Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

苯并三唑取代2-苯喹唑啉类抗癌药的合成、筛选、抗增殖及微管蛋白聚合抑制活性

卷 23, 期 4, 2023

发表于: 24 November, 2022

页: [278 - 292] 页: 15

弟呕挨: 10.2174/1568009623666221028121906

价格: $65

摘要

目的:微管蛋白靶向抗癌药物的研究进展。 背景:微管蛋白作为抗癌药物开发的重要靶点正在被探索。与小管蛋白秋水仙碱结合位点结合的配体作为小管蛋白聚合抑制剂,将细胞周期阻滞在G2/M期。 目的:苯并三唑取代2-苯基喹唑啉类抗癌药物的合成与筛选。 方法:一系列苯并三唑取代的喹唑啉衍生物已经被合成,并使用标准的MTT试验对人类MCF-7(乳腺癌)、HeLa(宫颈癌)和HT-29(结肠癌)癌细胞系进行了评估。 结果:ARV-2对MCF-7、HELA和HT29细胞的IC50分别为3.16 μM、5.31 μM和10.6 μM,表现出最强的抗增殖活性,而对正常细胞HEK293均无毒性。在细胞周期分析、凋亡实验和JC-1研究的机制研究中,发现ARV-2和ARV-3诱导线粒体介导的凋亡。 结论:苯并三唑取代的2-苯基喹唑啉类药物具有开发成有效抗癌药物的潜力。

关键词: 2-苯喹唑啉类,抗癌,抗增殖,微管蛋白聚合抑制剂,细胞周期,HeLa细胞。

图形摘要
[1]
Preti, D.; Romagnoli, R.; Rondanin, R.; Cacciari, B.; Hamel, E.; Balzarini, J.; Liekens, S.; Schols, D.; Estévez-Sarmiento, F.; Quintana, J.; Estévez, F. Design, synthesis, in vitro antiproliferative activity and apoptosis-inducing studies of 1-(3′,4′,5′-trimethoxyphenyl)-3-(2-alkoxycarbonylindolyl)-2-propen-1-one derivatives obtained by a molecular hybridisation approach. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1225-1238.
[http://dx.doi.org/10.1080/14756366.2018.1493473] [PMID: 30141353]
[2]
Akhmanova, A.; Steinmetz, M.O. Control of microtubule organization and dynamics: Two ends in the limelight. Nat. Rev. Mol. Cell Biol., 2015, 16(12), 711-726.
[http://dx.doi.org/10.1038/nrm4084] [PMID: 26562752]
[3]
Brouhard, G.J.; Rice, L.M. Microtubule dynamics: An interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol., 2018, 19(7), 451-463.
[http://dx.doi.org/10.1038/s41580-018-0009-y] [PMID: 29674711]
[4]
Goodson, H.V.; Jonasson, E.M. Microtubules and microtubuleassociated proteins. Cold Spring Harb. Perspect. Biol., 2018, 10(6), a022608.
[http://dx.doi.org/10.1101/cshperspect.a022608] [PMID: 29858272]
[5]
Steinmetz, M.O.; Prota, A.E. Microtubule-targeting agents: Strategies to hijack the cytoskeleton. Trends Cell Biol., 2018, 28(10), 776-792.
[http://dx.doi.org/10.1016/j.tcb.2018.05.001] [PMID: 29871823]
[6]
Guo, H.; Li, X.; Guo, Y.; Zhen, L. An overview of tubulin modulators deposited in protein data bank. Med. Chem. Res., 2019, 28(7), 927-937.
[http://dx.doi.org/10.1007/s00044-019-02352-2]
[7]
Vicente, J.J.; Wordeman, L. Mitosis, microtubule dynamics and the evolution of kinesins. Exp. Cell Res., 2015, 334(1), 61-69.
[http://dx.doi.org/10.1016/j.yexcr.2015.02.010] [PMID: 25708751]
[8]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[9]
Kumar, B.; Kumar, R.; Skvortsova, I.; Kumar, V. Mechanisms of tubulin binding ligands to target cancer cells: Updates on their therapeutic potential and clinical trials. Curr. Cancer Drug Targets, 2017, 17(4), 357-375.
[http://dx.doi.org/10.2174/1568009616666160928110818] [PMID: 27697026]
[10]
Tangutur, A.D.; Kumar, D.; Krishna, K.V.; Kantevari, S. Microtubule targeting agents as cancer chemotherapeutics: An overview of molecular hybrids as stabilizing and destabilizing agents. Curr. Top. Med. Chem., 2017, 17(22), 2523-2537.
[PMID: 28056738]
[11]
Kumar, B.; Singh, S.; Skvortsova, I.; Kumar, V. Promising targets in anti-cancer drug development: Recent updates. Curr. Med. Chem., 2017, 24(42), 4729-4752.
[PMID: 28393696]
[12]
McLoughlin, E.C.; O’Boyle, N.M. Colchicine-binding site inhibitors from chemistry to clinic: A review. Pharmaceuticals (Basel), 2020, 13(1), 8.
[http://dx.doi.org/10.3390/ph13010008] [PMID: 31947889]
[13]
Ji, Y.T.; Liu, Y.N.; Liu, Z.P. Tubulin colchicine binding site inhibitors as vascular disrupting agents in clinical developments. Curr. Med. Chem., 2015, 22(11), 1348-1360.
[http://dx.doi.org/10.2174/0929867322666150114163732] [PMID: 25620094]
[14]
Bates, D.; Eastman, A. Microtubule destabilising agents: Far more than just antimitotic anticancer drugs. Br. J. Clin. Pharmacol., 2017, 83(2), 255-268.
[http://dx.doi.org/10.1111/bcp.13126] [PMID: 27620987]
[15]
Liu, Y.N.; Wang, J.J.; Ji, Y.T.; Zhao, G.D.; Tang, L.Q.; Zhang, C.M.; Guo, X.L.; Liu, Z.P. Design, synthesis, and biological evaluation of 1-methyl-1, 4-dihydroindeno [1, 2-c] pyrazole analogues as potential anticancer agents targeting tubulin colchicine binding site. J. Med. Chem., 2016, 59(11), 5341-5355.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00071] [PMID: 27172319]
[16]
Wang, Q.; Arnst, K.E.; Wang, Y.; Kumar, G.; Ma, D.; White, S.W.; Miller, D.D.; Li, W.; Li, W. Structure-guided design, synthesis, and biological evaluation of (2-(1 H-indol-3-yl)-1 H-imidazol-4-yl)(3, 4, 5-trimethoxyphenyl) methanone (ABI-231) analogues targeting the colchicine binding site in tubulin. J. Med. Chem., 2019, 62(14), 6734-6750.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00706] [PMID: 31251599]
[17]
Mangiatordi, G.F.; Trisciuzzi, D.; Alberga, D.; Denora, N.; Iacobazzi, R.M.; Gadaleta, D.; Catto, M.; Nicolotti, O. Novel chemotypes targeting tubulin at the colchicine binding site and unbiasing P-glycoprotein. Eur. J. Med. Chem., 2017, 139, 792-803.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.037] [PMID: 28863359]
[18]
Greene, L.M.; Meegan, M.J.; Zisterer, D.M. Combretastatins: More than just vascular targeting agents? J. Pharmacol. Exp. Ther., 2015, 355(2), 212-227.
[http://dx.doi.org/10.1124/jpet.115.226225] [PMID: 26354991]
[19]
Nepali, K.; Ojha, R.; Lee, H.Y.; Liou, J.P. Early investigational tubulin inhibitors as novel cancer therapeutics. Expert Opin. Investig. Drugs, 2016, 25(8), 917-936.
[http://dx.doi.org/10.1080/13543784.2016.1189901] [PMID: 27186892]
[20]
Čermák, V.; Dostál, V.; Jelínek, M.; Libusová, L.; Kovář, J.; Rösel, D.; Brábek, J. Microtubule-targeting agents and their impact on cancer treatment. Eur. J. Cell Biol., 2020, 99(4), 151075.
[http://dx.doi.org/10.1016/j.ejcb.2020.151075] [PMID: 32414588]
[21]
Kasibhatla, S.; Baichwal, V.; Cai, S.X.; Roth, B.; Skvortsova, I.; Skvortsov, S.; Lukas, P.; English, N.M.; Sirisoma, N.; Drewe, J.; Pervin, A.; Tseng, B.; Carlson, R.O.; Pleiman, C.M. MPC-6827: A small-molecule inhibitor of microtubule formation that is not a substrate for multidrug resistance pumps. Cancer Res., 2007, 67(12), 5865-5871.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0127] [PMID: 17575155]
[22]
Marzaro, G.; Coluccia, A.; Ferrarese, A.; Brun, P.; Castagliuolo, I.; Conconi, M.T.; La Regina, G.; Bai, R.; Silvestri, R.; Hamel, E.; Chilin, A. Discovery of biarylaminoquinazolines as novel tubulin polymerization inhibitors. J. Med. Chem., 2014, 57(11), 4598-4605.
[http://dx.doi.org/10.1021/jm500034j] [PMID: 24801610]
[23]
Li, W.; Yin, Y.; Shuai, W.; Xu, F.; Yao, H.; Liu, J.; Cheng, K.; Xu, J.; Zhu, Z.; Xu, S. Discovery of novel quinazolines as potential anti-tubulin agents occupying three zones of colchicine domain. Bioorg. Chem., 2019, 83, 380-390.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.027] [PMID: 30408650]
[24]
Cui, M.T.; Jiang, L.; Goto, M.; Hsu, P.L.; Li, L.; Zhang, Q.; Wei, L.; Yuan, S.J.; Hamel, E.; Morris-Natschke, S.L.; Lee, K.H.; Xie, L. In vivo and mechanistic studies on antitumor lead 7-methoxy-4-(2-methylquinazolin-4-yl)-3, 4-dihydroquinoxalin-2 (1 H)-one and its modification as a novel class of tubulin-binding tumor-vascular disrupting agents. J. Med. Chem., 2017, 60(13), 5586-5598.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00273] [PMID: 28653846]
[25]
Kaur, R.; Ranjan Dwivedi, A.; Kumar, B.; Kumar, V. Recent developments on 1, 2, 4-triazole nucleus in anticancer compounds: A review. Anticancer. Agents Med. Chem., 2016, 16(4), 465-489.
[http://dx.doi.org/10.2174/1871520615666150819121106] [PMID: 26286663]
[26]
Kumar, B.; Sharma, P.; Gupta, V.P.; Khullar, M.; Singh, S.; Dogra, N.; Kumar, V. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies. Bioorg. Chem., 2018, 78, 130-140.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.027] [PMID: 29554587]
[27]
Dwivedi, A.R.; Kumar, V.; Yadav, R.P.; Kumar, N.; Jangid, K.; Anand, P.; Sharma, D.K.; Barnawal, S.; Kumar, V. Design, synthesis and evaluation of 4-phenyl-1,2,3-triazole substituted pyrimidine derivatives as antiproliferative and tubulin polymerization inhibitors. J. Mol. Struct., 2022, 1267, 133592.
[http://dx.doi.org/10.1016/j.molstruc.2022.133592]
[28]
Ranjan Dwivedi, A.; Kumar, V.; Kaur, H.; Kumar, N.; Prakash Yadav, R.; Poduri, R.; Baranwal, S.; Kumar, V. Anti-proliferative potential of triphenyl substituted pyrimidines against MDA-MB-231, HCT-116 and HT-29 cancer cell lines. Bioorg. Med. Chem. Lett., 2020, 30(20), 127468.
[http://dx.doi.org/10.1016/j.bmcl.2020.127468] [PMID: 32768647]
[29]
Bansal, R.; Malhotra, A. Therapeutic progression of quinazolines as targeted chemotherapeutic agents. Eur. J. Med. Chem., 2021, 211, 113016.
[http://dx.doi.org/10.1016/j.ejmech.2020.113016] [PMID: 33243532]
[30]
Majcher, U.; Klejborowska, G.; Kaik, M.; Maj, E.; Wietrzyk, J.; Moshari, M.; Preto, J.; Tuszynski, J. Huczyński, A. Synthesis and biological evaluation of novel triple-modified colchicine derivatives as potent tubulin-targeting anticancer agents. Cells, 2018, 7(11), 216.
[http://dx.doi.org/10.3390/cells7110216] [PMID: 30463236]
[31]
Negi, A.S.; Gautam, Y.; Alam, S.; Chanda, D.; Luqman, S.; Sarkar, J.; Khan, F.; Konwar, R. Natural antitubulin agents: Importance of 3,4,5-trimethoxyphenyl fragment. Bioorg. Med. Chem., 2015, 23(3), 373-389.
[http://dx.doi.org/10.1016/j.bmc.2014.12.027] [PMID: 25564377]
[32]
Oliveira, C.R.; Spindola, D.G.; Garcia, D.M.; Erustes, A.; Bechara, A.; Palmeira-dos-Santos, C.; Smaili, S.S.; Pereira, G.J.S.; Hinsberger, A.; Viriato, E.P.; Cristina Marcucci, M.; Sawaya, A.C.H.F.; Tomaz, S.L.; Rodrigues, E.G.; Bincoletto, C. Medicinal properties of Angelica archangelica root extract: Cytotoxicity in breast cancer cells and its protective effects against in vivo tumor development. J. Integr. Med., 2019, 17(2), 132-140.
[http://dx.doi.org/10.1016/j.joim.2019.02.001] [PMID: 30799248]
[33]
Kamal, A.; Dastagiri, D.; Ramaiah, M.J.; Reddy, J.S.; Bharathi, E.V.; Srinivas, C.; Pushpavalli, S.N.C.V.L.; Pal, D.; Pal-Bhadra, M. Synthesis of imidazothiazole-chalcone derivatives as anticancer and apoptosis inducing agents. ChemMedChem, 2010, 5(11), 1937-1947.
[http://dx.doi.org/10.1002/cmdc.201000346] [PMID: 20836120]
[34]
Sun, Y; Guo, W; Ren, T; Liang, W; Zhou, W; Lu, Q Gli1 inhibition suppressed cell growth and cell cycle progression and induced apoptosis as well as autophagy depending on ERK1/2 activity in human chondrosarcoma cells. Cell Death Dis., 2014, 5(1), e979-e.
[35]
Punganuru, S.R.; Madala, H.R.; Venugopal, S.N.; Samala, R.; Mikelis, C.; Srivenugopal, K.S. Design and synthesis of a C7-aryl piperlongumine derivative with potent antimicrotubule and mutant p53-reactivating properties. Eur. J. Med. Chem., 2016, 107, 233-244.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.052] [PMID: 26599530]
[36]
Maestro-Desmond Interoperability Tools. Desmond Molecular Dynamics System, DE Shaw Research, Schrödinger, New York, NY , 2019.
[37]
Mustafa, M.; Abdelhamid, D.; Abdelhafez, E.M.N.; Ibrahim, M.A.A.; Gamal-Eldeen, A.M.; Aly, O.M. Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur. J. Med. Chem., 2017, 141, 293-305.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.063] [PMID: 29031074]
[38]
Caroppi, P.; Sinibaldi, F.; Fiorucci, L.; Santucci, R. Apoptosis and human diseases: Mitochondrion damage and lethal role of released cytochrome C as proapoptotic protein. Curr. Med. Chem., 2009, 16(31), 4058-4065.
[http://dx.doi.org/10.2174/092986709789378206] [PMID: 19754424]
[39]
Duan, Y.T.; Man, R.J.; Tang, D.J.; Yao, Y.F.; Tao, X.X.; Yu, C.; Liang, X.Y.; Makawana, J.A.; Zou, M.J.; Wang, Z.C.; Zhu, H.L. Design, synthesis and antitumor activity of novel link-bridge and B-ring modified combretastatin A-4 (CA-4) analogues as potent antitubulin agents. Sci. Rep., 2016, 6(1), 25387.
[http://dx.doi.org/10.1038/srep25387] [PMID: 27138035]
[40]
Xiong, S.; Mu, T.; Wang, G.; Jiang, X. Mitochondria-mediated apoptosis in mammals. Protein Cell, 2014, 5(10), 737-749.
[http://dx.doi.org/10.1007/s13238-014-0089-1] [PMID: 25073422]
[41]
Jadala, C.; Sathish, M.; Anchi, P.; Tokala, R.; Lakshmi, U.J.; Reddy, V.G.; Shankaraiah, N.; Godugu, C.; Kamal, A. Synthesis of combretastatin‐a4 carboxamidest that mimic sulfonyl piperazines by a molecular hybridization approach: In vitro cytotoxicity evaluation and inhibition of tubulin polymerization. ChemMedChem, 2019, 14(24), 2052-2060.
[http://dx.doi.org/10.1002/cmdc.201900541] [PMID: 31674147]
[42]
Duan, Y.; Liu, W.; Tian, L.; Mao, Y.; Song, C. Targeting tubulin-colchicine site for cancer therapy: Inhibitors, antibody- drug conjugates and degradation agents. Curr. Top. Med. Chem., 2019, 19(15), 1289-1304.
[http://dx.doi.org/10.2174/1568026619666190618130008] [PMID: 31210108]
[43]
Wang, Y.; Zhang, H.; Gigant, B.; Yu, Y.; Wu, Y.; Chen, X.; Lai, Q.; Yang, Z.; Chen, Q.; Yang, J. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. FEBS J., 2016, 283(1), 102-111.
[http://dx.doi.org/10.1111/febs.13555] [PMID: 26462166]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy