Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Transcriptional Profiling of TGF-β Superfamily Members in Lumbar DRGs of Rats Following Sciatic Nerve Axotomy and Activin C Inhibits Neuropathic Pain

Author(s): Feng-Ming Zhang, Bing Wang, Han Hu, Qing-Yi Li, Hao-Hao Chen, Li-Ting Luo, Zuo-Jie Jiang, Mei-Xing Zeng and Xing-Jun Liu*

Volume 23, Issue 3, 2023

Published on: 28 October, 2022

Page: [375 - 388] Pages: 14

DOI: 10.2174/1871530322666221006114557

Price: $65

Abstract

Background: Neuroinflammation and cytokines play critical roles in neuropathic pain and axon degeneration/regeneration. Cytokines of transforming growth factor-β superfamily have implications in pain and injured nerve repair processing. However, the transcriptional profiles of the transforming growth factor-β superfamily members in dorsal root ganglia under neuropathic pain and axon degeneration/regeneration conditions remain elusive.

Objective: We aimed to plot the transcriptional profiles of transforming growth factor-β superfamily components in lumbar dorsal root ganglia of sciatic nerve-axotomized rats and to further verify the profiles by testing the analgesic effect of activin C, a representative cytokine, on neuropathic pain.

Methods: Adult male rats were axotomized in sciatic nerves, and lumbar dorsal root ganglia were isolated for total RNA extraction or section. A custom microarray was developed and employed to plot the gene expression profiles of transforming growth factor-β superfamily components. Realtime RT-PCR was used to confirm changes in the expression of activin/inhibin family genes, and then in situ hybridization was performed to determine the cellular locations of inhibin α, activin βC, BMP-5 and GDF-9 mRNAs. The rat spared nerve injury model was performed, and a pain test was employed to determine the effect of activin C on neuropathic pain.

Results: The expression of transforming growth factor-β superfamily cytokines and their signaling, including some receptors and signaling adaptors, were robustly upregulated. Activin βC subunit mRNAs were expressed in the small-diameter dorsal root ganglion neurons and upregulated after axotomy. Single intrathecal injection of activin C inhibited neuropathic pain in spared nerve injury model.

Conclusion: This is the first report to investigate the transcriptional profiles of members of transforming growth factor-β superfamily in axotomized dorsal root ganglia. The distinct cytokine profiles observed here might provide clues toward further study of the role of transforming growth factor-β superfamily in the pathogenesis of neuropathic pain and axon degeneration/regeneration after peripheral nerve injury.

Keywords: Transforming growth factor-β (TGF-β), transcriptional profile, dorsal root ganglion (DRG), axotomy, neuropathic pain, microarray, activin C.

Graphical Abstract
[1]
Kuner, R. Central mechanisms of pathological pain. Nat. Med., 2010, 16(11), 1258-1266.
[http://dx.doi.org/10.1038/nm.2231] [PMID: 20948531]
[2]
Bali, K.K.; Kuner, R. Therapeutic potential for leukocyte elastase in chronic pain states harboring a neuropathic component. Pain, 2017, 158(11), 2243-2258.
[http://dx.doi.org/10.1097/j.pain.0000000000001032] [PMID: 28837503]
[3]
Simon, D.J.; Watkins, T.A. Therapeutic opportunities and pitfalls in the treatment of axon degeneration. Curr. Opin. Neurol., 2018, 31(6), 693-701.
[http://dx.doi.org/10.1097/WCO.0000000000000621] [PMID: 30320612]
[4]
Lees, J.G.; Fivelman, B.; Duffy, S.S.; Makker, P.G.S.; Perera, C.J.; Moalem, T.G. Cytokines in neuropathic pain and associated depression. Mod. Trends in Psychiatry, 2015, 30, 51-66.
[http://dx.doi.org/10.1159/000435932] [PMID: 26437375]
[5]
Hung, A.L.; Lim, M.; Doshi, T.L. Targeting cytokines for treatment of neuropathic pain. Scand. J. Pain, 2017, 17(1), 287-293.
[http://dx.doi.org/10.1016/j.sjpain.2017.08.002] [PMID: 29229214]
[6]
Ji, R.R. Recent progress in understanding the mechanisms of pain and itch: The second special issue. Neurosci. Bull., 2018, 34(1), 1-3.
[http://dx.doi.org/10.1007/s12264-018-0204-z] [PMID: 29340868]
[7]
DeFrancesco, L.A.; Lindborg, J.A.; Niemi, J.P.; Zigmond, R.E. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience, 2015, 302, 174-203.
[http://dx.doi.org/10.1016/j.neuroscience.2014.09.027] [PMID: 25242643]
[8]
Kong, Y.F.; Sha, W.L.; Wu, X.B.; Zhao, L.X.; Ma, L.J.; Gao, Y.J. CXCL10/CXCR3 signaling in the DRG exacerbates neuropathic pain in mice. Neurosci. Bull., 2021, 37(3), 339-352.
[http://dx.doi.org/10.1007/s12264-020-00608-1] [PMID: 33196963]
[9]
Miguel, M.; Kraychete, D.; Meyer, N.R. Chronic pain: Cytokines, lymphocytes and chemokines. Inflamm. Allergy Drug Targets, 2015, 13(5), 339-349.
[http://dx.doi.org/10.2174/1871528114666150114170004] [PMID: 25587846]
[10]
Ebersberger, A. The analgesic potential of cytokine neutralization with biologicals. Eur. J. Pharmacol., 2018, 835, 19-30.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.040] [PMID: 30036535]
[11]
Thakur, K.K.; Saini, J.; Mahajan, K.; Singh, D.; Jayswal, D.P.; Mishra, S.; Bishayee, A.; Sethi, G.; Kunnumakkara, A.B. Therapeutic implications of toll-like receptors in peripheral neuropathic pain. Pharmacol. Res., 2017, 115, 224-232.
[http://dx.doi.org/10.1016/j.phrs.2016.11.019] [PMID: 27894923]
[12]
Wu, X.B.; Zhu, Q.; Gao, Y.J. CCL2/CCR2 contributes to the altered excitatory-inhibitory synaptic balance in the nucleus accumbens shell following peripheral nerve injury-induced neuropathic pain. Neurosci. Bull., 2021, 37(7), 921-933.
[http://dx.doi.org/10.1007/s12264-021-00697-6] [PMID: 34003466]
[13]
Zigmond, R.E.; Echevarria, F.D. Macrophage biology in the peripheral nervous system after injury. Prog. Neurobiol., 2019, 173, 102-121.
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.001] [PMID: 30579784]
[14]
Sulaiman, W.; Dreesen, T.; Nguyen, D. Single local application of TGF-β promotes a proregenerative state throughout a chronically injured nerve. Neurosurgery, 2018, 82(6), 894-902.
[http://dx.doi.org/10.1093/neuros/nyx362] [PMID: 28973496]
[15]
Liu, X.J.; Zhang, F.X.; Liu, H.; Li, K.C.; Lu, Y.J.; Wu, Q.F.; Li, J.Y.; Wang, B.; Wang, Q.; Lin, L.B.; Zhong, Y.Q.; Xiao, H.S.; Bao, L.; Zhang, X. Activin C expressed in nociceptive afferent neurons is required for suppressing inflammatory pain. Brain, 2012, 135(2), 391-403.
[http://dx.doi.org/10.1093/brain/awr350] [PMID: 22275428]
[16]
Chen, N.F.; Huang, S.Y.; Chen, W.F.; Chen, C.H.; Lu, C.H.; Chen, C.L.; Yang, S.N.; Wang, H.M.; Wen, Z.H. TGF-β1 attenuates spinal neuroinflammation and the excitatory amino acid system in rats with neuropathic pain. J. Pain, 2013, 14(12), 1671-1685.
[http://dx.doi.org/10.1016/j.jpain.2013.08.010] [PMID: 24290447]
[17]
Sulaiman, W.; Nguyen, D. Transforming growth factor beta 1, a cytokine with regenerative functions. Neural Regen. Res., 2016, 11(10), 1549-1552.
[http://dx.doi.org/10.4103/1673-5374.193223] [PMID: 27904475]
[18]
Lantero, A.; Tramullas, M.; Díaz, A.; Hurlé, M.A. Transforming growth factor-β in normal nociceptive processing and pathological pain models. Mol. Neurobiol., 2012, 45(1), 76-86.
[http://dx.doi.org/10.1007/s12035-011-8221-1] [PMID: 22125199]
[19]
Lin, W.; Zhang, W.W.; Lyu, N.; Cao, H.; Xu, W.D.; Zhang, Y.Q. Growth differentiation factor-15 produces analgesia by inhibiting tetrodotoxin-resistant nav1.8 sodium channel activity in rat primary sensory neurons. Neurosci. Bull., 2021, 37(9), 1289-1302.
[http://dx.doi.org/10.1007/s12264-021-00709-5] [PMID: 34076854]
[20]
Piek, E.; Heldin, C.H.; Dijke, P.T. Specificity, diversity, and regulation in TGF‐β superfamily signaling. FASEB J., 1999, 13(15), 2105-2124.
[http://dx.doi.org/10.1096/fasebj.13.15.2105] [PMID: 10593858]
[21]
Wu, M.Y.; Hill, C.S. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev. Cell, 2009, 16(3), 329-343.
[http://dx.doi.org/10.1016/j.devcel.2009.02.012] [PMID: 19289080]
[22]
Hoodless, P.A.; Wrana, J.L. Mechanism and function of signaling by the TGF beta superfamily. Curr. Top. Microbiol. Immunol., 1998, 228, 235-272.
[http://dx.doi.org/10.1007/978-3-642-80481-6_10] [PMID: 9401209]
[23]
Liu, X.; Hu, H.; Yin, J.Q. Therapeutic strategies against TGF-β signaling pathway in hepatic fibrosis. Liver Int., 2006, 26(1), 8-22.
[http://dx.doi.org/10.1111/j.1478-3231.2005.01192.x] [PMID: 16420505]
[24]
Kashima, R.; Hata, A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim. Biophys. Sin., 2018, 50(1), 106-120.
[http://dx.doi.org/10.1093/abbs/gmx124] [PMID: 29190314]
[25]
Gardell, L.R.; Wang, R.; Ehrenfels, C.; Ossipov, M.H.; Rossomando, A.J.; Miller, S.; Buckley, C.; Cai, A.K.; Tse, A.; Foley, S.F.; Gong, B.; Walus, L.; Carmillo, P.; Worley, D.; Huang, C.; Engber, T.; Pepinsky, B.; Cate, R.L.; Vanderah, T.W.; Lai, J.; Sah, D.W.Y.; Porreca, F. Multiple actions of systemic artemin in experimental neuropathy. Nat. Med., 2003, 9(11), 1383-1389.
[http://dx.doi.org/10.1038/nm944] [PMID: 14528299]
[26]
Chen, N.F.; Chen, W.F.; Sung, C.S.; Lu, C.H.; Chen, C.L.; Hung, H.C.; Feng, C.W.; Chen, C.H.; Tsui, K.H.; Kuo, H.M.; Wang, H.M.D.; Wen, Z.H.; Huang, S.Y. Contributions of p38 and ERK to the antinociceptive effects of TGF-β1 in chronic constriction injury-induced neuropathic rats. J. Headache Pain, 2016, 17(1), 72.
[http://dx.doi.org/10.1186/s10194-016-0665-2] [PMID: 27541934]
[27]
Li, S.; Gu, X.; Yi, S. The regulatory effects of transforming growth Factor-β on nerve regeneration. Cell Transplant., 2017, 26(3), 381-394.
[http://dx.doi.org/10.3727/096368916X693824] [PMID: 27983926]
[28]
Dong, F.; He, X.; Activin, A. A potential therapeutic target for characterizing and stopping joint pain early in rheumatoid arthritis patients. Inflammation, 2014, 37(1), 170-176.
[http://dx.doi.org/10.1007/s10753-013-9727-7] [PMID: 24014115]
[29]
Fang, L.; Wang, Y.N.; Cui, X.L.; Fang, S.Y.; Ge, J.Y.; Sun, Y.; Liu, Z.H. The role and mechanism of action of activin A in neurite outgrowth of chicken embryonic dorsal root ganglia. J. Cell Sci., 2012, 125(Pt 6), 1500-1507.
[PMID: 22275431]
[30]
Xu, P.; Hall, A.K. Activin acts with nerve growth factor to regulate calcitonin gene-related peptide mRNA in sensory neurons. Neuroscience, 2007, 150(3), 665-674.
[http://dx.doi.org/10.1016/j.neuroscience.2007.09.041] [PMID: 17964731]
[31]
Omura, T.; Omura, K.; Tedeschi, A.; Riva, P.; Painter, M.W.; Rojas, L.; Martin, J.; Lisi, V.; Huebner, E.A.; Latremoliere, A.; Yin, Y.; Barrett, L.B.; Singh, B.; Lee, S.; Crisman, T.J.; Gao, F.; Li, S.; Kapur, K.; Geschwind, D.H.; Kosik, K.S.; Coppola, G.; He, Z.; Carmichael, S.T.; Benowitz, L.I.; Costigan, M.; Woolf, C.J. Robust axonal regeneration occurs in the injured CAST/Ei mouse CNS. Neuron, 2015, 86(5), 1215-1227.
[http://dx.doi.org/10.1016/j.neuron.2015.05.005] [PMID: 26004914]
[32]
Huang, Y.K.; Lu, Y.G.; Zhao, X.; Zhang, J.B.; Zhang, F.M.; Chen, Y.; Bi, L.B.; Gu, J.H.; Jiang, Z.J.; Wu, X.M.; Li, Q.Y.; Liu, Y.; Shen, J.X.; Liu, X.J. Cytokine activin C ameliorates chronic neuropathic pain in peripheral nerve injury rodents by modulating the TRPV1 channel. Br. J. Pharmacol., 2020, 177(24), 5642-5657.
[http://dx.doi.org/10.1111/bph.15284] [PMID: 33095918]
[33]
Merighi, A. Targeting the glial-derived neurotrophic factor and related molecules for controlling normal and pathologic pain. Expert Opin. Ther. Targets, 2016, 20(2), 193-208.
[http://dx.doi.org/10.1517/14728222.2016.1085972] [PMID: 26863504]
[34]
Malin, S.A.; Molliver, D.C.; Koerber, H.R.; Cornuet, P.; Frye, R.; Albers, K.M.; Davis, B.M. Glial cell line-derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo. J. Neurosci., 2006, 26(33), 8588-8599.
[http://dx.doi.org/10.1523/JNEUROSCI.1726-06.2006] [PMID: 16914685]
[35]
Tramullas, M.; Lantero, A.; Díaz, A.; Morchón, N.; Merino, D.; Villar, A.; Buscher, D.; Merino, R.; Hurlé, J.M.; Izpisúa, B.J.C.; Hurlé, M.A. BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) reveals the involvement of the transforming growth factor-beta family in pain modulation. J. Neurosci., 2010, 30(4), 1502-1511.
[http://dx.doi.org/10.1523/JNEUROSCI.2584-09.2010] [PMID: 20107078]
[36]
Li, C.; Wang, S.; Chen, Y.; Zhang, X. Somatosensory neuron typing with high-coverage single-cell RNA sequencing and functional analysis. Neurosci. Bull., 2018, 34(1), 200-207.
[http://dx.doi.org/10.1007/s12264-017-0147-9] [PMID: 28612318]
[37]
Xiao, H.S.; Huang, Q.H.; Zhang, F.X.; Bao, L.; Lu, Y.J.; Guo, C.; Yang, L.; Huang, W.J.; Fu, G.; Xu, S.H.; Cheng, X.P.; Yan, Q.; Zhu, Z.D.; Zhang, X.; Chen, Z.; Han, Z.G.; Zhang, X. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc. Natl. Acad. Sci. USA, 2002, 99(12), 8360-8365.
[http://dx.doi.org/10.1073/pnas.122231899] [PMID: 12060780]
[38]
Wrighton, K.H.; Lin, X.; Feng, X.H. Phospho-control of TGF-β superfamily signaling. Cell Res., 2009, 19(1), 8-20.
[http://dx.doi.org/10.1038/cr.2008.327] [PMID: 19114991]
[39]
Li, K.C.; Wang, F.; Zhong, Y.Q.; Lu, Y.J.; Wang, Q.; Zhang, F.X.; Xiao, H.S.; Bao, L.; Zhang, X. Reduction of follistatin-like 1 in primary afferent neurons contributes to neuropathic pain hypersensitivity. Cell Res., 2011, 21(4), 697-699.
[http://dx.doi.org/10.1038/cr.2011.43] [PMID: 21423271]
[40]
Kumar, A.; Kaur, H.; Singh, A. Neuropathic Pain models caused by damage to central or peripheral nervous system. Pharmacol. Rep., 2018, 70(2), 206-216.
[http://dx.doi.org/10.1016/j.pharep.2017.09.009] [PMID: 29475003]
[41]
Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods used to evaluate pain behaviors in rodents. Front. Mol. Neurosci., 2017, 10, 284.
[http://dx.doi.org/10.3389/fnmol.2017.00284] [PMID: 28932184]
[42]
Xu, Z.Z.; Liu, X.J.; Berta, T.; Park, C.K.; Lü, N.; Serhan, C.N.; Ji, R.R. Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. Ann. Neurol., 2013, 74(3), 490-495.
[http://dx.doi.org/10.1002/ana.23928] [PMID: 23686636]
[43]
Chaplan, S.R.; Bach, F.W.; Pogrel, J.W.; Chung, J.M.; Yaksh, T.L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods, 1994, 53(1), 55-63.
[http://dx.doi.org/10.1016/0165-0270(94)90144-9] [PMID: 7990513]
[44]
Dixon, W.J. Staircase bioassay: The up-and-down method. Neurosci. Biobehav. Rev., 1991, 15(1), 47-50.
[http://dx.doi.org/10.1016/S0149-7634(05)80090-9] [PMID: 2052197]
[45]
Balemans, W.; Van Hul, W. Extracellular regulation of BMP signaling in vertebrates: A cocktail of modulators. Dev. Biol., 2002, 250(2), 231-250.
[http://dx.doi.org/10.1006/dbio.2002.0779] [PMID: 12376100]
[46]
Tielemans, B.; Delcroix, M.; Belge, C.; Quarck, R. TGFβ and BMPRII signalling pathways in the pathogenesis of pulmonary arterial hypertension. Drug Discov. Today, 2019, 24(3), 703-716.
[http://dx.doi.org/10.1016/j.drudis.2018.12.001] [PMID: 30529762]
[47]
Jonker, L. TGF-β & BMP receptors endoglin and ALK1: Overview of their functional role and status as antiangiogenic targets. Microcirculation, 2014, 21(2), 93-103.
[http://dx.doi.org/10.1111/micc.12099] [PMID: 25279424]
[48]
Hegarty, S.V.; O’Keeffe, G.W.; Sullivan, A.M. BMP-Smad 1/5/8 signalling in the development of the nervous system. Prog. Neurobiol., 2013, 109, 28-41.
[http://dx.doi.org/10.1016/j.pneurobio.2013.07.002] [PMID: 23891815]
[49]
Wrana, J.L. TGF-beta receptors and signalling mechanisms. Miner. Electrolyte Metab., 1998, 24(2-3), 120-130.
[http://dx.doi.org/10.1159/000057359] [PMID: 9525694]
[50]
Wang, J.; Yu, J.; Ding, C.P.; Han, S.P.; Zeng, X.Y.; Wang, J.Y. Transforming growth factor-beta in the red nucleus plays antinociceptive effect under physiological and pathological pain conditions. Neuroscience, 2015, 291, 37-45.
[http://dx.doi.org/10.1016/j.neuroscience.2015.01.059] [PMID: 25662509]
[51]
Chen, G.; Park, C.K.; Xie, R.G.; Ji, R.R. Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion. J. Clin. Invest., 2015, 125(8), 3226-3240.
[http://dx.doi.org/10.1172/JCI80883] [PMID: 26168219]
[52]
Xu, P.; Van Slambrouck, C.; Berti, M.L.; Hall, A.K. Activin induces tactile allodynia and increases calcitonin gene-related peptide after peripheral inflammation. J. Neurosci., 2005, 25(40), 9227-9235.
[http://dx.doi.org/10.1523/JNEUROSCI.3051-05.2005] [PMID: 16207882]
[53]
Zhu, W.; Xu, P.; Cuascut, F.X.; Hall, A.K.; Oxford, G.S. Activin acutely sensitizes dorsal root ganglion neurons and induces hyperalgesia via PKC-mediated potentiation of transient receptor potential vanilloid I. J. Neurosci., 2007, 27(50), 13770-13780.
[http://dx.doi.org/10.1523/JNEUROSCI.3822-07.2007] [PMID: 18077689]
[54]
Xie, F.; Zhang, Z.; Van Dam, H.; Zhang, L.; Zhou, F. Regulation of TGF-β superfamily signaling by SMAD mono-ubiquitination. Cells, 2014, 3(4), 981-993.
[http://dx.doi.org/10.3390/cells3040981] [PMID: 25317929]
[55]
Satoh, A.; Makanae, A.; Nishimoto, Y.; Mitogawa, K. FGF and BMP derived from dorsal root ganglia regulate blastema induction in limb regeneration in Ambystoma mexicanum. Dev. Biol., 2016, 417(1), 114-125.
[http://dx.doi.org/10.1016/j.ydbio.2016.07.005] [PMID: 27432514]
[56]
Wang, X.; Krebbers, J.; Charalambous, P.; Machado, V.; Schober, A.; Bosse, F.; Müller, H.W.; Unsicker, K. Growth/differentiation factor-15 and its role in peripheral nervous system lesion and regeneration. Cell Tissue Res., 2015, 362(2), 317-330.
[http://dx.doi.org/10.1007/s00441-015-2219-3] [PMID: 26077927]
[57]
Xiao, J.L.; Meng, J.H.; Gan, Y.H.; Zhou, C.Y.; Ma, X.C. Association of GDF5, SMAD3 and RUNX2 polymorphisms with temporomandibular joint osteoarthritis in female Han Chinese. J. Oral Rehabil., 2015, 42(7), 529-536.
[http://dx.doi.org/10.1111/joor.12286] [PMID: 25757091]
[58]
Jiang, L.; Tan, B.; Li, S.; Wang, L.; Zheng, L.; Liu, Y.; Long, Z.; Wu, Y. Decrease of growth and differentiation factor 10 contributes to neuropathic pain through N-methyl-D-aspartate receptor activation. Neuroreport, 2017, 28(8), 444-450.
[http://dx.doi.org/10.1097/WNR.0000000000000785] [PMID: 28394782]
[59]
Miyazaki, S.; Diwan, A.D.; Kato, K.; Cheng, K.; Bae, W.C.; Sun, Y.; Yamada, J.; Muehleman, C.; Lenz, M.E.; Inoue, N.; Sah, R.L.; Kawakami, M.; Masuda, K. Correction to: ISSLS PRIZE IN BASIC SCIENCE 2018: Growth differentiation factor-6 attenuated pro-inflammatory molecular changes in the rabbit anular-puncture model and degenerated disc-induced pain generation in the rat xenograft radiculopathy model. Eur. Spine J., 2019, 28(4), 889.
[http://dx.doi.org/10.1007/s00586-019-05878-6] [PMID: 30661198]
[60]
Tarabeih, N.; Shalata, A.; Trofimov, S.; Kalinkovich, A.; Livshits, G. Growth and differentiation factor 15 is a biomarker for low back pain-associated disability. Cytokine, 2019, 117, 8-14.
[http://dx.doi.org/10.1016/j.cyto.2019.01.011] [PMID: 30776685]
[61]
Gjelsvik, K.J.; Follansbee, T.L.; Ganter, G.K. Bone Morphogenetic Protein glass bottom boat (BMP5/6/7/8) and its receptor Wishful Thinking (BMPRII) are required for injury-induced allodynia in Drosophila. Mol. Pain, 2018, 14, 1744806918802703.
[http://dx.doi.org/10.1177/1744806918802703] [PMID: 30259786]
[62]
Vieira, W.A.; Wells, K.M.; Raymond, M.J.; De Souza, L.; Garcia, E.; McCusker, C.D. FGF, BMP, and RA signaling are sufficient for the induction of complete limb regeneration from non-regenerating wounds on Ambystoma mexicanum limbs. Dev. Biol., 2019, 451(2), 146-157.
[http://dx.doi.org/10.1016/j.ydbio.2019.04.008] [PMID: 31026439]
[63]
Heo, K.; Nahm, M.; Lee, M.J.; Kim, Y.E.; Ki, C.S.; Kim, S.H.; Lee, S. The Rap activator Gef26 regulates synaptic growth and neuronal survival via inhibition of BMP signaling. Mol. Brain, 2017, 10(1), 62.
[http://dx.doi.org/10.1186/s13041-017-0342-7] [PMID: 29282074]
[64]
Mensching, L.; Börger, A.K.; Wang, X.; Charalambous, P.; Unsicker, K.; Haastert, T.K. Local substitution of GDF-15 improves axonal and sensory recovery after peripheral nerve injury. Cell Tissue Res., 2012, 350(2), 225-238.
[http://dx.doi.org/10.1007/s00441-012-1493-6] [PMID: 22955564]
[65]
Charalambous, P.; Wang, X.; Thanos, S.; Schober, A.; Unsicker, K. Regulation and effects of GDF-15 in the retina following optic nerve crush. Cell Tissue Res., 2013, 353(1), 1-8.
[http://dx.doi.org/10.1007/s00441-013-1634-6] [PMID: 23640134]
[66]
Laferriere, C.A.; Pang, D.S.J. Review of intraperitoneal injection of sodium pentobarbital as a method of Euthanasia in laboratory rodents. J. Am. Assoc. Lab. Anim. Sci., 2020, 59(3), 254-263.
[http://dx.doi.org/10.30802/AALAS-JAALAS-19-000081] [PMID: 32156325]
[67]
Schmierer, B.; Hill, C.S. TGFβ–SMAD signal transduction: Molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol., 2007, 8(12), 970-982.
[http://dx.doi.org/10.1038/nrm2297] [PMID: 18000526]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy