Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Neuroprotective and Neuroregenerative Effects of Shikonin-mediated Inhibition of NF-κB/Stat3 in Alcoholic Encephalopathy

Author(s): Gleb Nikolaevich Zyuz’kov*, Larisa Arkad`evna Miroshnichenko, Tatyana Yur`evna Polyakova and Elena Vladislavovna Simanina

Volume 20, Issue 12, 2023

Published on: 07 December, 2022

Page: [2045 - 2054] Pages: 10

DOI: 10.2174/1570180820666221107112141

Price: $65

Abstract

Background: Targeting intracellular signaling molecules in nervous tissue progenitors is a promising basis for the development of novel neurodegenerative disease therapy approaches. Naphthoquinone shikonin from the root of Lithospermum erythrorhizon is known to have inhibitory effects on NF-κB and STAT3.

Objective: This study aimed to explore the influence of shikonin on the functioning of progenitors of nervous tissue and its neuroprotective properties in the modeling of alcoholic encephalopathy (AE).

Methods: Experiments were performed on C57B1/6 male mice. AE was modeled by prolonged intragastric administration of ethanol. We studied the exploratory behavior and conditioned reflex activity in laboratory animals, as well as the functioning of neural stem cells (NSCs) and neuronal committed progenitors (NCPs) of the subventricular zone of the cerebral hemispheres. NCPs were obtained using the immunomagnetic separation method. The direct in vitro effects of the shikonin on the colony-forming capacity of progenitors, their proliferative activity, and intensity of specialization were compared with the effects of synthetic NF-κB and STAT3 inhibitors.

Results: Results of in vitro experiments showed that the influence of phytochemicals was similar to the effects of synthetic NF-κB and STAT3 inhibitors. Shikonin stimulated the proliferation of NSCs and NCPs. In vivo shikonin administration caused the normalization of exploratory behavior and conditioned reflex activity of mice with AE. These effects developed after an increase in NSCs and NCPs content in the subventricular zone of the cerebral hemispheres due to an increase in their proliferative activity. The intensity of specialization of progenitors was also accelerated

Conclusion: The findings indicated the promise of developing a novel approach to the treatment of AE based on shikonin-mediated inhibiting of NF-κB/STAT3.

Keywords: Shikonin, alcohol encephalopathy, NF-κB, STAt3, neural stem cells, intracellular signal transduction.

Graphical Abstract
[1]
Fujikawa, T.; Sogabe, Y. Wernicke encephalopathy. CMAJ, 2020, 192(6), E143.
[http://dx.doi.org/10.1503/cmaj.190998] [PMID: 32041699]
[2]
Zyuz’kov, G.N.; Miroshnichenko, L.A.; Polyakova, T.Yu.; Stavrova, L.A.; Simanina, E.V. Inhibition of adenylate cyclase of regeneration competent cells of nervous tissue: A novel approach for the treatment of alcoholic encephalopathy. Biointerface Res. Appl. Chem., 2022, 12(2), 1547-1560.
[http://dx.doi.org/10.33263/BRIAC122.15471560]
[3]
Sinha, S.; Kataria, A.; Kolla, B.P.; Thusius, N.; Loukianova, L.L. Wernicke encephalopathy-clinical pearls. Mayo Clin. Proc., 2019, 94(6), 1065-1072.
[http://dx.doi.org/10.1016/j.mayocp.2019.02.018] [PMID: 31171116]
[4]
Hammoud, N.; Jimenez-Shahed, J. Chronic neurologic effects of alcohol. Clin. Liver Dis., 2019, 23(1), 141-155.
[http://dx.doi.org/10.1016/j.cld.2018.09.010] [PMID: 30454828]
[5]
Jin, S.; Cao, Q.; Yang, F.; Zhu, H.; Xu, S.; Chen, Q.; Wang, Z.; Lin, Y.; Cinar, R.; Pawlosky, R.J.; Zhang, Y.; Xiong, W.; Gao, B.; Koob, G.F.; Lovinger, D.M.; Zhang, L. Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication. Nat. Metab., 2021, 3(3), 337-351.
[http://dx.doi.org/10.1038/s42255-021-00357-z] [PMID: 33758417]
[6]
Gupta, A.; Khan, H.; Kaur, A.; Singh, T.G. Novel targets explored in the treatment of alcohol withdrawal syndrome. CNS Neurol. Disord. Drug Targets, 2021, 20(2), 158-173.
[http://dx.doi.org/10.2174/18715273MTExeNjQj2] [PMID: 33213357]
[7]
Zyuz’kov, G.N.; Arkad’evna, L.; Polykova, T.Y.; Simanina, E.V.; Stavrova, L.A. Targeting cAMP-pathway in regeneration-competent cells of nervous tissue: Potential to create a novel drug for treatment of ethanol-induced neurodegeneration. Cent. Nerv. Syst. Agents Med. Chem., 2021, 21(3), 172-180.
[http://dx.doi.org/10.2174/1871524921666210907102847] [PMID: 34493198]
[8]
Tuazon, J.P.; Castelli, V.; Lee, J.Y.; Desideri, G.B.; Stuppia, L.; Cimini, A.M.; Borlongan, C.V. Neural stem cells. Adv. Exp. Med. Biol., 2019, 1201, 79-91.
[http://dx.doi.org/10.1007/978-3-030-31206-0_4] [PMID: 31898782]
[9]
Zyuz’kov, G.N.; Miroshnichenko, L.A.; Polyakova, T.Yu.; Stavrova, L.A.; Simanina, E.V. Prospects for the use of NF-κb inhibitors to stimulate the functions of regeneration-competent cells of nerve tissue and neuroregeneration in ethanol-induced neurodegeneration. Biointerface Res. Appl. Chem., 2021, 11(1), 8065-8074.
[http://dx.doi.org/10.33263/BRIAC111.80658074]
[10]
Setayeshi, S.; Rasoulinejad, S.A. Retinal pigment epithelium regeneration by induced pluripotent stem cells; therapeutic and modelling approaches on retinal degenerative diseases. Curr. Stem Cell Res. Ther., 2021, 16(6), 710-717.
[http://dx.doi.org/10.2174/1574888X16999210128194134] [PMID: 33511959]
[11]
Zyuz’kov, G.N. Targeted regulation of intracellular signal transduction in regeneration-competent cells: A new direction for therapy in regenerative medicine. Biointerface Res. Appl. Chem., 2021, 11(4), 12238-12251.
[http://dx.doi.org/10.33263/BRIAC114.1223812251]
[12]
Zyuz’kov, G.N.; Bryushinina, O.S.; Zyuz’kova, Yu.G.; Lakeev, A.P.; Abdrashitova, N.Yu.; Frelikh, G.A.; Tsuran, D.V.; Yanovskaya, E.A.; Udut, V.V. Targeting JNK as a novel approach to drug metabolism regulation. Biointerface Res. Appl. Chem., 2022, 12(6), 7596-7605.
[13]
Zyuz’kov, G.N.; Miroshnichenko, L.A.; Polyakova, T.Y.; Zhdanov, V.V.; Simanina, E.V.; Stavrova, L.A.; Danilets, M.G. Specific features of intracellular signal transduction in the regulation of functions of neural stem cells and committed neuronal progenitors. Bull. Exp. Biol. Med., 2021, 170(4), 522-527.
[http://dx.doi.org/10.1007/s10517-021-05100-y] [PMID: 33725249]
[14]
Li, Z.; Liu, Y.; Fang, X.; Shu, Z. Nanomaterials enhance the immunomodulatory effect of molecular targeted therapy. Int. J. Nanomedicine, 2021, 16, 1631-1661.
[http://dx.doi.org/10.2147/IJN.S290346] [PMID: 33688183]
[15]
Zyuz’kov, G.N.; Miroshnichenko, L.A.; Polyakova, T.Y.; Stavrova, L.A.; Simanina, E.V.; Zhdanov, V.V. Specific Roles of JAKs and STAT3 in functions of neural stem cells and committed neuronal progenitors during ethanol-induced neurodegeneration. Bull. Exp. Biol. Med., 2020, 168(3), 356-360.
[http://dx.doi.org/10.1007/s10517-020-04708-w] [PMID: 31938906]
[16]
Qin, J.; Shen, X.; Zhang, J.; Jia, D. Allosteric inhibitors of the STAT3 signaling pathway. Eur. J. Med. Chem., 2020, 190, 112122.
[http://dx.doi.org/10.1016/j.ejmech.2020.112122] [PMID: 32066011]
[17]
Galoczova, M.; Coates, P.; Vojtesek, B. STAT3, stem cells, cancer stem cells and p63. Cell. Mol. Biol. Lett., 2018, 23(1), 12.
[http://dx.doi.org/10.1186/s11658-018-0078-0] [PMID: 29588647]
[18]
Liu, Y.; Liao, S.; Bennett, S.; Tang, H.; Song, D.; Wood, D.; Zhan, X.; Xu, J. STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif., 2021, 54(2), e12974.
[http://dx.doi.org/10.1111/cpr.12974] [PMID: 33382511]
[19]
Yadav, D.K. Potential therapeutic strategies of phytochemicals in neurodegenerative disorders. Curr. Top. Med. Chem., 2021, 21(31), 2814-2838.
[http://dx.doi.org/10.2174/1568026621666211201150217] [PMID: 34852737]
[20]
Angwa, L.M.; Jiang, Y.; Pei, J.; Sun, D. Antioxidant phytochemicals for the prevention of fluoride-induced oxidative stress and apoptosis: A review. Biol. Trace Elem. Res., 2022, 200(3), 1418-1441.
[http://dx.doi.org/10.1007/s12011-021-02729-8] [PMID: 34003450]
[21]
Mollaei, S.; Khanehbarndaz, O.; Gerami-Khashal, Z.; Ebadi, M. Molecular identification and phytochemical screening of endophytic fungi isolated from Lithospermum officinale L. roots: A new source of shikonin. Phytochemistry, 2019, 168, 112116.
[http://dx.doi.org/10.1016/j.phytochem.2019.112116] [PMID: 31513947]
[22]
Sun, Q.; Gong, T.; Liu, M.; Ren, S.; Yang, H.; Zeng, S.; Zhao, H.; Chen, L.; Ming, T.; Meng, X.; Xu, H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. Phytomedicine, 2022, 94, 153805.
[http://dx.doi.org/10.1016/j.phymed.2021.153805] [PMID: 34749177]
[23]
Guo, C.; He, J.; Song, X.; Tan, L.; Wang, M.; Jiang, P.; Li, Y.; Cao, Z.; Peng, C. Pharmacological properties and derivatives of shikonin-A review in recent years. Pharmacol. Res., 2019, 149, 104463.
[http://dx.doi.org/10.1016/j.phrs.2019.104463] [PMID: 31553936]
[24]
Ruan, Z.; Liang, M.; Shang, L.; Lai, M.; Deng, X.; Su, X. Shikonin-mediated PD-L1 degradation suppresses immune evasion in pancreatic cancer by inhibiting NF-κB/STAT3 and NF-κB/CSN5 signaling pathways. Pancreatology, 2021, 21(3), 630-641.
[http://dx.doi.org/10.1016/j.pan.2021.01.023] [PMID: 33707115]
[25]
Cao, H.H.; Liu, D.Y.; Lai, Y.C.; Chen, Y.Y.; Yu, L.Z.; Shao, M.; Liu, J.S. Inhibition of the STAT3 signaling pathway contributes to the anti-melanoma activities of shikonin. Front. Pharmacol., 2020, 11, 748.
[http://dx.doi.org/10.3389/fphar.2020.00748] [PMID: 32536866]
[26]
Zyuz’kov, G.N.; Suslov, N.I.; Povet’eva, T.N.; Nesterova, Y.V.; Afanas’eva, O.G.; Udut, E.V.; Miroshnichenko, L.A.; Simanina, E.V.; Polyakova, T.Y.; Stavrova, L.A.; Chaikovskii, A.V.; Kul’pin, P.V.; Udut, V.V.; Dygai, A.M.; Zhdanov, V.V. Psychopharmacological effects of JNK inhibitor in posthypoxic encephalopathy and mechanisms of their development. Bull. Exp. Biol. Med., 2017, 163(1), 18-21.
[http://dx.doi.org/10.1007/s10517-017-3727-9] [PMID: 28580519]
[27]
Obernier, K.; Alvarez-Buylla, A. Neural stem cells: Origin, heterogeneity and regulation in the adult mammalian brain. Development, 2019, 146(4), dev156059.
[http://dx.doi.org/10.1242/dev.156059] [PMID: 30777863]
[28]
Haun, H.L.; Olsen, A.C.K.; Koch, K.E.; Luderman, L.N.; May, C.E.; Griffin, W.C. Effect of caffeine on alcohol drinking in mice. Alcohol, 2021, 94, 1-8.
[http://dx.doi.org/10.1016/j.alcohol.2021.03.005] [PMID: 33781922]
[29]
Bao, H.; Song, J. Treating brain disorders by targeting adult neural stem cells. Trends Mol. Med., 2018, 24(12), 991-1006.
[http://dx.doi.org/10.1016/j.molmed.2018.10.001] [PMID: 30447904]
[30]
Bryson, B.L.; Tamagno, I.; Taylor, S.E.; Parameswaran, N.; Chernosky, N.M.; Balasubramaniam, N.; Jackson, M.W. Aberrant induction of a mesenchymal/stem cell program engages senescence in normal mammary epithelial cells. Mol. Cancer Res., 2021, 19(4), 651-666.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-1181] [PMID: 33443106]
[31]
Zyuz’kov, G.N.; Zhdanov, V.V.; Miroshnichenko, L.A.; Polyakova, T.Yu.; Simanina, E.V.; Danilets, M.G.; Minakova, M.Yu.; Churin, A.A.; Agafonov, V.I. The role of JAK and STAT3 in regulation of secretory function of neuroglial cells of different types in ethanol-induced neurodegeneration. Bull. Exp. Biol. Med., 2022, 172(6), 686-690.
[http://dx.doi.org/10.1007/s10517-022-05457-8]
[32]
Zyuz’kov, G.N.; Miroshnichenko, L.A.E.; Chayikovskyi, A.V.E.; Kotlovskaya, L.Y.E. NF-кB: A target for synchronizing the functioning nervous tissue progenitors of different types in Alzheimer’s disease. Curr. Mol. Pharmacol., 2022, 15.
[PMID: 35652396]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy