Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis and Biological Evaluation of 3,9-Dioxatetraasteranes as Potential Inhibitors of Epidermal Growth Factor Receptor

Author(s): Hongjun Wang, Nana Tian, Dongchen Chu and Hong Yan*

Volume 21, Issue 3, 2024

Published on: 27 October, 2022

Page: [552 - 558] Pages: 7

DOI: 10.2174/1570180819666220928151144

Price: $65

conference banner
Abstract

Background: Epidermal growth factor receptor (EGFR) is a validated and therapeutically amenable target, and inhibition of the EGFR signaling pathway has emerged as an attractive target for cancer therapy.

Methods: The present work was designed to synthesize and evaluate the antiproliferative activity of a novel series of 3,9-dioxatetraasteranes as potential inhibitors of EGFR. All target compounds were evaluated for antiproliferative activity in vitro against A549 and HepG2 cell lines.

Results: Among the target compounds, compound B13 displayed the most potent antiproliferative activity against A549 with IC50 = 4.31 μM and HepG2 with IC50 = 6.92 μM. In addition, a molecular docking study was performed to investigate the binding mode and binding capacity with EGFR (PDB code: 1M17).

Conclusion: The results indicated that 3,9-dioxatetraasteranes may be promising potential EGFR inhibitors.

Keywords: EGFR inhibitors, 3, 9-dioxatetraasteranes, antiproliferative activity, molecular docking, A549, HepG2 cell lines.

Graphical Abstract
[1]
Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2000, 103(2), 211-225.
[http://dx.doi.org/10.1016/S0092-8674(00)00114-8] [PMID: 11057895]
[2]
Mendelsohn, J.; Baselga, J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol., 2003, 21(14), 2787-2799.
[http://dx.doi.org/10.1200/JCO.2003.01.504] [PMID: 12860957]
[3]
Rosell, R.; Moran, T.; Queralt, C.; Porta, R.; Cardenal, F.; Camps, C.; Majem, M.; Lopez-Vivanco, G.; Isla, D.; Provencio, M.; Insa, A.; Massuti, B.; Gonzalez-Larriba, J.L.; Paz-Ares, L.; Bover, I.; Garcia-Campelo, R.; Moreno, M.A.; Catot, S.; Rolfo, C.; Reguart, N.; Palmero, R.; Sánchez, J.M.; Bastus, R.; Mayo, C.; Bertran-Alamillo, J.; Molina, M.A.; Sanchez, J.J.; Taron, M. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med., 2009, 361(10), 958-967.
[http://dx.doi.org/10.1056/NEJMoa0904554] [PMID: 19692684]
[4]
Ciardiello, F.; Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med., 2008, 358(11), 1160-1174.
[http://dx.doi.org/10.1056/NEJMra0707704] [PMID: 18337605]
[5]
Traxler, P. Tyrosine kinases as targets in cancer therapy-Successes and failures. Expert Opin. Ther. Targets, 2003, 7(2), 215-234.
[http://dx.doi.org/10.1517/14728222.7.2.215] [PMID: 12667099]
[6]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin., 2013, 63(1), 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[7]
Ishikawa, T.; Seto, M.; Banno, H.; Kawakita, Y.; Oorui, M.; Taniguchi, T.; Ohta, Y.; Tamura, T.; Nakayama, A.; Miki, H.; Kamiguchi, H.; Tanaka, T.; Habuka, N.; Sogabe, S.; Yano, J.; Aertgeerts, K.; Kamiyama, K. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J. Med. Chem., 2011, 54(23), 8030-8050.
[http://dx.doi.org/10.1021/jm2008634] [PMID: 22003817]
[8]
Nagaraj, N.S.; Washington, M.K.; Merchant, N.B. Combined blockade of Src kinase and epidermal growth factor receptor with gemcitabine overcomes STAT3-mediated resistance of inhibition of pancreatic tumor growth. Clin. Cancer Res., 2011, 17(3), 483-493.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1670] [PMID: 21266529]
[9]
Lee, M.S.; Cha, E.Y.; Sul, J.Y.; Song, I.S.; Kim, J.Y. Chrysophanic acid blocks proliferation of colon cancer cells by inhibiting EGFR/mTOR pathway. Phytother. Res., 2011, 25(6), 833-837.
[http://dx.doi.org/10.1002/ptr.3323] [PMID: 21089180]
[10]
Ma, Y.C.; Li, C.; Gao, F.; Xu, Y.; Jiang, Z.B.; Liu, J.X.; Jin, L.Y. Epigallocatechin gallate inhibits the growth of human lung cancer by directly targeting the EGFR signaling pathway. Oncol. Rep., 2014, 31(3), 1343-1349.
[http://dx.doi.org/10.3892/or.2013.2933] [PMID: 24366444]
[11]
Lu, X.; Qiu, H.; Yang, L.; Zhang, J.; Ma, S.; Zhen, L. Anti-proliferation effects, efficacy of cyasterone in vitro and in vivo and its mechanism. Biomed. Pharmacother., 2016, 84, 330-339.
[http://dx.doi.org/10.1016/j.biopha.2016.09.041] [PMID: 27668532]
[12]
Pao, W.; Wang, T.Y.; Riely, G.J.; Miller, V.A.; Pan, Q.; Ladanyi, M.; Zakowski, M.F.; Heelan, R.T.; Kris, M.G.; Varmus, H.E. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med., 2005, 2(1), e17.
[http://dx.doi.org/10.1371/journal.pmed.0020017] [PMID: 15696205]
[13]
Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol., 2008, 443, 365-382.
[http://dx.doi.org/10.1007/978-1-59745-177-2_19] [PMID: 18446297]
[14]
Hegedüs, C. Truta-Feles, K.; Antalffy, G.; Várady, G.; Német, K.; Özvegy-Laczka, C.; Kéri, G.; Őrfi, L.; Szakács, G.; Settleman, J.; Váradi, A.; Sarkadi, B. Interaction of the EGFR inhibitors gefitinib, vandetanib, pelitinib and neratinib with the ABCG2 multidrug transporter: Implications for the emergence and reversal of cancer drug resistance. Biochem. Pharmacol., 2012, 84(3), 260-267.
[http://dx.doi.org/10.1016/j.bcp.2012.04.010] [PMID: 22548830]
[15]
Sequist, L.V.; Yang, J.C.H.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.M.; Boyer, M.; Su, W.C.; Bennouna, J.; Kato, T.; Gorbunova, V.; Lee, K.H.; Shah, R.; Massey, D.; Zazulina, V.; Shahidi, M.; Schuler, M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol., 2013, 31(27), 3327-3334.
[http://dx.doi.org/10.1200/JCO.2012.44.2806] [PMID: 23816960]
[16]
Xin, H.; Zhu, X.; Yan, H.; Song, X. A novel photodimerization of 4-aryl-4H-pyrans for cage compounds. Tetrahedron Lett., 2013, 54(26), 3325-3328.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.016]
[17]
Li, P.; Wang, S.; Wang, H.; Yan, H. Synthesis and biological evaluation of 3,9-dioxatetraasteranes as C2-symmetric HIV-1 protease inhibitors and docking study. Biol. Pharm. Bull., 2019, 42(2), 261-267.
[http://dx.doi.org/10.1248/bpb.b18-00705] [PMID: 30713256]
[18]
Ni, C.L.; Song, X.H.; Yan, H.; Song, X.Q.; Zhong, R.G. Improved synthesis of diethyl 2,6-dimethyl-4-aryl-4H-pyran-3,5-dicarboxylate under ultrasound irradiation. Ultrason. Sonochem., 2010, 17(2), 367-369.
[http://dx.doi.org/10.1016/j.ultsonch.2009.09.006] [PMID: 19875321]
[19]
Wang, H.F.; Ma, J.X.; Shang, Q.L.; An, J.B.; Chen, H.T. Crocetin inhibits the proliferation, migration and TGF-β 2 -induced epithelial-mesenchymal transition of retinal pigment epithelial cells. Eur. J. Pharmacol., 2017, 815(15), 391-398.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.041] [PMID: 28970011]
[20]
Zhong, Z.C.; Zhao, D.D.; Liu, Z.D.; Jiang, S.; Zhang, Y.L. A new human cancer cell proliferation inhibition sesquiterpene, dryofraterpene A, from medicinal plant Dryopteris fragrans (L.) schott. Molecules, 2017, 22(1), 180.
[http://dx.doi.org/10.3390/molecules22010180] [PMID: 28117728]
[21]
Norgan, A.P.; Coffman, P.K.; Kocher, J.P.A.; Katzmann, D.J.; Sosa, C.P. Multilevel parallelization of AutoDock 4.2. J. Cheminform., 2011, 3(1), 12.
[http://dx.doi.org/10.1186/1758-2946-3-12] [PMID: 21527034]
[22]
Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem., 2002, 277(48), 46265-46272.
[http://dx.doi.org/10.1074/jbc.M207135200] [PMID: 12196540]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy