Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Current Naturopathy to Combat Alzheimer’s Disease

Author(s): Arnob Chakrovorty, Banani Bhattacharjee, Aaruni Saxena, Asmita Samadder* and Sisir Nandi*

Volume 21, Issue 4, 2023

Published on: 11 January, 2023

Page: [808 - 841] Pages: 34

DOI: 10.2174/1570159X20666220927121022

Price: $65

conference banner
Abstract

Neurodegeneration is the progressive loss of structure or function of neurons, which may ultimately involve cell death. The most common neurodegenerative disorder in the brain happens with Alzheimer's disease (AD), the most common cause of dementia. It ultimately leads to neuronal death, thereby impairing the normal functionality of the central or peripheral nervous system. The onset and prevalence of AD involve heterogeneous etiology, either in terms of genetic predisposition, neurometabolomic malfunctioning, or lifestyle. The worldwide relevancies are estimated to be over 45 million people. The rapid increase in AD has led to a concomitant increase in the research work directed towards discovering a lucrative cure for AD. The neuropathology of AD comprises the deficiency in the availability of neurotransmitters and important neurotrophic factors in the brain, extracellular betaamyloid plaque depositions, and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. Current pharmaceutical interventions utilizing synthetic drugs have manifested resistance and toxicity problems. This has led to the quest for new pharmacotherapeutic candidates naturally prevalent in phytochemicals. This review aims to provide an elaborative description of promising Phyto component entities having activities against various potential AD targets. Therefore, naturopathy may combine with synthetic chemotherapeutics to longer the survival of the patients.

Keywords: Alzheimer’s disease, targets, synthetic drugs, naturopathy, neurodegenerative disorder, synthetic drugs.

Graphical Abstract
[1]
Yang, H.D.; Kim, D.H.; Lee, S.B.; Young, L.D. History of Alzheimer’s disease. Dement. Neurocognitive Disord., 2016, 15(4), 115-121.
[http://dx.doi.org/10.12779/dnd.2016.15.4.115] [PMID: 30906352]
[2]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R.; Elliott, C.; Masliah, E.; Ryan, L.; Silverberg, N. NIA‐AA Research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[3]
Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Primers, 2021, 7(1), 33.
[http://dx.doi.org/10.1038/s41572-021-00269-y] [PMID: 33986301]
[4]
Cummings, J.L.; Doody, R.; Clark, C. Disease-modifying therapies for Alzheimer disease: Challenges to early intervention. Neurology, 2007, 69(16), 1622-1634.
[http://dx.doi.org/10.1212/01.wnl.0000295996.54210.69] [PMID: 17938373]
[5]
Rocca, W.A.; Amaducci, L.A.; Schoenberg, B.S. Epidemiology of clinically diagnosed Alzheimer’s disease. Ann. Neurol., 1986, 19(5), 415-424.
[http://dx.doi.org/10.1002/ana.410190502] [PMID: 3717905]
[6]
Huff, F.J.; Growdon, J.H.; Corkin, S.; Rosen, T.J. Age at onset and rate of progression of Alzheimer’s disease. J. Am. Geriatr. Soc., 1987, 35(1), 27-30.
[http://dx.doi.org/10.1111/j.1532-5415.1987.tb01315.x] [PMID: 3794143]
[7]
Gouras, G.K. Olsson, T.T.; Hansson, O. β-Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics, 2015, 12(1), 3-11.
[http://dx.doi.org/10.1007/s13311-014-0313-y] [PMID: 25371168]
[8]
Iqbal, K.; Liu, F.; Gong, C.X.; Grundke-Iqbal, I. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res., 2010, 7(8), 656-664.
[http://dx.doi.org/10.2174/156720510793611592] [PMID: 20678074]
[9]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4913-4917.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[10]
Bareggi, S.R.; Franceschi, M.; Bonini, L.; Zecca, L.; Smirne, S. Decreased CSF concentrations of homovanillic acid and γ-aminobutyric acid in Alzheimer’s disease. Age- or disease-related modifications? Arch. Neurol., 1982, 39(11), 709-712.
[http://dx.doi.org/10.1001/archneur.1982.00510230035010] [PMID: 6181768]
[11]
Ehrenstein, G.; Galdzicki, Z.; Lange, G.D. The choline-leakage hypothesis for the loss of acetylcholine in Alzheimer’s disease. Biophys. J., 1997, 73(3), 1276-1280.
[http://dx.doi.org/10.1016/S0006-3495(97)78160-8] [PMID: 9284295]
[12]
Pan, X.; Kaminga, A.C.; Wen, S.W.; Wu, X.; Acheampong, K.; Liu, A. Dopamine and dopamine receptors in Alzheimer’s disease: a systematic review and network meta-analysis. Front. Aging Neurosci., 2019, 11, 175.
[http://dx.doi.org/10.3389/fnagi.2019.00175] [PMID: 31354471]
[13]
Cross, A.J. Serotonin in Alzheimer-type dementia and other dementing illnesses. Ann. N. Y. Acad. Sci., 1990, 600(1 The Neurophar), 405-415.
[http://dx.doi.org/10.1111/j.1749-6632.1990.tb16897.x] [PMID: 1701291]
[14]
Giacobini, E. Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem. Res., 2003, 28(3/4), 515-522.
[http://dx.doi.org/10.1023/A:1022869222652] [PMID: 12675140]
[15]
Kihara, T.; Shimohama, S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol. Exp. (Warsz.), 2004, 64(1), 99-105.
[PMID: 15190684]
[16]
McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group* under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology, 1984, 34(7), 939-944.
[http://dx.doi.org/10.1212/WNL.34.7.939] [PMID: 6610841]
[17]
Ryman, D.C.; Acosta-Baena, N.; Aisen, P.S.; Bird, T.; Danek, A.; Fox, N.C.; Goate, A.; Frommelt, P.; Ghetti, B.; Langbaum, J.B.S.; Lopera, F.; Martins, R.; Masters, C.L.; Mayeux, R.P.; McDade, E.; Moreno, S.; Reiman, E.M.; Ringman, J.M.; Salloway, S.; Schofield, P.R.; Sperling, R.; Tariot, P.N.; Xiong, C.; Morris, J.C.; Bateman, R.J. Symptom onset in autosomal dominant Alzheimer disease: A systematic review and meta-analysis. Neurology, 2014, 83(3), 253-260.
[http://dx.doi.org/10.1212/WNL.0000000000000596] [PMID: 24928124]
[18]
Alzheimer’s Association Report. Alzheimer’s disease facts and figures Alzheimer’s Association. Alzheimers Dement., 2015, 11, 332-384.
[19]
Thies, W.; Bleiler, L. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement., 2013, 9(2), 208-245.
[http://dx.doi.org/10.1016/j.jalz.2013.02.003] [PMID: 23507120]
[20]
Inestrosa, N.C.; Alvarez, A.; Pérez, C.A.; Moreno, R.D.; Vicente, M.; Linker, C.; Casanueva, O.I.; Soto, C.; Garrido, J. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron, 1996, 16(4), 881-891.
[http://dx.doi.org/10.1016/S0896-6273(00)80108-7] [PMID: 8608006]
[21]
Alvarez, A.; Opazo, C.; Alarcón, R.; Garrido, J.; Inestrosa, N.C. Acetylcholinesterase promotes the aggregation of amyloid-β-peptide fragments by forming a complex with the growing fibrils. J. Mol. Biol., 1997, 272(3), 348-361.
[http://dx.doi.org/10.1006/jmbi.1997.1245] [PMID: 9325095]
[22]
De Ferrari, G.V.; Canales, M.A.; Shin, I.; Weiner, L.M.; Silman, I.; Inestrosa, N.C. A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry, 2001, 40(35), 10447-10457.
[http://dx.doi.org/10.1021/bi0101392] [PMID: 11523986]
[23]
Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.; Ihara, Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron, 1994, 13(1), 45-53.
[http://dx.doi.org/10.1016/0896-6273(94)90458-8] [PMID: 8043280]
[24]
Lacor, P.N.; Buniel, M.C.; Furlow, P.W.; Sanz Clemente, A.; Velasco, P.T.; Wood, M.; Viola, K.L.; Klein, W.L. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J. Neurosci., 2007, 27(4), 796-807.
[http://dx.doi.org/10.1523/JNEUROSCI.3501-06.2007] [PMID: 17251419]
[25]
Trojanowski, J.Q.; Lee, V.M.Y. The Alzheimer’s brain: finding out what’s broken tells us how to fix it. Rous-Whipple Award Lecture. Am. J. Pathol., 2005, 167(5), 1183-1188.
[http://dx.doi.org/10.1016/S0002-9440(10)61206-0] [PMID: 16251403]
[26]
Friedman, L.G.; Qureshi, Y.H.; Yu, W.H. Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. Neurotherapeutics, 2015, 12(1), 94-108.
[http://dx.doi.org/10.1007/s13311-014-0320-z] [PMID: 25421002]
[27]
Benevento, C.E. Mitochondrial dysfunction induced by beta-amyloid peptides; Universidade Estadual de Campinas: Campinas, 2011.
[28]
Stancu, I.C.; Vasconcelos, B.; Terwel, D.; Dewachter, I. Models of β-amyloid induced Tau-pathology: the long and “folded” road to understand the mechanism. Mol. Neurodegener., 2014, 9(1), 51.
[http://dx.doi.org/10.1186/1750-1326-9-51] [PMID: 25407337]
[29]
Liu, J.; Yin, F.; Liu, Z.; Zhang, Y. A novel antagonistic role of natural compound icariin on neurotoxicity of amyloid β peptide. Indian J. Med. Res., 2015, 142(2), 190-195.
[http://dx.doi.org/10.4103/0971-5916.164254] [PMID: 26354216]
[30]
Samadder, A.; Dey, S.; Sow, P.; Das, R.; Nandi, S.; Das, J.; Bhattacharjee, B.; Chakrovorty, A.; Biswas, M.; Guptaroy, P. Phyto-chlorophyllin prevents food additive induced genotoxicity and mitochondrial dysfunction via cytochrome c mediated pathway in mice model. Comb. Chem. High Throughput Screen., 2021, 24(10), 1618-1627.
[http://dx.doi.org/10.2174/1386207323666201230093510] [PMID: 33380297]
[31]
Schwab, C.; McGeer, P.L. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J. Alzheimers Dis., 2008, 13(4), 359-369.
[http://dx.doi.org/10.3233/JAD-2008-13402] [PMID: 18487845]
[32]
Saxena, M.; Dubey, R. Target enzyme in Alzheimer’s disease: acetylcholinesterase inhibitors. Curr. Top. Med. Chem., 2019, 19(4), 264-275.
[http://dx.doi.org/10.2174/1568026619666190128125912] [PMID: 30706815]
[33]
Willis, B.A.; Sundell, K.; Lachno, D.R.; Ferguson-Sells, L.R.; Case, M.G.; Holdridge, K.; DeMattos, R.B.; Raskin, J.; Siemers, E.R.; Dean, R.A. Central pharmacodynamic activity of solanezumab in mild Alzheimer’s disease dementia. Alzheimers Dement. (N. Y.), 2018, 4(1), 652-660.
[http://dx.doi.org/10.1016/j.trci.2018.10.001] [PMID: 30511011]
[34]
Ostrowitzki, S.; Lasser, R.A.; Dorflinger, E.; Scheltens, P.; Barkhof, F.; Nikolcheva, T.; Ashford, E.; Retout, S.; Hofmann, C.; Delmar, P.; Klein, G.; Andjelkovic, M.; Dubois, B.; Boada, M.; Blennow, K.; Santarelli, L.; Fontoura, P. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res. Ther., 2017, 9(1), 95.
[http://dx.doi.org/10.1186/s13195-017-0318-y] [PMID: 29221491]
[35]
Budd-Haeberlein, S.; Von Hehn, C.; Tian, Y.; Chalkias, S.; Muralidharan, K.K.; Chen, T.; Wu, S.; Li, J.; Skordos, L.; Nisenbaum, L. EMERGE and ENGAGE topline results: two phase 3 studies to evaluate aducanumab in patients with early Alzheimer’s disease. 2019, 16(5a), e047259.
[36]
Lalli, G.; Schott, J.M.; Hardy, J.; De Strooper, B. Aducanumab: a new phase in therapeutic development for Alzheimer’s disease? EMBO Mol. Med., 2021, 13(8), e14781.
[http://dx.doi.org/10.15252/emmm.202114781] [PMID: 34338436]
[37]
Swanson, C.; Zhang, Y.; Dhadda, S.; Wang, J.; Kaplow, J.; Bradley, H.; Rabe, M.; Totsuka, K.; Lai, R.Y.; Gordon, R.; Kramer, L.D. The GAP study of BAN2401 study 201 in early AD. Persistence of BAN2401-mediated amyloid reductions post-treatment: a preliminary comparison of amyloid status between the core phase of BAN2401-g000-201 and baseline of the open-label extension phase in subjects with early Alzheimer’s disease. Neurology, 2020, 94(15)(Suppl.)
[38]
Rygiel, K. Novel strategies for Alzheimer’s disease treatment: An overview of anti-amyloid beta monoclonal antibodies. Indian J. Pharmacol., 2016, 48(6), 629-636.
[http://dx.doi.org/10.4103/0253-7613.194867] [PMID: 28066098]
[39]
Tolar, M.; Abushakra, S.; Hey, J.A.; Porsteinsson, A.; Sabbagh, M. Aducanumab, gantenerumab, BAN2401, and ALZ-801—the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimers Res. Ther., 2020, 12(1), 95.
[http://dx.doi.org/10.1186/s13195-020-00663-w] [PMID: 32787971]
[40]
Engelhardt, E.; Bertolucci, P.; Brito-Marques, P. Efficacy of rivastigmine in the cognitive performance of patients with mild to moderate Alzheimer’s disease: results of the Brazilian arm of an open multicentre study. Arq. Neuropsiquiatr., 2003, 61, S54-S55.
[41]
Prasher, V.P. Review of donepezil, rivastigmine, galantamine and memantine for the treatment of dementia in Alzheimer’s disease in adults with Down syndrome: implications for the intellectual disability population. Int. J. Geriatr. Psychiatry, 2004, 19(6), 509-515.
[http://dx.doi.org/10.1002/gps.1077] [PMID: 15211527]
[42]
Hyde, C.; Peters, J.; Bond, M.; Rogers, G.; Hoyle, M.; Anderson, R.; Jeffreys, M.; Davis, S.; Thokala, P.; Moxham, T. Evolution of the evidence on the effectiveness and cost-effectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer’s disease: systematic review and economic model. Age Ageing, 2013, 42(1), 14-20.
[http://dx.doi.org/10.1093/ageing/afs165] [PMID: 23179169]
[43]
Danysz, W.; Parsons, C.G. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: preclinical evidence. Int. J. Geriatr. Psychiatry, 2003, 18(S1)(Suppl. 1), S23-S32.
[http://dx.doi.org/10.1002/gps.938] [PMID: 12973747]
[44]
Kulkarni, S.K.; Dhir, A. Withania somnifera: An Indian ginseng. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(5), 1093-1105.
[http://dx.doi.org/10.1016/j.pnpbp.2007.09.011] [PMID: 17959291]
[45]
Bhattacharya, S.K.; Satyan, K.S.; Ghosal, S. Antioxidant activity of glycowithanolides from Withania somnifera. Indian J. Exp. Biol., 1997, 35(3), 236-239.
[PMID: 9332168]
[46]
Tohda, C.; Kuboyama, T.; Komatsu, K. Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells. Neuroreport, 2000, 11(9), 1981-1985.
[http://dx.doi.org/10.1097/00001756-200006260-00035] [PMID: 10884056]
[47]
Keith, D.; El-Husseini, A. Excitation control: balancing PSD-95 function at the synapse. Front. Mol. Neurosci., 2008, 1, 4.
[http://dx.doi.org/10.3389/neuro.02.004.2008] [PMID: 18946537]
[48]
Choudhary, M.I.; Nawaz, S.A. Zaheer-ul-Haq; Lodhi, M.A.; Ghayur, M.N.; Jalil, S.; Riaz, N.; Yousuf, S.; Malik, A.; Gilani, A.H.; Atta-ur-Rahman. Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem. Biophys. Res. Commun., 2005, 334(1), 276-287.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.086] [PMID: 16108094]
[49]
Grover, A.; Shandilya, A.; Agrawal, V.; Bisaria, V.S.; Sundar, D. Computational evidence to inhibition of human acetyl cholinesterase by withanolide a for Alzheimer treatment. J. Biomol. Struct. Dyn., 2012, 29(4), 651-662.
[http://dx.doi.org/10.1080/07391102.2012.10507408] [PMID: 22208270]
[50]
Soreq, H.; Seidman, S. Acetylcholinesterase — new roles for an old actor. Nat. Rev. Neurosci., 2001, 2(4), 294-302.
[http://dx.doi.org/10.1038/35067589] [PMID: 11283752]
[51]
Watanabe, T.; Yamagata, N.; Takasaki, K.; Sano, K.; Hayakawa, K.; Katsurabayashi, S.; Egashira, N.; Mishima, K.; Iwasaki, K.; Fujiwara, M. Decreased acetylcholine release is correlated to memory impairment in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res., 2009, 1249, 222-228.
[http://dx.doi.org/10.1016/j.brainres.2008.10.029] [PMID: 18996097]
[52]
Fahnestock, M.; Michalski, B.; Xu, B.; Coughlin, M.D. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol. Cell. Neurosci., 2001, 18(2), 210-220.
[http://dx.doi.org/10.1006/mcne.2001.1016] [PMID: 11520181]
[53]
Hefti, F.; Weiner, W.J. Nerve growth factor and Alzheimer’s disease. Ann. Neurol., 1986, 20(3), 275-281.
[http://dx.doi.org/10.1002/ana.410200302] [PMID: 3532929]
[54]
Kuboyama, T.; Tohda, C.; Zhao, J.; Nakamura, N.; Hattori, M.; Komatsu, K. Axon- or dendrite-predominant outgrowth induced by constituents from Ashwagandha. Neuroreport, 2002, 13(14), 1715-1720.
[http://dx.doi.org/10.1097/00001756-200210070-00005] [PMID: 12395110]
[55]
Kuboyama, T.; Tohda, C.; Komatsu, K. Withanoside IV and its active metabolite, sominone, attenuate Aβ(25-35)-induced neurodegeneration. Eur. J. Neurosci., 2006, 23(6), 1417-1426.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04664.x] [PMID: 16553605]
[56]
Tohda, C.; Joyashiki, E. Sominone enhances neurite outgrowth and spatial memory mediated by the neurotrophic factor receptor, RET. Br. J. Pharmacol., 2009, 157(8), 1427-1440.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00313.x] [PMID: 19594760]
[57]
Zhao, J.; Nakamura, N.; Hattori, M.; Kuboyama, T.; Tohda, C.; Komatsu, K. Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem. Pharm. Bull. (Tokyo), 2002, 50(6), 760-765.
[http://dx.doi.org/10.1248/cpb.50.760] [PMID: 12045329]
[58]
Gautam, A.; Wadhwa, R.; Thakur, M.K. Involvement of hippocampal Arc in amnesia and its recovery by alcoholic extract of Ashwagandha leaves. Neurobiol. Learn. Mem., 2013, 106, 177-184.
[http://dx.doi.org/10.1016/j.nlm.2013.08.009] [PMID: 24012642]
[59]
Guzowski, J.F.; Lyford, G.L.; Stevenson, G.D.; Houston, F.P.; McGaugh, J.L.; Worley, P.F.; Barnes, C.A. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci., 2000, 20(11), 3993-4001.
[http://dx.doi.org/10.1523/JNEUROSCI.20-11-03993.2000] [PMID: 10818134]
[60]
Rudinskiy, N.; Hawkes, J.M.; Betensky, R.A.; Eguchi, M.; Yamaguchi, S.; Spires-Jones, T.L.; Hyman, B.T. Orchestrated experience-driven Arc responses are disrupted in a mouse model of Alzheimer’s disease. Nat. Neurosci., 2012, 15(10), 1422-1429.
[http://dx.doi.org/10.1038/nn.3199] [PMID: 22922786]
[61]
Sehgal, N.; Gupta, A.; Valli, R.K.; Joshi, S.D.; Mills, J.T.; Hamel, E.; Khanna, P.; Jain, S.C.; Thakur, S.S.; Ravindranath, V. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl. Acad. Sci. USA, 2012, 109(9), 3510-3515.
[http://dx.doi.org/10.1073/pnas.1112209109] [PMID: 22308347]
[62]
Tanzi, R.E.; Moir, R.D.; Wagner, S.L. Clearance of Alzheimer’s abeta peptide: The many roads to perdition. Neuron, 2004, 43(5), 605-608.
[PMID: 15339642]
[63]
Tamaki, C.; Ohtsuki, S.; Iwatsubo, T.; Hashimoto, T.; Yamada, K.; Yabuki, C.; Terasaki, T. Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid β-peptide by the liver. Pharm. Res., 2006, 23(7), 1407-1416.
[http://dx.doi.org/10.1007/s11095-006-0208-7] [PMID: 16779710]
[64]
Li, Y.; Sun, H.; Chen, Z.; Xu, H.; Bu, G.; Zheng, H. Implications of GABAergic neurotransmission in Alzheimer’s disease. Front. Aging Neurosci., 2016, 8, 31.
[http://dx.doi.org/10.3389/fnagi.2016.00031] [PMID: 26941642]
[65]
Candelario, M.; Cuellar, E.; Reyes-Ruiz, J.M.; Darabedian, N.; Feimeng, Z.; Miledi, R.; Russo-Neustadt, A.; Limon, A. Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABAA and GABAρ receptors. J. Ethnopharmacol., 2015, 171, 264-272.
[http://dx.doi.org/10.1016/j.jep.2015.05.058] [PMID: 26068424]
[66]
Patil, S.P.; Maki, S.; Khedkar, S.A.; Rigby, A.C.; Chan, C. Withanolide A and asiatic acid modulate multiple targets associated with amyloid-beta precursor protein processing and amyloid-beta protein clearance. J. Nat. Prod., 2010, 73(7), 1196-1202.
[http://dx.doi.org/10.1021/np900633j] [PMID: 20553006]
[67]
Kumar, G.; Paliwal, P.; Patnaik, R. Withania somnifera phytochemicals confer neuroprotection by inhibition of the catalytic domain of human matrix metalloproteinase-9. Lett. Drug Des. Discov., 2017, 14(6), 718-726.
[http://dx.doi.org/10.2174/1570180814666161121111811]
[68]
Lorenzl, S.; Albers, D.S.; Relkin, N.; Ngyuen, T.; Hilgenberg, S.L.; Chirichigno, J.; Cudkowicz, M.E.; Beal, M.F. Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochem. Int., 2003, 43(3), 191-196.
[http://dx.doi.org/10.1016/S0197-0186(03)00004-4] [PMID: 12689599]
[69]
Leake, A.; Morris, C.M.; Whateley, J. Brain matrix metalloproteinase 1 levels are elevated in Alzheimer’s disease. Neurosci. Lett., 2000, 291(3), 201-203.
[http://dx.doi.org/10.1016/S0304-3940(00)01418-X] [PMID: 10984641]
[70]
Yoshiyama, Y.; Asahina, M.; Hattori, T. Selective distribution of matrix metalloproteinase-3 (MMP-3) in Alzheimer’s disease brain. Acta Neuropathol., 2000, 99(2), 91-95.
[http://dx.doi.org/10.1007/PL00007428] [PMID: 10672313]
[71]
Jayaprakasam, B.; Padmanabhan, K.; Nair, M.G. Withanamides in Withania somnifera fruit protect PC-12 cells from β-amyloid responsible for Alzheimer’s disease. Phytother. Res., 2010, 24(6), 859-863.
[http://dx.doi.org/10.1002/ptr.3033] [PMID: 19957250]
[72]
Ng, Q.X.; Loke, W.; Foo, N.X.; Tan, W.J.; Chan, H.W.; Lim, D.Y.; Yeo, W.S. A systematic review of the clinical use of Withania somnifera (Ashwagandha) to ameliorate cognitive dysfunction. Phytother. Res., 2020, 34(3), 583-590.
[http://dx.doi.org/10.1002/ptr.6552] [PMID: 31742775]
[73]
Sasikumar, B. Genetic resources of Curcuma: diversity, characterization and utilization. Plant Genet. Resour., 2005, 3(2), 230-251.
[http://dx.doi.org/10.1079/PGR200574]
[74]
Hamaguchi, T.; Ono, K.; Yamada, M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci. Ther., 2010, 16(5), 285-297.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00147.x] [PMID: 20406252]
[75]
Dutta, B. Study of secondary metabolite constituents and curcumin contents of six different species of genus Curcuma. J. Med. Plants Res., 2015, 3(5), 116-119.
[76]
Roy, S.; Raychaudhuri, S.S. In vitro regeneration and estimation of curcumin content in four species of Curcuma. Plant Biotechnol. (Tsukuba), 2004, 21(4), 299-302.
[http://dx.doi.org/10.5511/plantbiotechnology.21.299]
[77]
Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s? -amyloid fibrils in vitro. J. Neurosci. Res., 2004, 75(6), 742-750.
[http://dx.doi.org/10.1002/jnr.20025] [PMID: 14994335]
[78]
Lin, R.; Chen, X.; Li, W.; Han, Y.; Liu, P.; Pi, R. Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: Blockage by curcumin. Neurosci. Lett., 2008, 440(3), 344-347.
[http://dx.doi.org/10.1016/j.neulet.2008.05.070] [PMID: 18583042]
[79]
Giri, R.K.; Rajagopal, V.; Kalra, V.K. Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. J. Neurochem., 2004, 91(5), 1199-1210.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02800.x] [PMID: 15569263]
[80]
Yang, C.; Su, X.; Liu, A.; Zhang, L.; Yu, A.; Xi, Y.; Zhai, G. Advances in clinical study of curcumin. Curr. Pharm. Des., 2013, 19(11), 1966-1973.
[PMID: 23116307]
[81]
Cashman, J.R.; Ghirmai, S.; Abel, K.J.; Fiala, M. Immune defects in Alzheimer’s disease: new medications development. BMC Neurosci., 2008, 9(S2)(Suppl. 2), S13.
[http://dx.doi.org/10.1186/1471-2202-9-S2-S13] [PMID: 19090986]
[82]
Fiala, M.; Liu, P.T.; Espinosa-Jeffrey, A.; Rosenthal, M.J.; Bernard, G.; Ringman, J.M.; Sayre, J.; Zhang, L.; Zaghi, J.; Dejbakhsh, S.; Chiang, B.; Hui, J.; Mahanian, M.; Baghaee, A.; Hong, P.; Cashman, J. Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer’s disease patients are improved by bisdemethoxycurcumin. Proc. Natl. Acad. Sci. USA, 2007, 104(31), 12849-12854.
[http://dx.doi.org/10.1073/pnas.0701267104] [PMID: 17652175]
[83]
Huber, K.; Superti-Furga, G. After the grape rush: Sirtuins as epigenetic drug targets in neurodegenerative disorders. Bioorg. Med. Chem., 2011, 19(12), 3616-3624.
[http://dx.doi.org/10.1016/j.bmc.2011.01.018] [PMID: 21306906]
[84]
Zhang, C.; Ji, J.; Ji, M.; Fan, P. Acetylcholinesterase inhibitors and compounds promoting SIRT1 expression from Curcuma xanthorrhiza. Phytochem. Lett., 2015, 12, 215-219.
[http://dx.doi.org/10.1016/j.phytol.2015.04.007]
[85]
Czernicka, L.; Ludwiczuk, A.; Rój, E.; Marzec, Z.; Jarzab, A.; Kukula-Koch, W. Acetylcholinesterase inhibitors among Zingiber officinale terpenes—extraction conditions and thin layer chromatography-based bioautography studies. Molecules, 2020, 25(7), 1643.
[http://dx.doi.org/10.3390/molecules25071643] [PMID: 32260053]
[86]
Lee, T.K.; Trinh, T.A.; Lee, S.R.; Kim, S.; So, H.M.; Moon, E.; Hwang, G.S.; Kang, K.S.; Kim, J.H.; Yamabe, N.; Kim, K.H. Bioactivity-based analysis and chemical characterization of anti-inflammatory compounds from Curcuma zedoaria rhizomes using LPS-stimulated RAW264.7 cells. Bioorg. Chem., 2019, 82, 26-32.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.027] [PMID: 30267971]
[87]
Mishra, S.; Palanivelu, K. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview. Ann. Indian Acad. Neurol., 2008, 11(1), 13-19.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[88]
Butterfield, D.A.; Castegna, A.; Pocernich, C.B.; Drake, J.; Scapagnini, G.; Calabrese, V. Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J. Nutr. Biochem., 2002, 13(8), 444-461.
[http://dx.doi.org/10.1016/S0955-2863(02)00205-X] [PMID: 12165357]
[89]
Farkhondeh, T.; Samarghandian, S.; Pourbagher-Shahri, A.M.; Sedaghat, M. The impact of curcumin and its modified formulations on Alzheimer’s disease. J. Cell. Physiol., 2019, 234(10), 16953-16965.
[http://dx.doi.org/10.1002/jcp.28411] [PMID: 30847942]
[90]
Hamdi, O.A.A.; Ye, L.J.; Kamarudin, M.N.A.; Hazni, H.; Paydar, M.; Looi, C.Y.; Awang, K. Neuroprotective and Antioxidant Constituents from Curcuma zedoaria Rhizomes. Rec. Nat. Prod., 2015, 9(3), 349-355.
[91]
Alonso-Amelot, M.E. Multitargeted bioactive materials of plants in the Curcuma genus and related compounds: recent advances. Studies Nat. Prod. Chem., 2016, 47, 111-200.
[http://dx.doi.org/10.1016/B978-0-444-63603-4.00004-8]
[92]
Schramm, A.; Ebrahimi, S.N.; Raith, M.; Zaugg, J.; Rueda, D.C.; Hering, S.; Hamburger, M. Phytochemical profiling of Curcuma kwangsiensis rhizome extract, and identification of labdane diterpenoids as positive GABAA receptor modulators. Phytochemistry, 2013, 96, 318-329.
[http://dx.doi.org/10.1016/j.phytochem.2013.08.004] [PMID: 24011802]
[93]
Nurrulhidayah, A.F.; Rafi, M.; Lukitaningsih, E.; Widodo, H.; Rohman, A.; Windarsih, A. Review on in vitro antioxidant activities of Curcuma species commonly used as herbal components in Indonesia. Food Res., 2020, 4(2), 286-293.
[94]
Kramer, K.U.; Green, P.S.; Kubitzki, K. The families and genera of vascular plants. V. 1: Pteridophytes and gymnosperms; Wiley: New Jersey, 1990.
[95]
Luo, Y.; Smith, J.V. Studies on molecular mechanisms of Ginkgo biloba extract. Appl. Microbiol. Biotechnol., 2004, 64(4), 465-472.
[http://dx.doi.org/10.1007/s00253-003-1527-9] [PMID: 14740187]
[96]
Diamond, B.J.; Shiflett, S.C.; Feiwel, N.; Matheis, R.J.; Noskin, O.; Richards, J.A.; Schoenberger, N.E. Ginkgo biloba extract: Mechanisms and clinical indications. Arch. Phys. Med. Rehabil., 2000, 81(5), 668-678.
[http://dx.doi.org/10.1016/S0003-9993(00)90052-2] [PMID: 10807109]
[97]
Maclennan, K.; Darlington, C.L.; Smith, P.F. The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog. Neurobiol., 2002, 67(3), 235-257.
[http://dx.doi.org/10.1016/S0301-0082(02)00015-1] [PMID: 12169298]
[98]
Singh, B.; Kaur, P. Gopichand; Singh, R.D.; Ahuja, P.S. Biology and chemistry of Ginkgo biloba. Fitoterapia, 2008, 79(6), 401-418.
[http://dx.doi.org/10.1016/j.fitote.2008.05.007] [PMID: 18639617]
[99]
Stafford, H.A.; Kreitlow, K.S.; Lester, H.H. Comparison of proanthocyanidins and related compounds in leaves and leaf-derived cell cultures of Ginkgo biloba L., Pseudotsuga menziesii Franco, and Ribes sanguineum Pursh. Plant Physiol., 1986, 82(4), 1132-1138.
[http://dx.doi.org/10.1104/pp.82.4.1132] [PMID: 16665147]
[100]
Kulić Ž.; Germer, S.; Ritter, T.; Röck, B.; Elsäßer, J.; Schneider, H. A Detailed View on the Proanthocyanidins in Ginkgo Extract EGb 761. Planta Med., 2022, 88(5), 398-404.
[http://dx.doi.org/10.1055/a-1379-4553] [PMID: 33862645]
[101]
Nishida, S.; Satoh, H. Comparative vasodilating actions among terpenoids and flavonoids contained in Ginkgo biloba extract. Clin. Chim. Acta, 2004, 339(1-2), 129-133.
[http://dx.doi.org/10.1016/j.cccn.2003.10.004] [PMID: 14687903]
[102]
Samadder, A.; Abraham, S.K.; Khuda-Bukhsh, A.R. Nanopharmaceutical approach using pelargonidin towards enhancement of efficacy for prevention of alloxan-induced DNA damage in L6 cells via activation of PARP and p53. Environ. Toxicol. Pharmacol., 2016, 43, 27-37.
[http://dx.doi.org/10.1016/j.etap.2016.02.010] [PMID: 26943895]
[103]
Samadder, A.; Tarafdar, D.; Abraham, S.; Ghosh, K.; Khuda-Bukhsh, A. Nano-pelargonidin protects hyperglycemic-induced L6 cells against mitochondrial dysfunction. Planta Med., 2017, 83(5), 468-475.
[http://dx.doi.org/10.1055/s-0043-100017] [PMID: 28073120]
[104]
Le Bars, P.L.; Katz, M.M.; Berman, N.; Itil, T.M.; Freedman, A.M.; Schatzberg, A.F. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. JAMA, 1997, 278(16), 1327-1332.
[http://dx.doi.org/10.1001/jama.1997.03550160047037] [PMID: 9343463]
[105]
Le Bars, P.L.; Kieser, M.; Itil, K.Z. A 26-week analysis of a double-blind, placebo-controlled trial of the ginkgo biloba extract EGb 761 in dementia. Dement. Geriatr. Cogn. Disord., 2000, 11(4), 230-237.
[http://dx.doi.org/10.1159/000017242] [PMID: 10867450]
[106]
Kanowski, S.; Herrmann, W.; Stephan, K.; Wierich, W.; Hörr, R. Proof of efficacy of the Ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the Alzheimer type or multi-infarct dementia. Pharmacopsychiatry, 1996, 29(2), 47-56.
[http://dx.doi.org/10.1055/s-2007-979544] [PMID: 8741021]
[107]
Huguet, F.; Drieu, K.; Piriou, A. Decreased cerebral 5-HT1A receptors during ageing: reversal by Ginkgo biloba extract (EGb 761). J. Pharm. Pharmacol., 2011, 46(4), 316-318.
[http://dx.doi.org/10.1111/j.2042-7158.1994.tb03802.x] [PMID: 8051617]
[108]
Das, S.; Das, J.; Paul, A.; Samadder, A.; Khuda-Bukhsh, A.R. Apigenin, a bioactive flavonoid from Lycopodium clavatum, stimulates nucleotide excision repair genes to protect skin keratinocytes from ultraviolet B-induced reactive oxygen species and DNA damage. J. Acupunct. Meridian Stud., 2013, 6(5), 252-262.
[http://dx.doi.org/10.1016/j.jams.2013.07.002] [PMID: 24139463]
[109]
Chandrasekaran, K.; Mehrabian, Z.; Spinnewyn, B.; Chinopoulos, C.; Drieu, K.; Fiskum, G. Bilobalide, a component of the Ginkgo biloba extract (EGb 761), protects against neuronal death in global brain ischemia and in glutamate-induced excitotoxicity. Cell. Mol. Biol., 2002, 48(6), 663-669.
[PMID: 12396077]
[110]
Packer, L.; Christen, Y. Ginkgo biloba extract (EGb 761): Lessons from Cell Biology; Elsevier: New York, 1998, p. 7.
[111]
Tendi, E.A.; Bosetti, F.; DasGupta, S.F.; Giuffrida Stella, A.M.; Drieu, K.; Rapoport, S.I. Ginkgo biloba extracts EGb 761 and bilobalide increase NADH dehydrogenase mRNA level and mitochondrial respiratory control ratio in PC12 cells. Neurochem. Res., 2002, 27(4), 319-323.
[http://dx.doi.org/10.1023/A:1014963313559] [PMID: 11958534]
[112]
DeFeudis, F.; Drieu, K. Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr. Drug Targets, 2000, 1(1), 25-58.
[http://dx.doi.org/10.2174/1389450003349380] [PMID: 11475535]
[113]
Defeudis, F. Bilobalide and neuroprotection. Pharmacol. Res., 2002, 46(6), 565-568.
[http://dx.doi.org/10.1016/S1043-6618(02)00233-5] [PMID: 12457632]
[114]
Schaeffer, E.L.; Gattaz, W.F. Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme. Psychopharmacology (Berl.), 2008, 198(1), 1-27.
[http://dx.doi.org/10.1007/s00213-008-1092-0] [PMID: 18392810]
[115]
Weichel, O.; Hilgert, M.; Chatterjee, S.S.; Lehr, M.; Klein, J. Bilobalide, a constituent of Ginkgo biloba, inhibits NMDA-induced phospholipase A 2 activation and phospholipid breakdown in rat hippocampus. Naunyn Schmiedebergs Arch. Pharmacol., 1999, 360(6), 609-615.
[http://dx.doi.org/10.1007/s002109900131] [PMID: 10619176]
[116]
Kim, H.S.; Sul, D.; Lim, J.Y.; Lee, D.; Joo, S.S.; Hwang, K.W.; Park, S.Y. Delphinidin ameliorates beta-amyloid-induced neurotoxicity by inhibiting calcium influx and tau hyperphosphorylation. Biosci. Biotechnol. Biochem., 2009, 73(7), 1685-1689.
[http://dx.doi.org/10.1271/bbb.90032] [PMID: 19584523]
[117]
Khojah, H.; Edrada-Ebel, R. Identification of bioactive metabolites from Ficus carica and their neuroprotective effects of Alzheimer’s disease. Int. J. Med. Health Sci., 2017, 11, 2277-4505.
[118]
Ahmad, S.; Bhatti, F.R.; Khaliq, F.H.; Younas, T.; Madni, A.; Latif, A. In vitro enzymatic investigation of Ficus carica (Fruit). Pak. J. Pharm. Sci., 2016, 29(5), 1541-1544.
[PMID: 27731810]
[119]
Bandaruk, Y.; Mukai, R.; Kawamura, T.; Nemoto, H.; Terao, J. Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria. J. Agric. Food Chem., 2012, 60(41), 10270-10277.
[http://dx.doi.org/10.1021/jf303055b] [PMID: 23009399]
[120]
Davis, A.P.; Govaerts, R.; Bridson, D.M.; Stoffelen, P. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot. J. Linn. Soc., 2006, 152(4), 465-512.
[http://dx.doi.org/10.1111/j.1095-8339.2006.00584.x]
[121]
do Carmo Carvalho, D.; Brigagão, M.R.P.L.; dos Santos, M.H.; de Paula, F.B.A.; Giusti-Paiva, A.; Azevedo, L. Organic and conventional Coffea arabica L.: a comparative study of the chemical composition and physiological, biochemical and toxicological effects in Wistar rats. Plant Foods Hum. Nutr., 2011, 66(2), 114-121.
[http://dx.doi.org/10.1007/s11130-011-0221-9] [PMID: 21523414]
[122]
Mejia, E.G.; Ramirez-Mares, M.V. Impact of caffeine and coffee on our health. Trends Endocrinol. Metab., 2014, 25(10), 489-492.
[http://dx.doi.org/10.1016/j.tem.2014.07.003] [PMID: 25124982]
[123]
Patay, É.B.; Bencsik, T.; Papp, N. Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pac. J. Trop. Med., 2016, 9(12), 1127-1135.
[http://dx.doi.org/10.1016/j.apjtm.2016.11.008] [PMID: 27955739]
[124]
Farah, A.; Donangelo, C.M. Phenolic compounds in coffee. Braz. J. Plant Physiol., 2006, 18(1), 23-36.
[http://dx.doi.org/10.1590/S1677-04202006000100003]
[125]
Camilleri, P. Haskins, N.J.; Hewlett, D.R. β-Cyclodextrin interacts with the Alzheimer amyloid β-A4 peptide. FEBS Lett., 1994, 341(2-3), 256-258.
[http://dx.doi.org/10.1016/0014-5793(94)80467-2] [PMID: 7907994]
[126]
Hossain, S.J.; Aoshima, H.; Koda, H.; Kiso, Y. Effects of coffee components on the response of GABA(A) receptors expressed in Xenopus oocytes. J. Agric. Food Chem., 2003, 51(26), 7568-7575.
[http://dx.doi.org/10.1021/jf0303971] [PMID: 14664509]
[127]
Franco, R.; Oñatibia-Astibia, A.; Martínez-Pinilla, E. Health benefits of methylxanthines in cacao and chocolate. Nutrients, 2013, 5(10), 4159-4173.
[http://dx.doi.org/10.3390/nu5104159] [PMID: 24145871]
[128]
Francis, S.H.; Sekhar, K.R.; Ke, H.; Corbin, J.D. Inhibition of cyclic nucleotide phosphodiesterases by methylxanthines and related compounds. In: Handbook of Experimental Pharmacology: Methylxanthines; , 2011; 200, p. 93-133.
[http://dx.doi.org/10.1007/978-3-642-13443-2_4]
[129]
Aronsen, L.; Orvoll, E.; Lysaa, R.; Ravna, A.W.; Sager, G. Modulation of high affinity ATP-dependent cyclic nucleotide transporters by specific and non-specific cyclic nucleotide phosphodiesterase inhibitors. Eur. J. Pharmacol., 2014, 745, 249-253.
[http://dx.doi.org/10.1016/j.ejphar.2014.10.051] [PMID: 25445042]
[130]
Choi, O.H.; Shamim, M.T.; Padgett, W.L.; Daly, J.W. Caffeine and theophylline analogues: Correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci., 1988, 43(5), 387-398.
[http://dx.doi.org/10.1016/0024-3205(88)90517-6] [PMID: 2456442]
[131]
Heckman, P.R.A.; Wouters, C.; Prickaerts, J. Phosphodiesterase inhibitors as a target for cognition enhancement in aging and Alzheimer’s disease: a translational overview. Curr. Pharm. Des., 2014, 21(3), 317-331.
[http://dx.doi.org/10.2174/1381612820666140826114601] [PMID: 25159073]
[132]
Madeswaran, A.; Umamaheswari, M.; Asokkumar, K.; Sivashanmugam, T.; Subhadradevi, V.; Jagannath, P. In silico docking studies of phosphodiesterase inhibitory activity of commercially available flavonoids. Orient. Pharm. Exp. Med., 2012, 12(4), 301-306.
[http://dx.doi.org/10.1007/s13596-012-0071-5]
[133]
Love, S.; Barber, R.; Wilcock, G.K. Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer’s disease. Brain, 1999, 122(2), 247-253.
[http://dx.doi.org/10.1093/brain/122.2.247] [PMID: 10071053]
[134]
Pacher, P.; Szabo, C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am. J. Pathol., 2008, 173(1), 2-13.
[http://dx.doi.org/10.2353/ajpath.2008.080019] [PMID: 18535182]
[135]
Banasik, M.; Stedeford, T.; Strosznajder, R.P. Natural inhibitors of poly(ADP-ribose) polymerase-1. Mol. Neurobiol., 2012, 46(1), 55-63.
[http://dx.doi.org/10.1007/s12035-012-8257-x] [PMID: 22476980]
[136]
Rankin, P.W.; Jacobson, E.L.; Benjamin, R.C.; Moss, J.; Jacobson, M.K. Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo. J. Biol. Chem., 1989, 264(8), 4312-4317.
[http://dx.doi.org/10.1016/S0021-9258(18)83741-3] [PMID: 2538435]
[137]
Uneyama, H.; Harata, N.; Akaike, N. Caffeine and related compounds block inhibitory amino acid-gated Cl− currents in freshly dissociated rat hippocampal neurones. Br. J. Pharmacol., 1993, 109(2), 459-465.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13591.x] [PMID: 7689394]
[138]
Hattori, N. Kitagawa, K.; Higashida, T.; Yagyu, K.; Shimohama, S.; Wataya, T.; Perry, G.; Smith, M.A.; Inagaki, C. Cl−-ATPase and Na+/K+-ATPase activities in Alzheimer’s disease brains. Neurosci. Lett., 1998, 254(3), 141-144.
[http://dx.doi.org/10.1016/S0304-3940(98)00654-5] [PMID: 10214977]
[139]
Rogus, E.M. Cheng, L.C.; Zierler, K. β-adrenergic effect on Na+-K+ transport in rat skeletal muscle. Biochim. Biophys. Acta Biomembr., 1977, 464(2), 347-355.
[http://dx.doi.org/10.1016/0005-2736(77)90009-8] [PMID: 188472]
[140]
Bianchi, C.P. The effect of caffeine on radiocalcium movement in frog sartorius. J. Gen. Physiol., 1961, 44(5), 845-858.
[http://dx.doi.org/10.1085/jgp.44.5.845] [PMID: 19873537]
[141]
Daly, J.W. Caffeine analogs: biomedical impact. Cell. Mol. Life Sci., 2007, 64(16), 2153-2169.
[http://dx.doi.org/10.1007/s00018-007-7051-9] [PMID: 17514358]
[142]
Delbono, O.; Kotsias, B.A. Hyperpolarizing effect of aminophylline, theophylline, and cAMP on rat diaphragm fibers. J. Appl. Physiol., 1988, 64(5), 1893-1899.
[http://dx.doi.org/10.1152/jappl.1988.64.5.1893] [PMID: 2839450]
[143]
Ali, Y.O.; Bradley, G.; Lu, H.C. Erratum: Corrigendum: Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons. Sci. Rep., 2017, 7(1), 46780.
[http://dx.doi.org/10.1038/srep46780] [PMID: 28127051]
[144]
Han, J.; Miyamae, Y.; Shigemori, H.; Isoda, H. Neuroprotective effect of 3,5-di-O-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1. Neuroscience, 2010, 169(3), 1039-1045.
[http://dx.doi.org/10.1016/j.neuroscience.2010.05.049] [PMID: 20570715]
[145]
Perluigi, M.; Joshi, G.; Sultana, R.; Calabrese, V.; De Marco, C.; Coccia, R.; Cini, C.; Butterfield, D.A. In vivo protective effects of ferulic acid ethyl ester against amyloid-beta peptide 1-42-induced oxidative stress. J. Neurosci. Res., 2006, 84(2), 418-426.
[http://dx.doi.org/10.1002/jnr.20879] [PMID: 16634068]
[146]
Zhang, X.; He, X.; Chen, Q.; Lu, J.; Rapposelli, S.; Pi, R. A review on the hybrids of hydroxycinnamic acid as multi-target-directed ligands against Alzheimer’s disease. Bioorg. Med. Chem., 2018, 26(3), 543-550.
[http://dx.doi.org/10.1016/j.bmc.2017.12.042] [PMID: 29310862]
[147]
Lee, K.J.; Jeong, H.G. Protective effects of kahweol and cafestol against hydrogen peroxide-induced oxidative stress and DNA damage. Toxicol. Lett., 2007, 173(2), 80-87.
[http://dx.doi.org/10.1016/j.toxlet.2007.06.008] [PMID: 17689207]
[148]
Hwang, Y.P.; Jeong, H.G. The coffee diterpene kahweol induces heme oxygenase-1 via the PI3K and p38/Nrf2 pathway to protect human dopaminergic neurons from 6-hydroxydopamine-derived oxidative stress. FEBS Lett., 2008, 582(17), 2655-2662.
[http://dx.doi.org/10.1016/j.febslet.2008.06.045] [PMID: 18593583]
[149]
Trinh, K.; Andrews, L.; Krause, J.; Hanak, T.; Lee, D.; Gelb, M.; Pallanck, L. Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson’s disease through an NRF2-dependent mechanism. J. Neurosci., 2010, 30(16), 5525-5532.
[http://dx.doi.org/10.1523/JNEUROSCI.4777-09.2010] [PMID: 20410106]
[150]
Vatassery, G.T. Vitamin E and other endogenous antioxidants in the central nervous system. Geriatrics, 1998, 53(Suppl. 1), S25-S27.
[PMID: 9745632]
[151]
Cooney, R.V.; Franke, A.A.; Harwood, P.J.; Hatch-Pigott, V.; Custer, L.J.; Mordan, L.J. Gamma-tocopherol detoxification of nitrogen dioxide: superiority to alpha-tocopherol. Proc. Natl. Acad. Sci. USA, 1993, 90(5), 1771-1775.
[http://dx.doi.org/10.1073/pnas.90.5.1771] [PMID: 8446589]
[152]
Morris, M.C.; Schneider, J.A.; Li, H.; Tangney, C.C.; Nag, S.; Bennett, D.A.; Honer, W.G.; Barnes, L.L. Brain tocopherols related to Alzheimer’s disease neuropathology in humans. Alzheimers Dement., 2015, 11(1), 32-39.
[http://dx.doi.org/10.1016/j.jalz.2013.12.015] [PMID: 24589434]
[153]
Berman, K.; Brodaty, H. Tocopherol (vitamin E) in Alzheimer’s disease and other neurodegenerative disorders. CNS Drugs, 2004, 18(12), 807-825.
[http://dx.doi.org/10.2165/00023210-200418120-00005] [PMID: 15377170]
[154]
Browne, D.; McGuinness, B.; Woodside, J.V.; McKay, G.J. Vitamin E and Alzheimer’s disease: what do we know so far? Clin. Interv. Aging, 2019, 14, 1303-1317.
[http://dx.doi.org/10.2147/CIA.S186760] [PMID: 31409980]
[155]
Vijayan, K.; Zhang, W.J.; Tsou, C.H. Molecular taxonomy of Camellia (Theaceae) inferred from nrITS sequences. Am. J. Bot., 2009, 96(7), 1348-1360.
[http://dx.doi.org/10.3732/ajb.0800205] [PMID: 21628283]
[156]
Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci., 2007, 81(7), 519-533.
[http://dx.doi.org/10.1016/j.lfs.2007.06.011] [PMID: 17655876]
[157]
Fernando, W.M.A.D.B.; Somaratne, G.; Goozee, K.G.; Williams, S.; Singh, H.; Martins, R.N. Diabetes and Alzheimer’s disease: can tea phytochemicals play a role in prevention? J. Alzheimers Dis., 2017, 59(2), 481-501.
[http://dx.doi.org/10.3233/JAD-161200] [PMID: 28582855]
[158]
Graham, H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med., 1992, 21(3), 334-350.
[http://dx.doi.org/10.1016/0091-7435(92)90041-F] [PMID: 1614995]
[159]
Stagg, G.V.; Swaine, D. The identification of theogallin as 3-galloylquinic acid. Phytochemistry, 1971, 10(7), 1671-1673.
[http://dx.doi.org/10.1016/0031-9422(71)85047-1]
[160]
Ho, C.T.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness, 2015, 4(1), 9-27.
[http://dx.doi.org/10.1016/j.fshw.2015.04.001]
[161]
Rho, T.; Choi, M.S.; Jung, M.; Kil, H.W.; Hong, Y.D.; Yoon, K.D. Identification of fermented tea (Camellia sinensis) polyphenols and their inhibitory activities against amyloid-beta aggregation. Phytochemistry, 2019, 160, 11-18.
[http://dx.doi.org/10.1016/j.phytochem.2018.12.013] [PMID: 30660780]
[162]
McDowell, I.; Taylor, S.; Gay, C. The phenolic pigment composition of black tea liquors—part I: Predicting quality. J. Sci. Food Agric., 1995, 69(4), 467-474.
[http://dx.doi.org/10.1002/jsfa.2740690411]
[163]
Kim, Y.; Goodner, K.L.; Park, J.D.; Choi, J.; Talcott, S.T. Changes in antioxidant phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. Food Chem., 2011, 129(4), 1331-1342.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.012]
[164]
Truong, V.L.; Jeong, W.S. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship. Int. J. Mol. Sci., 2021, 22(17), 9109.
[http://dx.doi.org/10.3390/ijms22179109] [PMID: 34502017]
[165]
Li, C.; Lee, M.J.; Sheng, S.; Meng, X.; Prabhu, S.; Winnik, B.; Huang, B.; Chung, J.Y.; Yan, S.; Ho, C.T.; Yang, C.S. Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion. Chem. Res. Toxicol., 2000, 13(3), 177-184.
[http://dx.doi.org/10.1021/tx9901837] [PMID: 10725114]
[166]
Fatima, M.; Rizvi, S.I. Antioxidative effect of black tea theaflavin on erythrocytes subjected to oxidative stress. Natl. Acad. Sci. Lett., 2015, 38(1), 25-28.
[http://dx.doi.org/10.1007/s40009-014-0285-9]
[167]
Geiser, R.J.; Chastain, S.E.; Moss, M.A. Regulation of bace1 mRNA expression in Alzheimer’s disease by green tea catechins and black tea theaflavins. Biophys. J., 2017, 112(3), 362a.
[http://dx.doi.org/10.1016/j.bpj.2016.11.1965]
[168]
Hossain, S.J.; Hamamoto, K.; Aoshima, H.; Hara, Y. Effects of tea components on the response of GABA(A) receptors expressed in Xenopus Oocytes. J. Agric. Food Chem., 2002, 50(14), 3954-3960.
[http://dx.doi.org/10.1021/jf011607h] [PMID: 12083865]
[169]
Silverman, G.A.; Bird, P.I.; Carrell, R.W.; Church, F.C.; Coughlin, P.B.; Gettins, P.G.W.; Irving, J.A.; Lomas, D.A.; Luke, C.J.; Moyer, R.W.; Pemberton, P.A.; Remold-O’Donnell, E.; Salvesen, G.S.; Travis, J.; Whisstock, J.C. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J. Biol. Chem., 2001, 276(36), 33293-33296.
[http://dx.doi.org/10.1074/jbc.R100016200] [PMID: 11435447]
[170]
Higgins, P.J. The TGF-beta1/upstream stimulatory factor-regulated PAI-1 gene: potential involvement and a therapeutic target in Alzheimer’s disease. J. Biomed. Biotechnol., 2006, 2006(3), 15792.
[PMID: 17047299]
[171]
Jankun, J. Skotnicka, M.; Łysiak-Szydłowska, W.; Al-Senaidy, A.; Skrzypczak-Jankun, E. Diverse inhibition of plasminogen activator inhibitor type 1 by theaflavins of black tea. Int. J. Mol. Med., 2011, 27(4), 525-529.
[http://dx.doi.org/10.3892/ijmm.2011.615] [PMID: 21308350]
[172]
Mathiyazahan, D.B.; Justin Thenmozhi, A.; Manivasagam, T. Protective effect of black tea extract against aluminium chloride-induced Alzheimer’s disease in rats: A behavioural, biochemical and molecular approach. J. Funct. Foods, 2015, 16, 423-435.
[http://dx.doi.org/10.1016/j.jff.2015.05.001]
[173]
Kim, T.I.; Lee, Y.K.; Park, S.G.; Choi, I.S.; Ban, J.O.; Park, H.K.; Nam, S.Y.; Yun, Y.W.; Han, S.B.; Oh, K.W.; Hong, J.T. l-Theanine, an amino acid in green tea, attenuates β-amyloid-induced cognitive dysfunction and neurotoxicity: Reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-κB pathways. Free Radic. Biol. Med., 2009, 47(11), 1601-1610.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.09.008] [PMID: 19766184]
[174]
Ide, K.; Yamada, H.; Takuma, N.; Park, M.; Wakamiya, N.; Nakase, J.; Ukawa, Y.; Sagesaka, Y. Green tea consumption affects cognitive dysfunction in the elderly: a pilot study. Nutrients, 2014, 6(10), 4032-4042.
[http://dx.doi.org/10.3390/nu6104032] [PMID: 25268837]
[175]
Shanmugam, T.; Selvaraj, M.; Poomalai, S. Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: An in-vivo and in-silico study. Int. Immunopharmacol., 2016, 39, 128-139.
[http://dx.doi.org/10.1016/j.intimp.2016.07.022] [PMID: 27472294]
[176]
Semwal, D.; Semwal, R.; Combrinck, S.; Viljoen, A. Myricetin: A dietary molecule with diverse biological activities. Nutrients, 2016, 8(2), 90.
[http://dx.doi.org/10.3390/nu8020090] [PMID: 26891321]
[177]
Wang, Q.M.; Wang, G.L.; Ma, Z.G. Protective effects of myricetin on chronic stress-induced cognitive deficits. Neuroreport, 2016, 27(9), 652-658.
[http://dx.doi.org/10.1097/WNR.0000000000000591] [PMID: 27171032]
[178]
Wang, B.; Zhong, Y.; Gao, C.; Li, J. Myricetin ameliorates scopolamine-induced memory impairment in mice via inhibiting acetylcholinesterase and down-regulating brain iron. Biochem. Biophys. Res. Commun., 2017, 490(2), 336-342.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.045] [PMID: 28619513]
[179]
Dini, A.; Migliuolo, G.; Rastrelli, L.; Saturnino, P.; Schettino, O. Chemical composition of Lepidium meyenii. Food Chem., 1994, 49(4), 347-349.
[http://dx.doi.org/10.1016/0308-8146(94)90003-5]
[180]
Campos, D.; Chirinos, R.; Barreto, O.; Noratto, G.; Pedreschi, R. Optimized methodology for the simultaneous extraction of glucosinolates, phenolic compounds and antioxidant capacity from maca (Lepidium meyenii). Ind. Crops Prod., 2013, 49, 747-754.
[http://dx.doi.org/10.1016/j.indcrop.2013.06.021]
[181]
Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 2001, 56(1), 5-51.
[http://dx.doi.org/10.1016/S0031-9422(00)00316-2] [PMID: 11198818]
[182]
Pino-Figueroa, A.; Nguyen, D.; Maher, T.J. Neuroprotective effects of Lepidium meyenii (Maca). Ann. N. Y. Acad. Sci., 2010, 1199(1), 77-85.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05174.x] [PMID: 20633111]
[183]
Narbad, A.; Rossiter, J.T. Gut glucosinolate metabolism and isothiocyanate production. Mol. Nutr. Food Res., 2018, 62(18), 1700991.
[http://dx.doi.org/10.1002/mnfr.201700991] [PMID: 29806736]
[184]
Burčul, F.; Generalić Mekinić I.; Radan, M.; Rollin, P.; Blažević I. Isothiocyanates: cholinesterase inhibiting, antioxidant, and anti-inflammatory activity. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 577-582.
[http://dx.doi.org/10.1080/14756366.2018.1442832] [PMID: 29513045]
[185]
Peng, X.R.; Zhang, R.R.; Liu, J.H.; Li, Z.R.; Zhou, L.; Qiu, M.H. Lepithiohydimerins A—D: Four Pairs of neuroprotective thiohydantoin dimers bearing a disulfide bond from maca (Lepidium meyenii Walp.). Chin. J. Chem., 2021, 39(10), 2738-2744.
[http://dx.doi.org/10.1002/cjoc.202100353]
[186]
Gonzales-Arimborgo, C.; Yupanqui, I.; Montero, E.; Alarcón-Yaquetto, D.; Zevallos-Concha, A.; Caballero, L.; Gasco, M.; Zhao, J.; Khan, I.; Gonzales, G. Acceptability, safety, and efficacy of oral administration of extracts of black or red maca (Lepidium meyenii) in adult human subjects: A randomized, double-blind, placebo-controlled study. Pharmaceuticals (Basel), 2016, 9(3), 49.
[http://dx.doi.org/10.3390/ph9030049] [PMID: 27548190]
[187]
Contestabile, A.; Ciani, E.; Contestabile, A. The place of choline acetyltransferase activity measurement in the “cholinergic hypothesis” of neurodegenerative diseases. Neurochem. Res., 2008, 33(2), 318-327.
[http://dx.doi.org/10.1007/s11064-007-9497-4] [PMID: 17940885]
[188]
Wiedeman, A.; Barr, S.; Green, T.; Xu, Z.; Innis, S.; Kitts, D. Dietary choline intake: current state of knowledge across the life cycle. Nutrients, 2018, 10(10), 1513.
[http://dx.doi.org/10.3390/nu10101513] [PMID: 30332744]
[189]
Lewis, E.D.; Field, C.J.; Jacobs, R.L. Should the forms of dietary choline also be considered when estimating dietary intake and the implications for health? Lipid Technol., 2015, 27(10), 227-230.
[http://dx.doi.org/10.1002/lite.201500048]
[190]
Wang, Y.; Guan, X.; Chen, X.; Cai, Y.; Ma, Y.; Ma, J.; Zhang, Q.; Dai, L.; Fan, X.; Bai, Y. Choline supplementation ameliorates behavioral deficits and Alzheimer’s disease‐like pathology in transgenic APP/PS1 mice. Mol. Nutr. Food Res., 2019, 63(18), 1801407.
[http://dx.doi.org/10.1002/mnfr.201801407] [PMID: 31298459]
[191]
Velazquez, R.; Ferreira, E.; Knowles, S.; Fux, C.; Rodin, A.; Winslow, W.; Oddo, S. Lifelong choline supplementation ameliorates Alzheimer’s disease pathology and associated cognitive deficits by attenuating microglia activation. Aging Cell, 2019, 18(6), e13037.
[http://dx.doi.org/10.1111/acel.13037] [PMID: 31560162]
[192]
Wurtman, R.J.; Cansev, M.; Ulus, I.H. Choline and its products acetylcholine and phosphatidylcholine. In: Handbook of neurochemistry and molecular neurobiology; Spriger: Amsterdam, 2009.
[http://dx.doi.org/10.1007/978-0-387-30378-9_18]
[193]
Wecker, L. Influence of dietary choline availability and neuronal demand on acetylcholine synthesis by rat brain. J. Neurochem., 1988, 51(2), 497-504.
[http://dx.doi.org/10.1111/j.1471-4159.1988.tb01066.x] [PMID: 3392542]
[194]
Köppen, A.; Klein, J.; Erb, C.; Löffelholz, K. Acetylcholine release and choline availability in rat hippocampus: effects of exogenous choline and nicotinamide. J. Pharmacol. Exp. Ther., 1997, 282(3), 1139-1145.
[PMID: 9316819]
[195]
Vanmierlo, T.; Popp, J.; Kölsch, H.; Friedrichs, S.; Jessen, F.; Stoffel-Wagner, B.; Bertsch, T.; Hartmann, T.; Maier, W.; von Bergmann, K.; Steinbusch, H.; Mulder, M.; Lütjohann, D. The plant sterol brassicasterol as additional CSF biomarker in Alzheimer’s disease. Acta Psychiatr. Scand., 2011, 124(3), 184-192.
[http://dx.doi.org/10.1111/j.1600-0447.2011.01713.x] [PMID: 21585343]
[196]
Samadder, A.; Das, J.; Das, S.; De, A.; Saha, S.K.; Bhattacharyya, S.S.; Khuda-Bukhsh, A.R. Poly(lactic-co-glycolic) acid loaded nano-insulin has greater potentials of combating arsenic induced hyperglycemia in mice: Some novel findings. Toxicol. Appl. Pharmacol., 2013, 267(1), 57-73.
[http://dx.doi.org/10.1016/j.taap.2012.12.018] [PMID: 23276653]
[197]
Goyzueta-Mamani, L.D.; Barazorda-Ccahuana, H.L.; Chávez-Fumagalli, M.A.F.; F Alvarez, K.L.; Aguilar-Pineda, J.A.; Vera-Lopez, K.J.; Lino, C.C.L. In silico analysis of metabolites from peruvian native plants as potential therapeutics against Alzheimer’s disease. Molecules, 2022, 27(3), 918.
[http://dx.doi.org/10.3390/molecules27030918] [PMID: 35164183]
[198]
Charoenphon, N.; Anandsongvit, N.; Kosai, P.; Sirisidthi, K.; Kangwanrangsan, N.; Jiraungkoorskul, W. Brahmi (Bacopa monnieri): Up-to-date of memory boosting medicinal plant: A review. Indian J. Agric. Res., 2016, 50(1)
[http://dx.doi.org/10.18805/ijare.v50i1.8582]
[199]
Sivaramakrishna, C.; Rao, C.V.; Trimurtulu, G.; Vanisree, M.; Subbaraju, G.V. Triterpenoid glycosides from Bacopa monnieri. Phytochemistry, 2005, 66(23), 2719-2728.
[http://dx.doi.org/10.1016/j.phytochem.2005.09.016] [PMID: 16293276]
[200]
Ganjewala, D.; Srivastava, A.K. Recent progress on chemical composition and bioactivities of Bacopa monnieri (Linn.) a plant of Ayurveda. Med. Aromat. Plant Sci. Biotechnol., 2011, 5, 102-108.
[201]
Sharma, P.C.; Yelne, M.B.; Dennis, T.J. Database on medicinal plants used in Ayurved; Central Council for Research in Ayurveda & Siddha: New Delhi, 2005.
[202]
Rastogi, S.; Kulshrestha, D.K. Bacoside A2- a triterpenoid saponin from Bacopa monniera. Indian J. Chem. Sect. B, 1999, 38, 353-356.
[203]
Rastogi, S.; Pal, R.; Kulshreshtha, D.K. Bacoside A3-A triterpenoid saponin from Bacopa monniera. Phytochemistry, 1994, 36(1), 133-137.
[http://dx.doi.org/10.1016/S0031-9422(00)97026-2] [PMID: 7764837]
[204]
Basu, N.; Rastigi, R.P.; Dhar, M.L. Chemical examination of Bacopa monniera. Wettst. Part III: the constitution of bacoside B. Indian J. Chem., 1967, 5, 84.
[205]
Chandel, R.S.; Kulshreshtha, D.K.; Rastogi, R.P. Bacogenin-A3: A new sapogenin from Bacopa monniera. Phytochemistry, 1977, 16(1), 141-143.
[http://dx.doi.org/10.1016/0031-9422(77)83039-2]
[206]
Chatterji, N.; Rastogi, R.P.; Dhar, M.L. Chemical examination of Bacopa monniera Wettst.: Part I-Isolation of chemical constituents. Indian J. Chem., 1963, 1(5), 212-215.
[207]
Sekhar, V.C.; Viswanathan, G.; Baby, S. Bacopaside II nanoparticles inhibit proliferation of C6 glioma cells. Phytomed. Plus, 2021, 1(3), 100040.
[208]
Malishev, R.; Shaham-Niv, S.; Nandi, S.; Kolusheva, S.; Gazit, E.; Jelinek, R. Bacoside-A, an Indian traditional-medicine substance, inhibits β-amyloid cytotoxicity, fibrillation, and membrane interactions. ACS Chem. Neurosci., 2017, 8(4), 884-891.
[http://dx.doi.org/10.1021/acschemneuro.6b00438] [PMID: 28094495]
[209]
Montine, T.J.; Sidell, K.R.; Crews, B.C.; Markesbery, W.R.; Marnett, L.J.; Roberts, L.J., II; Morrow, J.D. Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology, 1999, 53(7), 1495-1498.
[http://dx.doi.org/10.1212/WNL.53.7.1495] [PMID: 10534257]
[210]
Bai, Q.K.; Zhao, Z.G. Isolation and neuronal apoptosis inhibitory property of bacoside‐A3 via downregulation of β‐amyloid induced inflammatory response. Biotechnol. Appl. Biochem., 2021, 1-9.
[PMID: 33687113]
[211]
Singh, B.; Pandey, S.; Rumman, M.; Kumar, S.; Kushwaha, P.P.; Verma, R.; Mahdi, A.A. Neuroprotective and neurorescue mode of action of Bacopa monnieri (L.) Wettst in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease: an in silico and in vivo study. Front. Pharmacol., 2021, 12, 616413.
[http://dx.doi.org/10.3389/fphar.2021.616413] [PMID: 33796021]
[212]
de Vries, H.E.; Witte, M.; Hondius, D.; Rozemuller, A.J.M.; Drukarch, B.; Hoozemans, J.; van Horssen, J. Nrf2-induced antioxidant protection: A promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic. Biol. Med., 2008, 45(10), 1375-1383.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.09.001] [PMID: 18824091]
[213]
Sharma, R.; Chaturvedi, C.; Tewari, P. Efficacy of Bacopa monniera in revitalizing intellectual functions in children. J. Res. Educ. Indian Med., 1987, 1(2)
[214]
Chaudhari, K.S.; Tiwari, N.R.; Tiwari, R.R.; Sharma, R.S. Neurocognitive effect of nootropic drug brahmi (Bacopa monnieri) in Alzheimer’s disease. Ann. Neurosci., 2017, 24(2), 111-122.
[http://dx.doi.org/10.1159/000475900] [PMID: 28588366]
[215]
Navabi, S.P.; Sarkaki, A.; Mansouri, E.; Badavi, M.; Ghadiri, A.; Farbood, Y. The effects of betulinic acid on neurobehavioral activity, electrophysiology and histological changes in an animal model of the Alzheimer’s disease. Behav. Brain Res., 2018, 337, 99-106.
[http://dx.doi.org/10.1016/j.bbr.2017.10.002] [PMID: 28986104]
[216]
Oliveira Costa, J.F.; Barbosa-Filho, J.M.; de Azevedo Maia, G.L.; Guimarães, E.T.; Meira, C.S.; Ribeiro-dos-Santos, R.; Pontes de Carvalho, L.C.; Soares, M.B.P. Potent anti-inflammatory activity of betulinic acid treatment in a model of lethal endotoxemia. Int. Immunopharmacol., 2014, 23(2), 469-474.
[http://dx.doi.org/10.1016/j.intimp.2014.09.021] [PMID: 25281393]
[217]
Bhattacharyya, S.S.; Paul, S.; De, A.; Das, D.; Samadder, A.; Boujedaini, N.; Khuda-Bukhsh, A.R. Poly (lactide-co-glycolide) acid nanoencapsulation of a synthetic coumarin: Cytotoxicity and bio-distribution in mice, in cancer cell line and interaction with calf thymus DNA as target. Toxicol. Appl. Pharmacol., 2011, 253(3), 270-281.
[http://dx.doi.org/10.1016/j.taap.2011.04.010] [PMID: 21549736]
[218]
Burg, V.K.; Grimm, H.S.; Rothhaar, T.L.; Grösgen, S.; Hundsdörfer, B.; Haupenthal, V.J.; Zimmer, V.C.; Mett, J.; Weingärtner, O.; Laufs, U.; Broersen, L.M.; Tanila, H.; Vanmierlo, T.; Lütjohann, D.; Hartmann, T.; Grimm, M.O.W. Plant sterols the better cholesterol in Alzheimer’s disease? A mechanistical study. J. Neurosci., 2013, 33(41), 16072-16087.
[http://dx.doi.org/10.1523/JNEUROSCI.1506-13.2013] [PMID: 24107941]
[219]
Jemia, M.B.; Tundis, R.; Maggio, A.; Rosselli, S.; Senatore, F.; Menichini, F.; Bruno, M.; Kchouk, M.E.; Loizzo, M.R. NMR-based quantification of rosmarinic and carnosic acids, GC–MS profile and bioactivity relevant to neurodegenerative disorders of Rosmarinus officinalis L. extracts. J. Funct. Foods, 2013, 5(4), 1873-1882.
[http://dx.doi.org/10.1016/j.jff.2013.09.008]
[220]
Habtemariam, S. The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-14.
[http://dx.doi.org/10.1155/2016/2680409] [PMID: 26941822]
[221]
Zhang, D.; Lee, B.; Nutter, A.; Song, P.; Dolatabadi, N.; Parker, J.; Sanz-Blasco, S.; Newmeyer, T.; Ambasudhan, R.; McKercher, S.R.; Masliah, E.; Lipton, S.A. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid. J. Neurochem., 2015, 133(6), 898-908.
[http://dx.doi.org/10.1111/jnc.13074] [PMID: 25692407]
[222]
Satoh, T.; Kosaka, K.; Itoh, K.; Kobayashi, A.; Yamamoto, M.; Shimojo, Y.; Kitajima, C.; Cui, J.; Kamins, J.; Okamoto, S.; Izumi, M.; Shirasawa, T.; Lipton, S.A. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S- alkylation of targeted cysteines on Keap1. J. Neurochem., 2008, 104(4), 1116-1131.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05039.x] [PMID: 17995931]
[223]
Samadder, A.; Das, S.; Das, J.; Khuda-Bukhsh, A.R. Relative efficacies of insulin and poly (lactic-co-glycolic) acid encapsulated nano-insulin in modulating certain significant biomarkers in arsenic intoxicated L6 cells. Colloids Surf. B Biointerfaces, 2013, 109, 10-19.
[http://dx.doi.org/10.1016/j.colsurfb.2013.03.028] [PMID: 23603037]
[224]
de Oliveira, M.R.; Peres, A.; Ferreira, G.C.; Schuck, P.F.; Gama, C.S.; Bosco, S.M.D. Carnosic acid protects mitochondria of human neuroblastoma SH-SY5Y cells exposed to paraquat through activation of the Nrf2/HO-1Axis. Mol. Neurobiol., 2017, 54(8), 5961-5972.
[http://dx.doi.org/10.1007/s12035-016-0100-3] [PMID: 27686076]
[225]
Ak, G.; Zengin, G.; Ceylan, R.; Fawzi, M.M.; Jugreet, S.; Mollica, A.; Stefanucci, A. Chemical composition and biological activities of essential oils from Calendula officinalis L. flowers and leaves. Flavour Fragrance J., 2021, 36(5), 554-563.
[http://dx.doi.org/10.1002/ffj.3661]
[226]
Paul, K.; Ganguly, U.; Chakrabarti, S.; Bhattacharjee, P. Is 1,8-cineole-rich extract of small cardamom seeds more effective in preventing Alzheimer’s disease than 1,8-cineole alone? Neuromolecular Med., 2020, 22(1), 150-158.
[http://dx.doi.org/10.1007/s12017-019-08574-2] [PMID: 31628580]
[227]
Khan, A.; Vaibhav, K.; Javed, H.; Tabassum, R.; Ahmed, M.E.; Khan, M.M.; Khan, M.B.; Shrivastava, P.; Islam, F.; Siddiqui, M.S.; Safhi, M.M.; Islam, F. 1,8-cineole (eucalyptol) mitigates inflammation in amyloid Beta toxicated PC12 cells: relevance to Alzheimer’s disease. Neurochem. Res., 2014, 39(2), 344-352.
[http://dx.doi.org/10.1007/s11064-013-1231-9] [PMID: 24379109]
[228]
Cheng, Y. Dong, Z.; Liu, S. β-Caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 Mice through CB2 receptor activation and the PPARγ pathway. Pharmacology, 2014, 94(1-2), 1-12.
[http://dx.doi.org/10.1159/000362689] [PMID: 25171128]
[229]
Hase, T.; Shishido, S.; Yamamoto, S.; Yamashita, R.; Nukima, H.; Taira, S.; Toyoda, T.; Abe, K.; Hamaguchi, T.; Ono, K.; Noguchi-Shinohara, M.; Yamada, M.; Kobayashi, S. Rosmarinic acid suppresses Alzheimer’s disease development by reducing amyloid β aggregation by increasing monoamine secretion. Sci. Rep., 2019, 9(1), 8711.
[http://dx.doi.org/10.1038/s41598-019-45168-1] [PMID: 31213631]
[230]
Yamada, M.; Ono, K.; Hamaguchi, T.; Noguchi-Shinohara, M. Natural phenolic compounds as therapeutic and preventive agents for cerebral amyloidosis. In: Natural Compounds as Therapeutic Agents for Amyloidogenic Diseases; Springer: Cham, 2015; pp. 79-94.
[http://dx.doi.org/10.1007/978-3-319-18365-7_4]
[231]
Noguchi-Shinohara, M.; Ono, K.; Hamaguchi, T.; Nagai, T.; Kobayashi, S.; Komatsu, J.; Samuraki-Yokohama, M.; Iwasa, K.; Yokoyama, K.; Nakamura, H.; Yamada, M. Safety and efficacy of Melissa officinalis extract containing rosmarinic acid in the prevention of Alzheimer’s disease progression. Sci. Rep., 2020, 10(1), 18627.
[http://dx.doi.org/10.1038/s41598-020-73729-2] [PMID: 33122694]
[232]
Karim, N.; Khan, I.; Abdelhalim, A.; Abdel-Halim, H.; Hanrahan, J.R. Molecular docking and antiamnesic effects of nepitrin isolated from Rosmarinus officinalis on scopolamine-induced memory impairment in mice. Biomed. Pharmacother., 2017, 96, 700-709.
[http://dx.doi.org/10.1016/j.biopha.2017.09.121] [PMID: 29040957]
[233]
Darrah, H.H. Investigation of the cultivars of the basils (Ocimum). Econ. Bot., 1974, 28(1), 63-67.
[http://dx.doi.org/10.1007/BF02861381]
[234]
Kumar, A.; Rahal, A.; Chakraborty, S.; Tiwari, R.; Latheef, S.K.; Dhama, K. Ocimum sanctum (Tulsi): a miracle herb and boon to medical science-A Review. Int. J. Agron. Plant Prod., 2013, 4(7), 1580-1589.
[235]
Joshi, R.K.; Setzer, W.N.; Da Silva, J.K. Phytoconstituents, traditional medicinal uses and bioactivities of Tulsi (Ocimum sanctum Linn.): a review. Am. J. Essent. Oil Nat. Prod., 2017, 5(1), 18-21.
[236]
Borah, R.; Biswas, S.P. Tulsi (Ocimum sanctum), excellent source of phytochemicals. Int. J. Environ. Agric. Biotech., 2018, 3(5), 265258.
[237]
Panchal, P.; Parvez, N. Phytochemical analysis of medicinal herb (Ocimum sanctum). Int. J. Nanomat. Nanotech., 2019, 5(2), 008-011.
[238]
Srinivas, N.; Sali, K.; Bajoria, A. Therapeutic aspects of Tulsi unraveled: A review. J. Indian Acad. Oral Med. Radiol., 2016, 28(1), 17.
[http://dx.doi.org/10.4103/0972-1363.189984]
[239]
Shishodia, S.; Majumdar, S.; Banerjee, S.; Aggarwal, B.B. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res., 2003, 63(15), 4375-4383.
[PMID: 12907607]
[240]
Nandini, H.S.; Krishna, K.L.; Apattira, C. Combination of Ocimum sanctum extract and Levetiracetam ameliorates cognitive dysfunction and hippocampal architecture in rat model of Alzheimer’s disease. J. Chem. Neuroanat., 2022, 120, 102069.
[http://dx.doi.org/10.1016/j.jchemneu.2021.102069] [PMID: 34973350]
[241]
Kandhan, T.S.; Thangavelu, L.; Roy, A. Acetylcholinesterase activity of Ocimum sanctum leaf extract. J. Adv. Pharm. Educ. Res., 2018, 8(1), 41-44.
[242]
Anuj, G.; Sanjay, S. Eugenol: A potential phytochemical with multifaceted therapeutic activities. Pharmacologyonline, 2010, 2, 108-120.
[243]
Saxena, U.; Akella, V. Niacin compositions for reduction of amyloid beta peptide 42 (abeta 42) production and for treatment of Alzheimer's disease (AD). US Patent No US8541435B2, 2013.
[244]
Morris, M.C.; Evans, D.A.; Bienias, J.L.; Scherr, P.A.; Tangney, C.C.; Hebert, L.E.; Bennett, D.A.; Wilson, R.S.; Aggarwal, N. Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J. Neurol. Neurosurg. Psychiatry, 2004, 75(8), 1093-1099.
[http://dx.doi.org/10.1136/jnnp.2003.025858] [PMID: 15258207]
[245]
Mohd Zamli, K.; Asari, A.; Khaw, K.Y.; Murugaiyah, V.; al-Rashida, M.; Mohamad, H.; Mohd Yusoff, H.; Abdul Wahab, N.H.; Osman, H. Cholinesterase inhibition activity and molecular docking study of eugenol derivatives. Sains Malays., 2021, 50(4), 1037-1045.
[http://dx.doi.org/10.17576/jsm-2021-5004-14]
[246]
Garabadu, D.; Sharma, M. Eugenol attenuates scopolamine-induced hippocampal cholinergic, glutamatergic, and mitochondrial toxicity in experimental rats. Neurotox. Res., 2019, 35(4), 848-859.
[http://dx.doi.org/10.1007/s12640-019-0008-6] [PMID: 30737653]
[247]
Mesole, S.B.; Alfred, O.O.; Yusuf, U.A.; Lukubi, L.; Ndhlovu, D. Apoptotic inducement of neuronal cells by aluminium chloride and the neuroprotective effect of eugenol in wistar rats. Oxid. Med. Cell. Longev., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/8425643] [PMID: 32089784]
[248]
Bahadori, M.B.; Maggi, F.; Zengin, G.; Asghari, B.; Eskandani, M. Essential oils of hedgenettles (Stachys inflata, S. lavandulifolia, and S. byzantina) have antioxidant, anti-Alzheimer, antidiabetic, and anti-obesity potential: A comparative study. Ind. Crops Prod., 2020, 145, 112089.
[http://dx.doi.org/10.1016/j.indcrop.2020.112089]
[249]
Bahadori, M.B.; Dinparast, L.; Zengin, G.; Sarikurkcu, C.; Bahadori, S.; Asghari, B.; Movahhedin, N. Functional components, antidiabetic, anti-Alzheimer’s disease, and antioxidant activities of Salvia syriaca L. Int. J. Food Prop., 2017, 20(8), 1761-1772.
[http://dx.doi.org/10.1080/10942912.2016.1218893]
[250]
Mawaddani, N.; Wibowo, N.R.K.; Nadhira, Q.H.H.; Pramifta, R.A. In silico study of Centella asiatica active compound as BACE1 inhibitor in Alzheimer’s disease. JSMARTech, 2020, 1(2), 036-040.
[http://dx.doi.org/10.21776/ub.jsmartech.2020.001.02.3]
[251]
Formagio, A.S.N.; Vilegas, W.; Volobuff, C.R.F. kassuya, C.A.L.; Cardoso, C.A.L.; Pereira, Z.V.; Silva, R.M.M.F.; dos Santos Yamazaki, D.A.; de Freitas Gauze, G.; Manfron, J.; Marangoni, J.A. Exploration of essential oil from Psychotria poeppigiana as an anti-hyperalgesic and anti-acetylcholinesterase agent: Chemical composition, biological activity and molecular docking. J. Ethnopharmacol., 2022, 296, 115220.
[http://dx.doi.org/10.1016/j.jep.2022.115220] [PMID: 35358624]
[252]
Tangsaengvit, N.; Kitphati, W.; Tadtong, S.; Bunyapraphatsara, N.; Nukoolkarn, V. Neurite outgrowth and neuroprotective effects of quercetin from Caesalpinia mimosoides Lamk. on cultured P19-derived neurons. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/838051] [PMID: 23840266]
[253]
Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H. Flavonols and flavones as BACE-1 inhibitors: Structure–activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim. Biophys. Acta, Gen. Subj., 2008, 1780(5), 819-825.
[http://dx.doi.org/10.1016/j.bbagen.2008.01.017] [PMID: 18295609]
[254]
Rangsinth, P.; Duangjan, C.; Sillapachaiyaporn, C.; Isidoro, C.; Prasansuklab, A.; Tencomnao, T. Caesalpinia mimosoides leaf extract promotes neurite outgrowth and inhibits BACE1 activity in mutant APP-overexpressing neuronal neuro2a cells. Pharmaceuticals (Basel), 2021, 14(9), 901.
[http://dx.doi.org/10.3390/ph14090901] [PMID: 34577601]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy