nanoparticles: Novel approach in anti-infective therapy. J Clin Med 2019; 8(7): 1039.
[http://dx.doi.org/10.3390/jcm8071039] [PMID: 31315266]
[96]
Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MN. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021; 13(5): e1707.
[http://dx.doi.org/10.1002/wnan.1707] [PMID: 33638618]
[97]
Li Y, Lin Z, Zhao M, et al. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signalling pathways. ACS Appl Mater Interfaces 2016; 8(37): 24385-93.
[http://dx.doi.org/10.1021/acsami.6b06613] [PMID: 27588566]
[98]
Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett 2013; 8(1): 93.
[http://dx.doi.org/10.1186/1556-276X-8-93] [PMID: 23421446]
[99]
Borrego B, Lorenzo G, Mota-Morales JD, et al. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine 2016; 12(5): 1185-92.
[http://dx.doi.org/10.1016/j.nano.2016.01.021] [PMID: 26970026]
[100]
Bekyarova E, Ni Y, Malarkey EB, et al. Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 2005; 1(1): 3-17.
[http://dx.doi.org/10.1166/jbn.2005.004] [PMID: 19763242]
[101]
Kateb B, Yamamoto V, Alizadeh D, et al. Multi-walled carbon nanotube (MWCNT) synthesis, preparation, labeling, and functionalization. Immunotherapy Canc. 2010; pp. 307-17.
[102]
Rosen Y, Mattix B, Rao A. Carbon nanotubes and infectious diseases: And frank alexis. Nanomed Health Dis. 2011; pp. 257-75.
[http://dx.doi.org/10.1201/b11076-14]
[103]
Jiang L, Liu T, He H, et al. Adsorption behavior of pazufloxacin mesilate on amino-functionalized carbon nanotubes. J Nanosci Nanotechnol 2012; 12(9): 7271-9.
[http://dx.doi.org/10.1166/jnn.2012.6562] [PMID: 23035463]
[104]
Duman FD, Akkoc Y, Demirci G, et al. Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag 2 S quantum dots. J Mater Chem B Mater Biol Med 2019; 7(46): 7363-76.
[http://dx.doi.org/10.1039/C9TB01602C] [PMID: 31696188]
[105]
Bhaskar S, Lim S. Engineering protein nanocages as carriers for biomedical applications. NPG Asia Mater 2017; 9(4): e371.
[http://dx.doi.org/10.1038/am.2016.128] [PMID: 32218880]
[106]
Syomin BV, Ilyin YV. Virus-like particles as an instrument of vaccine production. Mol Biol 2019; 53(3): 323-34.
[http://dx.doi.org/10.1134/S0026893319030154] [PMID: 32214478]
[107]
Renukaradhya GJ, Narasimhan B, Mallapragada SK. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. J Control Release 2015; 219: 622-31.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.047] [PMID: 26410807]
[108]
Coleman CM, Liu YV, Mu H, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine 2014; 32(26): 3169-74.
[http://dx.doi.org/10.1016/j.vaccine.2014.04.016] [PMID: 24736006]
[109]
Ngan CL, Asmawi AA. Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res 2018; 8(5): 1527-44.
[http://dx.doi.org/10.1007/s13346-018-0550-4] [PMID: 29881970]
[110]
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70(1-2): 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[111]
Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S. Nanocapsules: the weapons for novel drug delivery systems. Bioimpacts 2012; 2(2): 71-81.
[PMID: 23678444]
[112]
Muthu MS, Singh S. Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine (Lond) 2009; 4(1): 105-18.
[http://dx.doi.org/10.2217/17435889.4.1.105] [PMID: 19093899]
[113]
Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 2007; 65(3): 259-69.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.009] [PMID: 17196803]
[114]
Zeng P, Xu Y, Zeng C, Ren H, Peng M. Chitosan-modified poly(d,l-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing. Int J Pharm 2011; 415(1-2): 259-66.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.053] [PMID: 21645597]
[115]
Škubník J, Pavlíčková V, Ruml T, Rimpelová S. Current perspectives on taxanes: Focus on their bioactivity, delivery and combination therapy. Plants 2021; 10(3): 569.
[http://dx.doi.org/10.3390/plants10030569] [PMID: 33802861]
[116]
Zhang Z, Grijpma DW, Feijen J. Thermo-sensitive transition of monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate) films to micellar-like nanoparticles. J Control Release 2006; 112(1): 57-63.
[http://dx.doi.org/10.1016/j.jconrel.2006.01.010] [PMID: 16516326]
[117]
Li Y, Kwon GS. Methotrexate esters of poly(ethylene oxide)-block-poly(2-hydroxyethyl-L-aspartamide). Part I: Effects of the level of methotrexate conjugation on the stability of micelles and on drug release. Pharm Res 2000; 17(5): 607-11.
[http://dx.doi.org/10.1023/A:1007529218802] [PMID: 10888314]
[118]
Gilani K, Moazeni E, Ramezanli T, Amini M, Fazeli MR, Jamalifar H. Development of respirable nanomicelle carriers for delivery of amphotericin B by jet nebulization. J Pharm Sci 2011; 100(1): 252-9.
[http://dx.doi.org/10.1002/jps.22274] [PMID: 20602350]
[119]
Gaber NN, Darwis Y, Peh KK, Tan YTF. Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate. J Nanosci Nanotechnol 2006; 6(9): 3095-101.
[http://dx.doi.org/10.1166/jnn.2006.426] [PMID: 17048523]
[120]
Silva M, Ricelli NL, El Seoud O, et al. Potential tuberculostatic agent: micelle-forming pyrazinamide prodrug. Arch Pharm (Weinheim) 2006; 339(6): 283-90.
[http://dx.doi.org/10.1002/ardp.200500039] [PMID: 16688684]
[121]
Virmani R, Pathak K. Targeted polymeric micellar systems for respiratory diseases. Targeting Chronic Inflammatory Lung Diseases Using Adv Drug Deliv Syst. 2020; pp. 411-39.
[http://dx.doi.org/10.1016/B978-0-12-820658-4.00020-0]
[122]
El-Gendy N, Gorman EM, Munson EJ, Berkland C. Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. J Pharm Sci 2009; 98(8): 2731-46.
[http://dx.doi.org/10.1002/jps.21630] [PMID: 19130469]
[123]
Pornputtapitak W, El-Gendy N, Berkland C. NanoCluster itraconazole formulations provide a potential engineered drug particle approach to generate effective dry powder aerosols. J Aerosol Med Pulm Drug Deliv 2015; 28(5): 341-52.
[http://dx.doi.org/10.1089/jamp.2014.1155] [PMID: 25679514]
[124]
El-Gendy N, Berkland C. Combination chemotherapeutic dry powder aerosols via controlled nanoparticle agglomeration. Pharm Res 2009; 26(7): 1752-63.
[http://dx.doi.org/10.1007/s11095-009-9886-2] [PMID: 19415471]
[125]
Chiang PC, Alsup JW, Lai Y, Hu Y, Heyde BR, Tung D. Evaluation of aerosol delivery of nanosuspension for pre-clinical pulmonary drug delivery. Nanoscale Res Lett 2009; 4(3): 254-61.
[http://dx.doi.org/10.1007/s11671-008-9234-1] [PMID: 20596335]
[126]
Agrawal YK, Patel VR. Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res 2011; 2(2): 81-7.
[http://dx.doi.org/10.4103/2231-4040.82950] [PMID: 22171298]
[127]
Nakusha D, Prakash K, Vishal P. Emerging trends in topical antifungal therapy: A review. Inventi J 2015; 2015: 1-5.
[128]
Meini S, Pagotto A, Longo B, Vendramin I, Pecori D, Tascini C. Role of Lopinavir/Ritonavir in the treatment of COVID-19: a review of current evidence, guideline recommendations, and perspectives. J Clin Med 2020; 9(7): 2050.
[http://dx.doi.org/10.3390/jcm9072050] [PMID: 32629768]
[129]
Franklyne JS, Gopinath PM, Mukherjee A, Chandrasekaran N. Nanoemulsions: The rising star of antiviral therapeutics and nanodelivery system—current status and prospects. Curr Opin Colloid Interface Sci 2021; 54: 101458.
[http://dx.doi.org/10.1016/j.cocis.2021.101458] [PMID: 33814954]
[130]
Abdulbaqi IM, Assi RA, Yaghmur A, et al. Pulmonary delivery of anticancer drugs via lipid-based nanocarriers for the treatment of lung cancer: an update. Pharmaceuticals (Basel) 2021; 14(8): 725.
[http://dx.doi.org/10.3390/ph14080725] [PMID: 34451824]
[131]
Cheng SN, Tan ZG, Pandey M, et al. A critical review on emerging trends in dry powder inhaler formulation for the treatment of pulmonary Aspergillosis. Pharmaceutics 2020; 12(12): 1161.
[http://dx.doi.org/10.3390/pharmaceutics12121161] [PMID: 33260598]
[132]
dos Santos Rodrigues B, Banerjee A, Kanekiyo T, Singh J. Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection. Int J Pharm 2019; 566: 717-30.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.026] [PMID: 31202901]
[133]
Hussain A, Singh S, Das SS, Anjireddy K, Karpagam S, Shakeel F. Nanomedicines as drug delivery carriers of anti-tubercular drugs: from pathogenesis to infection control. Curr Drug Deliv 2019; 16(5): 400-29.
[http://dx.doi.org/10.2174/1567201816666190201144815] [PMID: 30714523]
[134]
Gajra B, Dalwadi C, Patel R. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using box behnken design. Daru 2015; 23(1): 3.
[http://dx.doi.org/10.1186/s40199-014-0087-0] [PMID: 25604353]
[135]
Omri A, Suntres ZE, Shek PN. Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection. Biochem Pharmacol 2002; 64(9): 1407-13.
[http://dx.doi.org/10.1016/S0006-2952(02)01346-1] [PMID: 12392822]
[136]
Channarong S, Chaicumpa W, Sinchaipanid N, Mitrevej A. Development and evaluation of chitosan-coated liposomes for oral DNA vaccine: the improvement of Peyer’s patch targeting using a polyplex-loaded liposomes. AAPS PharmSciTech 2011; 12(1): 192-200.
[http://dx.doi.org/10.1208/s12249-010-9559-9] [PMID: 21194014]
[137]
Hindi KM, Ditto AJ, Panzner MJ, et al. The antimicrobial efficacy of sustained release silver–carbene complex-loaded l-tyrosine polyphosphate nanoparticles: Characterization, in vitro and in vivo studies. Biomaterials 2009; 30(22): 3771-9.
[http://dx.doi.org/10.1016/j.biomaterials.2009.03.044] [PMID: 19395021]
[138]
Alhariri M, Omri A. Efficacy of liposomal bismuth-ethanedithiol-loaded tobramycin after intratracheal administration in rats with pulmonary Pseudomonas aeruginosa infection. Antimicrob Agents Chemother 2013; 57(1): 569-78.
[http://dx.doi.org/10.1128/AAC.01634-12] [PMID: 23147741]
[139]
Hargrove TY, Wawrzak Z, Lamb DC, Guengerich FP, Lepesheva GI. Structure-functional characterization of cytochrome P450 sterol 14α-demethylase (CYP51B) from Aspergillus fumigatus and molecular basis for the development of antifungal drugs. J Biol Chem 2015; 290(39): 23916-34.
[http://dx.doi.org/10.1074/jbc.M115.677310] [PMID: 26269599]
[140]
Zhang J, Leifer F, Rose S, et al. Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front Microbiol 2018; 9: 915.
[http://dx.doi.org/10.3389/fmicb.2018.00915] [PMID: 29867826]
[141]
Codullo V, Cova E, Pandolfi L, et al. Imatinib-loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis. J Control Release 2019; 310: 198-208.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.015] [PMID: 31430501]
[142]
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16(1): 87-124.
[http://dx.doi.org/10.1080/1547691X.2019.1605553] [PMID: 31195861]
[143]
Smith G, Raghunandan R, Wu Y, et al. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats. PLoS One 2012; 7(11): e50852.
[http://dx.doi.org/10.1371/journal.pone.0050852] [PMID: 23226404]
[144]
Lee YT, Ko EJ, Kim KH, et al. Cellular immune correlates preventing disease against respiratory syncytial virus by vaccination with virus-like nanoparticles carrying fusion proteins. J Biomed Nanotechnol 2017; 13(1): 84-98.
[http://dx.doi.org/10.1166/jbn.2017.2341] [PMID: 29302248]
[145]
Pápay ZE, Kósa A, Böddi B, et al. Study on the pulmonary delivery system of apigenin-loaded albumin nanocarriers with antioxidant activity. J Aerosol Med Pulm Drug Deliv 2017; 30(4): 274-88.
[http://dx.doi.org/10.1089/jamp.2016.1316] [PMID: 28282259]
[146]
Marschallinger J, Schäffner I, Klein B, et al. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat Commun 2015; 6(1): 8466.
[http://dx.doi.org/10.1038/ncomms9466] [PMID: 26506265]
[147]
Drug Approval Package: Singulair (Montelukast Sodium) NDA 020829. 2022. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/020829s000_SingulairTOC.cfm#:~:text=Approval%20Date%3A%202%2F20%2F199 (Accessed on: 2022 February 16).
[148]
Drug Approval Package: Advair HFA (Fluticasone Propionate and Salmeterol Xinafoate) NDA #021254. 2008. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021254s000toc.cfm (Accessed on: 2022 February 16).
[149]
Drug Approval Package: Kaletra (Lopinavir/Ritonavir) NDA #21-226 & 21-251 2001. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/21-226_Kaletra.cfm (Accessed on: 2022 February 16).
[150]
Drug Approval Package: Cancidas (Caspofungin Acetate) NDA #21-227. 2001. Available from: https://www.accessdatafda.gov/drugsatfda_docs/nda/2001/21227_cancidas.cfm (Accessed on: 2022 February 16).
[151]
Drug Approval Package: Entocort (Budesonide Capsules) NDA #21-324. 2001. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2001/21-324_Entocort.cfm#:~:text=Approval%20Date%3A%2010%2F2%2F2001 (Accessed on: 2022 February 16).
[152]
Drug Approval Package: Vfend (Voriconazole) NDA #21266 & 21267. 2001. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21-266_21-267_vfend.cfm#:~:text=Approval%20Date%3A%205%2F24%2F2002 (Accessed on: 2022 February 16).
[153]
Drug Approval Package: Zyvox (Linezolid) NDA #021130s003, 021131s003 & 021132s003. 2005. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21-130s003_21131s003_21132s003_ZyvoxTOC.cfm#:~:text=Approval%20Date%3A%2012%2F19%2F2002 (Accessed on: 2022 February 16).
[154]
Drug Approval Package: Emtriva (emtricitabine) NDA #021500. 2003. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/021500_emtriva_toc.cfm#:~:text=Approval%20Date%3A%2007%2F02%2F2003 (Accessed on: 2022 February 16).
[155]
Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R. FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist 2005; 10(7): 461-6.
[http://dx.doi.org/10.1634/theoncologist.10-7-461] [PMID: 16079312]
[157]
Ogasawara T, Sakata J, Aoshima Y, Tanaka K, Yano T, Kasamatsu N. Bronchodilator effect of tiotropium via Respimat® administered with a spacer in patients with chronic Obstructive pulmonary disease (COPD). Intern Med 2017; 56(18): 2401-6.
[http://dx.doi.org/10.2169/internalmedicine.8255-16] [PMID: 28824055]
[158]
Mahajan R. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int J Appl Basic Med Res 2013; 3(1): 1-2.
[http://dx.doi.org/10.4103/2229-516X.112228] [PMID: 23776831]
[159]
Hoelz H, Lostritto RT, Nagel J, Vega JC. Stainless steel canister for propellant-driven metering aerosols. United States Patent US-6739333-B, 2004.
[160]
Banerjee PS. Bronchodilating compositions and methods. United States Patent US-6667344-B2, 2003.
[161]
Singh R. Rigel Pharmaceuticals Inc.2,4-pyrimidinediamine compounds and their uses. United States patent US-8188276, 2012.
[162]
Cohen JM, Shah SM. Compositions containing pipercillin and tazobactam useful for injection. United States patent US-6900184, 2005.
[163]
Singh NO, Wall GM, Jani R, Chowhan MA, Han WW, Novartis AG. Olopatadine formulations for topical nasal administration. United states Patent US-7977376-B2, 2011.
[164]
McGlynm P, Bakale R, Sturge C. Levalbuterol L-tartrate affords crystals possessing properties desirable for use in a metered dose inhaler. United States patent US-7256310, 2007.
[165]
Cui JJ. Aminoheteroaryl compounds as protein kinase inhibitors. United States patent US -7230098, 2007.
[166]
Mammen M, Ji HY, Mu Y, Husfeld C, Li L. Biphenyl compounds useful as muscarinic receptor antagonists. United States patent US-7521041, 2009.
[167]
Fukuda H, Hayase T, Mizuguchi E, et al. N-substituted carbamoyloxyalkyl-azolium derivatives antifungal drug activity to treatment of fungal diseases. United states patents US-6812238, 2004.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy