Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Recent Advances in the Development of Pyrimidine-based CNS Agents

Author(s): Swati Pant and Sumitra Nain*

Volume 20, Issue 2, 2023

Published on: 22 November, 2022

Article ID: e031022209428 Pages: 15

DOI: 10.2174/1570163819666221003094402

Price: $65

Abstract

Background: In the past few decades, considerable progress has been made in CNS drug discovery, and various new CNS agents have been developed. Pyrimidine is an important scaffold in the area of medicinal chemistry. Recently, pyrimidine-containing compounds have been successfully designed as potent CNS agents. Substantial research has been carried out on pyrimidine-bearing compounds to treat different disorders of CNS in various animal models.

Methods: Utilizing various databases, including Google Scholar, PubMed, Science Direct, and Web of Science, the literature review was conducted. The specifics of significant articles were discussed with an emphasis on the potency of pyrimidines derivatives possessing CNS activity.

Results: Recent papers indicating pyrimidine derivatives with CNS activity were incorporated into the manuscript. (46) to (50) papers included different pyrimidine derivatives as 5-HT agonist/antagonists, (62) to (67) as adenosine agonist/antagonist, (70) to (75) as anticonvulsant agents, (80) to (83) as cannabinoid receptor agonists, (102) to (103) as nicotinic and (110) as muscarinic receptor agonists. The remaining papers (113) to (114) represented pyrimidine-based molecular imaging agents.

Conclusion: Pyrimidine and its derivatives have been studied in detail to evaluate their efficacy in overcoming multiple central nervous system disorders. The article covers the current updates on pyrimidine-based compounds as potent CNS and molecular imaging agents and will definitely provide a better platform for the development of potent pyrimidine-based CNS drugs in the near future.

Keywords: Pyrimidine, serotonin receptors, adenosine receptors, cannabinoid receptors, acetylcholine receptors, anticonvulsants, heterocycles.

Graphical Abstract
[1]
Li YQ, Guo C. A review on lactoferrin and central nervous system diseases. Cells 2021; 10(7): 1810.
[http://dx.doi.org/10.3390/cells10071810] [PMID: 34359979]
[2]
Danon JJ, Reekie TA, Kassiou M. Challenges and opportunities in central nervous system drug discovery. Trends Chem 2019; 1(6): 612-24.
[http://dx.doi.org/10.1016/j.trechm.2019.04.009]
[3]
Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide–drug conjugates to overcome the blood–brain barrier and target CNS diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021; 13(4): e1695.
[http://dx.doi.org/10.1002/wnan.1695] [PMID: 33470550]
[4]
Vatansever S, Schlessinger A, Wacker D, et al. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions. Med Res Rev 2021; 41(3): 1427-73.
[http://dx.doi.org/10.1002/med.21764] [PMID: 33295676]
[5]
Ajani OO, Isaac JT, Owoeye TF, Akinsiku AA. Exploration of the chemistry and biological properties of pyrimidine as a privilege phar-macophore in therapeutics. Int J Biol Chem 2015; 9(4): 148-77.
[http://dx.doi.org/10.3923/ijbc.2015.148.177]
[6]
Gupta JK, Chaudhary A, Dudhe R, Varuna K, Sharma PK, Verma PK. A review on the synthesis and therapeutic potential of pyrimidine derivatives. Int J Pharm Sci Res 2010; 1: 34-49.
[7]
Tylińska B, Wiatrak B, Czyżnikowska Ż, Cieśla NA, Gębarowska E, Janicka KA. Novel pyrimidine derivatives as potential anticancer agents: Synthesis, biological evaluation and molecular docking study. Int J Mol Sci 2021; 22(8): 3825.
[http://dx.doi.org/10.3390/ijms22083825] [PMID: 33917090]
[8]
Madia VN, Nicolai A, Messore A, et al. Design, synthesis and biological evaluation of new pyrimidine derivatives as anticancer agents. Molecules 2021; 26(3): 771.
[http://dx.doi.org/10.3390/molecules26030771] [PMID: 33540875]
[9]
Soto AR, Jung E, Qiu L, Wilson DJ, Geraghty RJ, Chen L. 4,7-disubstituted 7H-pyrrolo[2,3-d]pyrimidines and their analogs as antiviral agents against zika virus. Molecules 2021; 26(13): 3779.
[http://dx.doi.org/10.3390/molecules26133779] [PMID: 34206327]
[10]
Sun J, Yogarajah T, Lee RCH, et al. Drug repurposing of pyrimidine analogs as potent antiviral compounds against human enterovirus A71 infection with potential clinical applications. Sci Rep 2020; 10(1): 8159.
[http://dx.doi.org/10.1038/s41598-020-65152-4] [PMID: 32424333]
[11]
Marinescu M. Biginelli reaction mediated synthesis of antimicrobial pyrimidine derivatives and their therapeutic properties. Molecules 2021; 26(19): 6022.
[http://dx.doi.org/10.3390/molecules26196022] [PMID: 34641566]
[12]
Abd El-Sattar NEA, El-Adl K, El-Hashash MA, Salama SA, Elhady MM. Design, synthesis, molecular docking and in silico ADMET profile of pyrano[2,3-d]pyrimidine derivatives as antimicrobial and anticancer agents. Bioorg Chem 2021; 115: 105186.
[http://dx.doi.org/10.1016/j.bioorg.2021.105186] [PMID: 34314914]
[13]
Alfayomy AM, Abdel ASA, Marzouk AA, et al. Design and synthesis of pyrimidine-5-carbonitrile hybrids as COX-2 inhibitors: Anti-inflammatory activity, ulcerogenic liability, histopathological and docking studies. Bioorg Chem 2021; 108: 104555.
[http://dx.doi.org/10.1016/j.bioorg.2020.104555] [PMID: 33376011]
[14]
Abdel ASA, Taher ES, Lan P, et al. Design, synthesis, and biological evaluation of new pyrimidine-5-carbonitrile derivatives bearing 1,3-thiazole moiety as novel anti-inflammatory EGFR inhibitors with cardiac safety profile. Bioorg Chem 2021; 111: 104890.
[http://dx.doi.org/10.1016/j.bioorg.2021.104890] [PMID: 33872924]
[15]
Bonacorso HG, Rosa WC, Oliveira SM, et al. Synthesis of novel trifluoromethyl-substituted spiro-[chromeno[4,3-d]pyrimidine-5,1′-cycloalkanes], and evaluation of their analgesic effects in a mouse pain model. Bioorg Med Chem Lett 2017; 27(7): 1551-6.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.036] [PMID: 28259627]
[16]
Ashour HM, Shaaban OG, Rizk OH, El-Ashmawy IM. Synthesis and biological evaluation of thieno [2′,3′:4,5]pyrimido[1,2-b][1,2,4]triazines and thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidines as anti-inflammatory and analgesic agents. Eur J Med Chem 2013; 62: 341-51.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.003] [PMID: 23376247]
[17]
Revathi N, Sankarganesh M, Dhaveethu RJ, Vinoth KGG, Sakthivel A, Rajasekaran R. Bio-active mixed ligand Cu(II) and Zn(II) complexes of pyrimidine derivative schiff base: DFT calculation, antimicrobial, antioxidant, DNA binding, anticancer and molecular docking studies. J Biomol Struct Dyn 2021; 39(8): 3012-24.
[http://dx.doi.org/10.1080/07391102.2020.1759454] [PMID: 32329409]
[18]
Khalilpour A, Asghari S, Pourshab M. Synthesis and characterization of novel Thiazolo[3,2‐ a]pyrimidine derivatives and evaluation of antioxidant and cytotoxic activities. Chem Biodivers 2019; 16(5): e1800563.
[http://dx.doi.org/10.1002/cbdv.201800563] [PMID: 30740903]
[19]
Kayamba F, Malimabe T, Ademola IK, et al. Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors. Eur J Med Chem 2021; 217: 113330.
[http://dx.doi.org/10.1016/j.ejmech.2021.113330] [PMID: 33744688]
[20]
Rogerio KR, Graebin CS, Pinto DLH, et al. Novel quinolinylpyrrolo[3,4-d]pyrimidine-2,5-dione derivatives against chloroquine-resistant Plasmodium falciparum. Curr Top Med Chem 2020; 20(2): 99-110.
[http://dx.doi.org/10.2174/1568026619666191019100711] [PMID: 31648638]
[21]
Magoulas GE, Kalopetridou L, Ćirić A, et al. Synthesis, biological evaluation and QSAR studies of new thieno[2,3-d]pyrimidin-4(3H)-one derivatives as antimicrobial and antifungal agents. Bioorg Chem 2021; 106: 104509.
[http://dx.doi.org/10.1016/j.bioorg.2020.104509] [PMID: 33288321]
[22]
Aryan R, Beyzaei H, Nojavan M, Pirani F, Samareh DH, Sanchooli M. Expedient multicomponent synthesis of a small library of some novel highly substituted pyrido[2,3-d]pyrimidine derivatives mediated and promoted by deep eutectic solvent and in vitro and quantum mechanical study of their antibacterial and antifungal activities. Mol Divers 2019; 23(1): 93-105.
[http://dx.doi.org/10.1007/s11030-018-9859-7] [PMID: 30027387]
[23]
Oh S, Libardo MDJ, Azeeza S, et al. Structure–activity relationships of pyrazolo[1,5- a]pyrimidin-7(4 H)-ones as antitubercular agents. ACS Infect Dis 2021; 7(2): 479-92.
[http://dx.doi.org/10.1021/acsinfecdis.0c00851] [PMID: 33405882]
[24]
Venkatesh T, Bodke YD, Manjunatha B, Ravi Kumar S. Synthesis, antitubercular activity and molecular docking study of substituted [1,3]dioxino[4,5- d]pyrimidine derivatives via facile CAN catalyzed biginelli reaction. Nucleosides Nucleotides Nucleic Acids 2021; 40(11): 1037-49.
[http://dx.doi.org/10.1080/15257770.2021.1972310] [PMID: 34470580]
[25]
Majeed J, Shaharyar M. Synthesis and in vivo diuretic activity of some novel pyrimidine derivatives. J Enzyme Inhib Med Chem 2011; 26(6): 819-26.
[http://dx.doi.org/10.3109/14756366.2011.557022] [PMID: 21381888]
[26]
Santilli AA, Kim DH. Pyrido[2,3-d]pyrimidine-6-carboxamides as potential diuretic agents. J Med Chem 1972; 15(4): 442-3.
[http://dx.doi.org/10.1021/jm00274a040] [PMID: 5019576]
[27]
Imaeda Y, Tawada M, Suzuki S, et al. Structure-based design of a new series of N-(piperidin-3-yl)pyrimidine-5-carboxamides as renin inhibitors. Bioorg Med Chem 2016; 24(22): 5771-80.
[http://dx.doi.org/10.1016/j.bmc.2016.09.030] [PMID: 27687967]
[28]
Novinson T, Springer R, O’Brien DE, Scholten MB, Miller JP, Robins RK. 2-(Alkylthio)-1,2,4-triazolo[1,5-a]pyrimidines as adenosine 3′,5′-monophosphate phosphodiesterase inhibitors with potential as new cardiovascular agents. J Med Chem 1982; 25(4): 420-6.
[http://dx.doi.org/10.1021/jm00346a017] [PMID: 6279846]
[29]
Gore RP, Rajput AP. A review on recent progress in multicomponent reactions of pyrimidine synthesis. Drug Invention Today 2013; 5(2): 148-52.
[http://dx.doi.org/10.1016/j.dit.2013.05.010]
[30]
Dansena H, Dhongade HJ, Chandrakar K. Pharmacological potentials of pyrimidine derivative: A review. Asian J Pharm Clin Res 2015; 8(4): 171-7.
[31]
Lagoja IM. Pyrimidine as constituent of natural biologically active compounds. Chem Biodivers 2005; 2(1): 1-50.
[http://dx.doi.org/10.1002/cbdv.200490173] [PMID: 17191918]
[32]
Mishra R, Tomar I. Pyrimidine: The molecule of diverse biological and medicinal importance. Int J Pharm Sci Res 2011; 2(4): 758.
[33]
Rao NV, Vaisalini NB, Mounika B, Harika VL, Desu PK, Nama S. An overview on synthesis and biological activity of pyrimidines. ChemInform 2014; 45(31): 97483677.
[http://dx.doi.org/10.1002/chin.201431276]
[34]
Merugu R, Garimella S, Balla D, Sambaru K. Synthesis and biological activities of pyrimidines. Rev Synth 2015; 8(6): 88-93.
[35]
Micheli V, Camici M, Tozzi MG, et al. Neurological disorders of purine and pyrimidine metabolism. Curr Top Med Chem 2011; 11(8): 923-47.
[http://dx.doi.org/10.2174/156802611795347645] [PMID: 21401501]
[36]
Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology 1999; 38(8): 1083-152.
[http://dx.doi.org/10.1016/S0028-3908(99)00010-6] [PMID: 10462127]
[37]
Butler S, Meegan M. Recent developments in the design of anti-depressive therapies: Targeting the serotonin transporter. Curr Med Chem 2008; 15(17): 1737-61.
[http://dx.doi.org/10.2174/092986708784872357] [PMID: 18673223]
[38]
Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 2002; 71(4): 533-54.
[http://dx.doi.org/10.1016/S0091-3057(01)00746-8] [PMID: 11888546]
[39]
Romero AG, Darlington WH, Piercey MF, Lahti RA. Synthesis of metabolically stable arylpiperazine 5-HT1A receptor agonists. Bioorg Med Chem Lett 1992; 2(12): 1703-6.
[http://dx.doi.org/10.1016/S0960-894X(00)80460-6]
[40]
Filip M, Bader M. Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacol Rep 2009; 61(5): 761-77.
[http://dx.doi.org/10.1016/S1734-1140(09)70132-X] [PMID: 19903999]
[41]
Geldenhuys W, Van Der Schyf C. Serotonin 5-HT6 receptor antagonists for the treatment of Alzheimer’s disease. Curr Top Med Chem 2008; 8(12): 1035-48.
[http://dx.doi.org/10.2174/156802608785161420] [PMID: 18691131]
[42]
Rossé G, Schaffhauser H. 5-HT6 receptor antagonists as potential therapeutics for cognitive impairment. Curr Top Med Chem 2010; 10(2): 207-21.
[http://dx.doi.org/10.2174/156802610790411036] [PMID: 20166958]
[43]
Ivachtchenko AV, Golovina ES, Kadieva MG, et al. Synthesis and biological study of 3-(phenylsulfonyl)thieno[2,3-e][1,2,3]triazolo [1,5-a]pyrimidines as potent and selective serotonin 5-HT6 receptor antagonists. Bioorg Med Chem 2010; 18(14): 5282-90.
[http://dx.doi.org/10.1016/j.bmc.2010.05.051] [PMID: 20541425]
[44]
Vladimir NS, Nina K, Popova EL, Marcello L, Ponimaskin EG. Interplay between serotonin 5‐HT 1A and 5‐HT 7 receptors in depressive disorders. CNS Neurosci Ther 2014; 2014: 582-90.
[45]
Stiedl O, Pappa E, Konradsson GÃ. Ã-gren SO. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol 2015; 6: 162.
[http://dx.doi.org/10.3389/fphar.2015.00162] [PMID: 26300776]
[46]
Król M, Ślifirski G, Kleps J, et al. Synthesis of novel pyrido[1,2-c]pyrimidine derivatives with 6-Fluoro-3-(4-piperidynyl)-1,2-benzisoxazole moiety as potential SSRI and 5-HT1A receptor ligands. Int J Mol Sci 2021; 22(5): 2329.
[http://dx.doi.org/10.3390/ijms22052329] [PMID: 33652672]
[47]
Romeo G, Salerno L, Pittalà V, et al. [1]Benzothieno[3,2-d]pyrimidine derivatives as ligands for the serotonergic 5-HT7 receptor. Eur J Med Chem 2019; 183: 111690.
[http://dx.doi.org/10.1016/j.ejmech.2019.111690] [PMID: 31526973]
[48]
Ślifirski G, Król M, Kleps J, et al. Synthesis of new 5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine derivatives with rigidized tryptamine moiety as potential SSRI and 5-HT1A receptor ligands. Eur J Med Chem 2019; 180: 383-97.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.027] [PMID: 31325785]
[49]
Gomółka A, Ciesielska A, Wróbel MZ, et al. Novel 4-arylpyrido[1,2-c]pyrimidines with dual SSRI and 5-HT1A activity. Part 5. Eur J Med Chem 2015; 98: 221-36.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.003] [PMID: 26043160]
[50]
Chodkowski A, Wróbel MZ, Turło J, et al. Novel 4-arylpyrido[1,2-c]pyrimidines with dual SSRI and 5-HT1A activity. Part 4. Eur J Med Chem 2015; 90: 21-32.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.069] [PMID: 25461308]
[51]
Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001; 53(4): 527-52.
[PMID: 11734617]
[52]
Sheth S, Brito R, Mukherjea D, Rybak L, Ramkumar V. Adenosine receptors: Expression, function and regulation. Int J Mol Sci 2014; 15(2): 2024-52.
[http://dx.doi.org/10.3390/ijms15022024] [PMID: 24477263]
[53]
Maemoto T, Tada M, Mihara T, et al. Pharmacological characterization of FR194921, a new potent, selective, and orally active antagonist for central adenosine A1 receptors. J Pharmacol Sci 2004; 96(1): 42-52.
[http://dx.doi.org/10.1254/jphs.FP0040359] [PMID: 15351792]
[54]
Mihara T, Iwashita A, Matsuoka N. A novel adenosine A1 and A2A receptor antagonist ASP5854 ameliorates motor impairment in MPTP-treated marmosets: Comparison with existing anti-Parkinson’s disease drugs. Behav Brain Res 2008; 194(2): 152-61.
[http://dx.doi.org/10.1016/j.bbr.2008.06.035] [PMID: 18657577]
[55]
Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 2006; 5(3): 247-64.
[http://dx.doi.org/10.1038/nrd1983] [PMID: 16518376]
[56]
Wang X, Cao L, Guan Y, et al. The role of adenosine A1 receptor agonist in adenosine augmentation therapy for patients with refractory epilepsy in Sturge–Weber syndrome: An in vitro electrophysiological study. Epilepsy Behav 2020; 106: 107034.
[http://dx.doi.org/10.1016/j.yebeh.2020.107034] [PMID: 32208337]
[57]
Tescarollo FC, Rombo DM, DeLiberto LK, et al. Role of adenosine in epilepsy and seizures. J Caffeine Adenosine Res 2020; 10(2): 45-60.
[http://dx.doi.org/10.1089/caff.2019.0022] [PMID: 32566903]
[58]
De Mendonça A, Sebastião AM, Ribeiro JA. Adenosine: Does it have a neuroprotective role after all? Brain Res Brain Res Rev 2000; 33(2-3): 258-74.
[http://dx.doi.org/10.1016/S0165-0173(00)00033-3] [PMID: 11011069]
[59]
Jacobson KA, Van Galen PJM, Williams M. Adenosine receptors: Pharmacology, structure-activity relationships, and therapeutic poten-tial. J Med Chem 1992; 35(3): 407-22.
[http://dx.doi.org/10.1021/jm00081a001] [PMID: 1738138]
[60]
Muller C. Adenosine receptor ligands-recent developments part I. Agonists. Curr Med Chem 2000; 7(12): 1269-88.
[http://dx.doi.org/10.2174/0929867003374101] [PMID: 11032971]
[61]
Liu W, Tang Y, Feng J. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous sys-tem. Life Sci 2011; 89(5-6): 141-6.
[http://dx.doi.org/10.1016/j.lfs.2011.05.011] [PMID: 21684291]
[62]
Varano F, Catarzi D, Vigiani E, et al. Design and synthesis of novel Thiazolo[5,4-d]pyrimidine derivatives with high affinity for both the adenosine A1 and A2A receptors, and efficacy in animal models of depression. Pharmaceuticals 2021; 14(7): 657.
[http://dx.doi.org/10.3390/ph14070657] [PMID: 34358083]
[63]
Varano F, Catarzi D, Vigiani E, et al. Piperazine- and piperidine-containing Thiazolo[5,4-d]pyrimidine derivatives as new potent and selective adenosine A2A receptor inverse agonists. Pharmaceuticals 2020; 13(8): 161.
[http://dx.doi.org/10.3390/ph13080161] [PMID: 32722122]
[64]
Squarcialupi L, Betti M, Catarzi D, et al. The role of 5-arylalkylamino- and 5-piperazino- moieties on the 7-aminopyrazolo[4,3-d]pyrimidine core in affecting adenosine A1 and A2A receptor affinity and selectivity profiles. J Enzyme Inhib Med Chem 2017; 32(1): 248-63.
[http://dx.doi.org/10.1080/14756366.2016.1247060] [PMID: 28114825]
[65]
Yang Z, Li L, Zheng J, et al. Identification of a new series of potent adenosine A 2A receptor antagonists based on 4-amino-5-carbonitrile pyrimidine template for the treatment of Parkinson’s disease. ACS Chem Neurosci 2016; 7(11): 1575-84.
[http://dx.doi.org/10.1021/acschemneuro.6b00218] [PMID: 27569066]
[66]
Varano F, Catarzi D, Vincenzi F, et al. Design, synthesis, and pharmacological characterization of 2-(2-Furanyl)thiazolo[5,4- d]pyrimidine-5,7-diamine derivatives: New highly potent A2A adenosine receptor inverse agonists with antinociceptive activity. J Med Chem 2016; 59(23): 10564-76.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01068] [PMID: 27933962]
[67]
Squarcialupi L, Falsini M, Catarzi D, et al. Exploring the 2- and 5-positions of the pyrazolo[4,3-d]pyrimidin-7-amino scaffold to target human A1 and A2A adenosine receptors. Bioorg Med Chem 2016; 24(12): 2794-808.
[http://dx.doi.org/10.1016/j.bmc.2016.04.048] [PMID: 27161878]
[68]
Benbadis SR, Tatum WO. Overintepretation of EEGs and misdiagnosis of epilepsy. J Clin Neurophysiol 2003; 20(1): 42-4.
[http://dx.doi.org/10.1097/00004691-200302000-00005] [PMID: 12684557]
[69]
Reddy DS. Neurosteroids. Prog Brain Res 2010; p. 186: 113-37.
[http://dx.doi.org/10.1016/B978-0-444-53630-3.00008-7] [PMID: 21094889]
[70]
Huang L, Ding J, Li M, et al. Discovery of [1,2,4]-triazolo [1,5-a]pyrimidine-7(4H)-one derivatives as positive modulators of GABAA1 receptor with potent anticonvulsant activity and low toxicity. Eur J Med Chem 2020; 185: 111824.
[http://dx.doi.org/10.1016/j.ejmech.2019.111824] [PMID: 31708184]
[71]
Sahu M, Siddiqui N, Sharma V, Wakode S. 5,6-Dihydropyrimidine-1(2H)-carbothioamides: Synthesis, in vitro GABA-AT screening, anticonvulsant activity and molecular modelling study. Bioorg Chem 2018; 77: 56-67.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.031] [PMID: 29331765]
[72]
Sahu M, Siddiqui N, Iqbal R, Sharma V, Wakode S. Design, synthesis and evaluation of newer 5,6-dihydropyrimidine-2(1H)-thiones as GABA-AT inhibitors for anticonvulsant potential. Bioorg Chem 2017; 74: 166-78.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.017] [PMID: 28806600]
[73]
Sahu M, Siddiqui N, Naim MJ, et al. Design, synthesis, and docking study of pyrimidine-triazine hybrids for GABA estimation in animal epilepsy models. Arch Pharm 2017; 350(9): 1700146.
[http://dx.doi.org/10.1002/ardp.201700146] [PMID: 28758238]
[74]
Wang SB, Piao GC, Zhang HJ, Quan ZS. Synthesis of 5-alkoxythieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidine derivatives and evaluation of their anticonvulsant activities. Molecules 2015; 20(4): 6827-43.
[http://dx.doi.org/10.3390/molecules20046827] [PMID: 25884556]
[75]
Shaquiquzzaman M, Khan SA, Amir M, Alam MM. Synthesis and anticonvulsant activity of some 2-(2-{1-[substituted phenyl] ethylidene} hydrazinyl)-4-(4-methoxy-phenyl)-6-oxo-1, 6-dihydro-pyrimidine-5-carbonitrile. J Enzyme Inhib Med Chem 2012; 27(6): 825-31.
[http://dx.doi.org/10.3109/14756366.2011.618129] [PMID: 21981001]
[76]
Leleu CN, Desreumaux P, Chavatte P, Millet R. Therapeutical potential of CB₂ receptors in immune-related diseases. Curr Mol Pharmacol 2014; 6(3): 183-203.
[http://dx.doi.org/10.2174/1874467207666140219122337] [PMID: 24720538]
[77]
Sansook S, Tuo W, Lemaire L, et al. Synthesis of bioorganometallic nanomolar-potent CB2 agonists containing a ferrocene unit. Organometallics 2016; 35(19): 3361-8.
[http://dx.doi.org/10.1021/acs.organomet.6b00575]
[78]
Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA 1999; 96(10): 5780-5.
[http://dx.doi.org/10.1073/pnas.96.10.5780] [PMID: 10318961]
[79]
Leleu CN, Body MM, Spencer J, Chavatte P, Desreumaux P, Millet R. Recent advances in the development of selective CB(2) agonists as promising anti-inflammatory agents. Curr Med Chem 2012; 19(21): 3457-74.
[http://dx.doi.org/10.2174/092986712801323207] [PMID: 22709008]
[80]
Qian HY, Wang ZL, Chen LL, et al. Design, synthesis, and SAR studies of heteroarylpyrimidines and heteroaryltriazines as CB 2 R lig-ands. ChemMedChem 2018; 13(22): 2455-63.
[http://dx.doi.org/10.1002/cmdc.201800541] [PMID: 30246417]
[81]
Tuo W, Bollier M, Leleu CN, et al. Development of novel oxazolo[5,4-d]pyrimidines as competitive CB2 neutral antagonists based on scaffold hopping. Eur J Med Chem 2018; 146: 68-78.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.034] [PMID: 29360044]
[82]
Aghazadeh TM, Baraldi PG, Ruggiero E, et al. Synthesis and structure activity relationship investigation of triazolo[1,5-a]pyrimidines as CB2 cannabinoid receptor inverse agonists. Eur J Med Chem 2016; 113: 11-27.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.032] [PMID: 26922225]
[83]
Aghazadeh TM, Baraldi PG, Saponaro G, et al. Discovery of 7-oxopyrazolo[1,5-a]pyrimidine-6-carboxamides as potent and selective CB(2) cannabinoid receptor inverse agonists. J Med Chem 2013; 56(11): 4482-96.
[http://dx.doi.org/10.1021/jm400182t] [PMID: 23697626]
[84]
Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol Rev 2009; 89(1): 73-120.
[http://dx.doi.org/10.1152/physrev.00015.2008] [PMID: 19126755]
[85]
Changeux JP. The nicotinic acetylcholine receptor: The founding father of the pentameric ligand-gated ion channel superfamily. J Biol Chem 2012; 287(48): 40207-15.
[http://dx.doi.org/10.1074/jbc.R112.407668] [PMID: 23038257]
[86]
Dineley KT, Pandya AA, Yakel JL. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 2015; 36(2): 96-108.
[http://dx.doi.org/10.1016/j.tips.2014.12.002] [PMID: 25639674]
[87]
Thompson AJ, Lester HA, Lummis SCR. The structural basis of function in Cys-loop receptors. Q Rev Biophys 2010; 43(4): 449-99.
[http://dx.doi.org/10.1017/S0033583510000168] [PMID: 20849671]
[88]
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly RD. Therapeutic potential of α 7 nicotinic acetylcholine receptors. Pharmacol Rev 2015; 67(4): 1025-73.
[http://dx.doi.org/10.1124/pr.113.008581] [PMID: 26419447]
[89]
Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP. Nicotinic receptors: Allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 2009; 8(9): 733-50.
[http://dx.doi.org/10.1038/nrd2927] [PMID: 19721446]
[90]
Gibson RE, Moody T, Schneidau TA, Jagoda EM, Reba RC. The in vitro dissociation kinetics of (R,R)-[125I]4IQNB is reflected in the in vivo washout of the radioligand from rat brain. Life Sci 1992; 50(9): 629-37.
[http://dx.doi.org/10.1016/0024-3205(92)90249-O] [PMID: 1740971]
[91]
MacDermott AB, Role LW, Siegelbaum SA. Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci 1999; 22(1): 443-85.
[http://dx.doi.org/10.1146/annurev.neuro.22.1.443] [PMID: 10202545]
[92]
Dziewczapolski G, Glogowski CM, Masliah E, Heinemann SF. Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. J Neurosci 2009; 29(27): 8805-15.
[http://dx.doi.org/10.1523/JNEUROSCI.6159-08.2009] [PMID: 19587288]
[93]
Kem WR. The brain α7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: Studies with DMXBA (GTS-21). Behav Brain Res 2000; 113(1-2): 169-81.
[http://dx.doi.org/10.1016/S0166-4328(00)00211-4] [PMID: 10942043]
[94]
Hoskin JL, Al-Hasan Y, Sabbagh MN. Nicotinic acetylcholine receptor agonists for the treatment of Alzheimer’s dementia: An update. Nicotine Tob Res 2019; 21(3): 370-6.
[http://dx.doi.org/10.1093/ntr/nty116] [PMID: 30137524]
[95]
Quik M, Kulak JM. Nicotine and nicotinic receptors; Relevance to Parkinson’s disease. Neurotoxicology 2002; 23(4-5): 581-94.
[http://dx.doi.org/10.1016/S0161-813X(02)00036-0] [PMID: 12428730]
[96]
Bordia T, Grady SR, McIntosh JM, Quik M. Nigrostriatal damage preferentially decreases a subpopulation of alpha6beta2* nAChRs in mouse, monkey, and Parkinson’s disease striatum. Mol Pharmacol 2007; 72(1): 52-61.
[http://dx.doi.org/10.1124/mol.107.035998] [PMID: 17409284]
[97]
Freedman R, Olincy A, Buchanan RW, et al. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry 2008; 165(8): 1040-7.
[http://dx.doi.org/10.1176/appi.ajp.2008.07071135] [PMID: 18381905]
[98]
Hauser TA, Kucinski A, Jordan KG, et al. TC-5619: An alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem Pharmacol 2009; 78(7): 803-12.
[http://dx.doi.org/10.1016/j.bcp.2009.05.030] [PMID: 19482012]
[99]
Bagdas D, Gurun MS, Flood P, Papke RL, Damaj MI. New insights on neuronal nicotinic acetylcholine receptors as targets for pain and inflammation: A Focus on α7 nAChRs. Curr Neuropharmacol 2018; 16(4): 415-25.
[http://dx.doi.org/10.2174/1570159X15666170818102108] [PMID: 28820052]
[100]
Gotti C, Riganti L, Vailati S, Clementi F. Brain neuronal nicotinic receptors as new targets for drug discovery. Curr Pharm Des 2006; 12(4): 407-28.
[http://dx.doi.org/10.2174/138161206775474486] [PMID: 16472136]
[101]
Spinelli S, Ballard T, Feldon J, Higgins GA, Pryce CR. Enhancing effects of nicotine and impairing effects of scopolamine on distinct aspects of performance in computerized attention and working memory tasks in marmoset monkeys. Neuropharmacology 2006; 51(2): 238-50.
[http://dx.doi.org/10.1016/j.neuropharm.2006.03.012] [PMID: 16678864]
[102]
Camacho HGA, Taylor P. Lessons from nature: Structural studies and drug design driven by a homologous surrogate from invertebrates, AChBP. Neuropharmacology 2020; 179: 108108.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108108] [PMID: 32353365]
[103]
Kaczanowska K, Camacho HGA, Bendiks L, et al. Substituted 2-aminopyrimidines selective for α7-nicotinic acetylcholine receptor acti-vation and association with acetylcholine binding proteins. J Am Chem Soc 2017; 139(10): 3676-84.
[http://dx.doi.org/10.1021/jacs.6b10746] [PMID: 28221788]
[104]
Caulfield MP, Birdsall NJ. International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 1998; 50(2): 279-90.
[PMID: 9647869]
[105]
Wess J. Muscarinic acetylcholine receptor knockout mice: Novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 2004; 44(1): 423-50.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121622] [PMID: 14744253]
[106]
Gigout S, Jones GA, Wierschke S, Davies CH, Watson JM, Deisz RA. Distinct muscarinic acetylcholine receptor subtypes mediate pre- and postsynaptic effects in rat neocortex. BMC Neurosci 2012; 13(1): 42.
[http://dx.doi.org/10.1186/1471-2202-13-42] [PMID: 22540185]
[107]
Molina HE, Khorchid A, Liu HN, Almazan G. Regulation of muscarinic receptor function in developing oligodendrocytes by agonist exposure. Br J Pharmacol 2003; 138(1): 47-56.
[http://dx.doi.org/10.1038/sj.bjp.0705002] [PMID: 12522072]
[108]
Vilaró MT, Wiederhold KH, Palacios JM, Mengod G. Muscarinic cholinergic receptors in the rat caudate-putamen and olfactory tubercle belong predominantly to the m4 class: In situ hybridization and receptor autoradiography evidence. Neuroscience 1991; 40(1): 159-67.
[http://dx.doi.org/10.1016/0306-4522(91)90181-M] [PMID: 2052149]
[109]
Garzón M, Pickel VM. Somatodendritic targeting of M5 muscarinic receptor in the rat ventral tegmental area: Implications for mesolimbic dopamine transmission. J Comp Neurol 2013; 521(13): 2927-46.
[http://dx.doi.org/10.1002/cne.23323] [PMID: 23504804]
[110]
Jörg M, Van Der Westhuizen ET, Khajehali E, et al. 6-Phenylpyrimidin-4-ones as positive allosteric modulators at the M1 mAChR: The determinants of allosteric activity. ACS Chem Neurosci 2019; 10(3): 1099-114.
[http://dx.doi.org/10.1021/acschemneuro.8b00613] [PMID: 30547573]
[111]
Mankoff DA. A definition of molecular imaging. J Nucl Med Off Publ Soc Nucl Med 2007; 48: 18-21.
[112]
Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: Current status and emerging strategies. Clin Radiol 2010; 65(7): 500-16.
[http://dx.doi.org/10.1016/j.crad.2010.03.011] [PMID: 20541650]
[113]
Hieu Tran V, Park H, Park J, et al. Synthesis and evaluation of novel potent TSPO PET ligands with 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide. Bioorg Med Chem 2019; 27(18): 4069-80.
[http://dx.doi.org/10.1016/j.bmc.2019.07.036] [PMID: 31353076]
[114]
Zhou X, Khanapur S, Huizing AP, et al. Synthesis and preclinical evaluation of 2-(2-Furanyl)-7-[2-[4-[4-(2-[11C]methoxyethoxy) phe-nyl]-1-piperazinyl]ethyl]7 H-pyrazolo[4,3-e][1,2,4]triazolo [1,5- c]pyrimidine-5-amine ([11C]Preladenant) as a PET tracer for the imag-ing of cerebral adenosine A2A receptors. J Med Chem 2014; 57(21): 9204-10.
[http://dx.doi.org/10.1021/jm501065t] [PMID: 25279444]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy