Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Systematic Review Article

Biofilm Formation Status in ESBL-Producing Bacteria Recovered from Clinical Specimens of Patients: A Systematic Review and Meta-Analysis

Author(s): Masoud Keikha and Mohsen Karbalaei*

Volume 23, Issue 2, 2023

Published on: 17 October, 2022

Article ID: e200922208987 Pages: 8

DOI: 10.2174/1871526522666220920141631

Price: $65

Abstract

Background: Recently, the emergence and spread of extended-spectrum beta-lactamase (ESBL) bacteria have become a global health concern. In addition, the ability to form biofilm due to less impermeability to antibiotics and the horizontal transformation (conjugation) of genes involved in antibiotic resistance have exacerbated the concerns. With a comprehensive meta-analysis, this study evaluated the potential relationship between ESBL and biofilm formation.

Methods: A literature search was performed using global databases, such as PubMed and Scopus, up to November 2021. We retrieved all relevant documents and selected eligible articles based on inclusion criteria. Finally, the potential association between the biofilm formation capacity and resistance of ESBL-producing bacteria was measured with an odds ratio and a 95% confidence interval.

Results: In the present study, 17 articles, including 2,069 Gram-negative isolates, were considered as eligible. The prevalence of biofilm formation in all clinical isolates of ESBL and non-ESBL pathogens was 72.4% (95% CI: 60.7-81.6) and 40.5% (95% CI: 30.2-51.8), respectively. Our results showed a positive relationship between the ability for biofilm formation and conferring antibiotic resistance in ESBL-producing bacteria (OR: 3.35; 95% CI: 1.67-6.74; p-value: 0.001).

Conclusion: In general, we showed the rate of biofilm formation to be significantly higher in ESBLproducing strains. Given the current results, the updated therapeutic guidelines should consider the role of biofilm production for optimal therapy, treatment course, and clinical outcomes rather than the recommendation of antimicrobial agents by focusing on the results of the antibiotic susceptibility test.

Keywords: Antibiotic resistance, biofilm formation, extended-spectrum beta-lactamases, antibiotics, virulence factors, ESBLproducing bacteria.

Graphical Abstract
[1]
Laxminarayan R, Van Boeckel T, Frost I, et al. The lancet infectious diseases commission on antimicrobial resistance: 6 years later. Lancet Infect Dis 2020; 20(4): e51-60.
[http://dx.doi.org/10.1016/S1473-3099(20)30003-7] [PMID: 32059790]
[2]
Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 2010; 362(19): 1804-13.
[http://dx.doi.org/10.1056/NEJMra0904124] [PMID: 20463340]
[3]
Chaudhary U, Aggarwal R. Extended spectrum β-lactamases (ESBL) – An emerging threat to clinical therapeutics. Indian J Med Microbiol 2004; 22(2): 75-80.
[http://dx.doi.org/10.1016/S0255-0857(21)02884-X] [PMID: 17642700]
[4]
Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009; 9(4): 228-36.
[http://dx.doi.org/10.1016/S1473-3099(09)70054-4] [PMID: 19324295]
[5]
Queenan AM, Bush K. Carbapenemases: The versatile β-lactamases. Clin Microbiol Rev 2007; 20(3): 440-58.
[http://dx.doi.org/10.1128/CMR.00001-07] [PMID: 17630334]
[6]
Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect Dis 2010; 10(9): 597-602.
[http://dx.doi.org/10.1016/S1473-3099(10)70143-2] [PMID: 20705517]
[7]
Carmichael G. ESBLs: the next challenge in infection control. Lancet Infect Dis 2004; 4(8): 480.
[http://dx.doi.org/10.1016/S1473-3099(04)01094-1] [PMID: 15298025]
[8]
Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc 2018; 81(1): 7-11.
[http://dx.doi.org/10.1016/j.jcma.2017.07.012] [PMID: 29042186]
[9]
Rahdar HA, Malekabad ES, Dadashi A-R, et al. Correlation between biofilm formation and carbapenem resistance among clinical isolates of Klebsiella pneumoniae. Ethiop J Health Sci 2019; 29(6): 745-50.
[PMID: 31741645]
[10]
Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am 1978; 238(1): 86-95.
[http://dx.doi.org/10.1038/scientificamerican0178-86] [PMID: 635520]
[11]
Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 2002; 292(2): 107-13.
[http://dx.doi.org/10.1078/1438-4221-00196] [PMID: 12195733]
[12]
Van Acker H, Van Dijck P, Coenye T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 2014; 22(6): 326-33.
[http://dx.doi.org/10.1016/j.tim.2014.02.001] [PMID: 24598086]
[13]
Simões M, Simões LC, Vieira MJ. A review of current and emergent biofilm control strategies. Lebensm Wiss Technol 2010; 43(4): 573-83.
[http://dx.doi.org/10.1016/j.lwt.2009.12.008]
[14]
Schwartz T, Kohnen W, Jansen B, Obst U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 2003; 43(3): 325-35.
[http://dx.doi.org/10.1111/j.1574-6941.2003.tb01073.x] [PMID: 19719664]
[15]
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35(4): 322-32.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.12.011] [PMID: 20149602]
[16]
Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 2011; 15(4): 305-11.
[http://dx.doi.org/10.1016/S1413-8670(11)70197-0] [PMID: 21860999]
[17]
Götz F. Staphylococcus and biofilms. Mol Microbiol 2002; 43(6): 1367-78.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02827.x] [PMID: 11952892]
[18]
Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 2010; 5(11): 1663-74.
[http://dx.doi.org/10.2217/fmb.10.125] [PMID: 21133688]
[19]
Nicolas-Chanoine MH, Gruson C, Bialek-Davenet S, et al. 10-Fold increase (2006-11) in the rate of healthy subjects with extended-spectrum -lactamase-producing Escherichia coli faecal carriage in a Parisian check-up centre. J Antimicrob Chemother 2013; 68(3): 562-8.
[http://dx.doi.org/10.1093/jac/dks429] [PMID: 23143897]
[20]
Novais Â, Pires J, Ferreira H, et al. Characterization of globally spread Escherichia coli ST131 isolates (1991 to 2010). Antimicrob Agents Chemother 2012; 56(7): 3973-6.
[http://dx.doi.org/10.1128/AAC.00475-12] [PMID: 22491693]
[21]
Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recal-citrance toward antibiotics. Microbiol Mol Biol Rev 2014; 78(3): 510-43.
[http://dx.doi.org/10.1128/MMBR.00013-14] [PMID: 25184564]
[22]
Verderosa AD, Totsika M, Fairfull-Smith KE. Bacterial biofilm eradication agents: A current review. Front Chem 2019; 7: 824.
[http://dx.doi.org/10.3389/fchem.2019.00824] [PMID: 31850313]
[23]
Stepanović S, Vuković D, Hola V, et al. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recom-mendations for assessment of biofilm production by Staphylococci. Acta Pathol Microbiol Scand Suppl 2007; 115(8): 891-9.
[http://dx.doi.org/10.1111/j.1600-0463.2007.apm_630.x] [PMID: 17696944]
[24]
Yang D, Zhang Z. Biofilm-forming Klebsiella pneumoniae strains have greater likelihood of producing extended-spectrum β-lactamases. J Hosp Infect 2008; 68(4): 369-71.
[http://dx.doi.org/10.1016/j.jhin.2008.02.001] [PMID: 18353499]
[25]
Heydari S, Eftekhar F. Biofilm formation and β-lactamase production in burn isolates of Pseudomonas aeruginosa. Jundishapur J Microbiol 2015; 8(3): e15514.
[http://dx.doi.org/10.5812/jjm.15514] [PMID: 25964848]
[26]
Mittal S, Sharma M, Chaudhary U. Biofilm and multidrug resistance in uropathogenic Escherichia coli. Pathog Glob Health 2015; 109(1): 26-9.
[http://dx.doi.org/10.1179/2047773215Y.0000000001] [PMID: 25605466]
[27]
Neupane S, Pant ND, Khatiwada S, Chaudhary R, Banjara MR. Correlation between biofilm formation and resistance toward different commonly used antibiotics along with extended spectrum beta lactamase production in uropathogenic Escherichia coli isolated from the patients suspected of urinary tract infections visiting Shree Birendra Hospital, Chhauni, Kathmandu, Nepal. Antimicrob Resist Infect Control 2016; 5(1): 5.
[http://dx.doi.org/10.1186/s13756-016-0104-9] [PMID: 26885364]
[28]
Gharrah MM, Mostafa El-Mahdy A, Barwa RF. Association between virulence factors and extended spectrum beta-lactamase producing Klebsiella pneumoniae compared to nonproducing isolates. Interdiscip Perspect Infect Dis 2017; 2017: 7279830.
[29]
Di Domenico E, Farulla I, Prignano G, et al. Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype. Int J Mol Sci 2017; 18(5): 1077.
[http://dx.doi.org/10.3390/ijms18051077] [PMID: 28513576]
[30]
Shah RK, Ni ZH, Sun X, Wang GQ, Li F. The determination and correlation of various virulence genes, ESBL, serum bactericidal effect and biofilm formation of clinical isolated classical Klebsiella pneumoniae and hypervirulent Klebsiella pneumoniae from respiratory tract infected patients. Pol J Microbiol 2017; 66(4): 501-8.
[http://dx.doi.org/10.5604/01.3001.0010.7042] [PMID: 29319515]
[31]
Nepal HP, Neopane P, Shrestha R, et al. Biofilm formation and antimicrobial resistance in Klebsiella pneumoniae isolated from patients visiting a tertiary care center of Nepal. Asian Pac J Trop Dis 2017; 7(6): 347-51.
[http://dx.doi.org/10.12980/apjtd.7.2017D7-15]
[32]
Shahbazi S, Asadi Karam MR, Habibi M, Talebi A, Bouzari S. Distribution of extended-spectrum β-lactam, quinolone and carbapenem resistance genes, and genetic diversity among uropathogenic Escherichia coli isolates in Tehran, Iran. J Glob Antimicrob Resist 2018; 14: 118-25.
[http://dx.doi.org/10.1016/j.jgar.2018.03.006] [PMID: 29581075]
[33]
Yazgan B, Türkel I, Güçkan R, Kılınç K, Yıldırım T. Comparison of biofilm formation and efflux pumps in ESBL and carbapenemase producing Klebsiella pneumoniae. J Infect Dev Ctries 2018; 12(3): 156-63.
[http://dx.doi.org/10.3855/jidc.9677] [PMID: 31829990]
[34]
Asadpour L. Antimicrobial resistance, biofilm-forming ability and virulence potential of Pseudomonas aeruginosa isolated from burn patients in northern Iran. J Glob Antimicrob Resist 2018; 13: 214-20.
[http://dx.doi.org/10.1016/j.jgar.2018.01.018] [PMID: 29421318]
[35]
Shrestha R, Khanal S, Poudel P, et al. Extended spectrum β-lactamase producing uropathogenic Escherichia coli and the correlation of bio-film with antibiotics resistance in Nepal. Ann Clin Microbiol Antimicrob 2019; 18(1): 42.
[http://dx.doi.org/10.1186/s12941-019-0340-y] [PMID: 31847837]
[36]
Zhang Q, Gao HY, Li D, et al. Clinical outcome of Escherichia coli bloodstream infection in cancer patients with/without biofilm formation: A single-center retrospective study. Infect Drug Resist 2019; 12: 359-71.
[http://dx.doi.org/10.2147/IDR.S192072] [PMID: 30809097]
[37]
Shahbazzadeh M, Moazamian E, Rafati A, Fardin M. Antimicrobial resistance pattern, genetic distribution of ESBL genes, biofilm-forming potential, and virulence potential of Pseudomonas aeruginosa isolated from the burn patients in Tehran Hospitals, Iran. Pan Afr Med J 2020; 36: 233.
[http://dx.doi.org/10.11604/pamj.2020.36.233.21815] [PMID: 33708324]
[38]
Behzadi P, Urbán E, Gajdács M. Association between biofilm-production and antibiotic resistance in uropathogenic Escherichia coli (UPEC): An in vitro study. Diseases 2020; 8(2): 17.
[http://dx.doi.org/10.3390/diseases8020017] [PMID: 32517335]
[39]
Sa’id AS, Mukhkar M, Bukar A, Yusha’u M. Extended spectrum beta-lactamase production, biofilm formation and antibiotic resistance in clinical isolates of Klebsiella pneumoniae. Nigerian J Microbiol 2020.
[40]
Damiano P, Salema EJ, Silago V. The susceptibility of multidrug resistant and biofilm forming Klebsiella pneumoniae and Escherichia coli to antiseptic agents used for preoperative skin preparations at zonal referral hospital in Mwanza, Tanzania. Malawi Med J 2021; 33(1): 59-64.
[PMID: 34422235]
[41]
Surgers L, Boyd A, Girard PM, Arlet G, Decré D. Biofilm formation by ESBL-producing strains of Escherichia coli and Klebsiella pneu-moniae. Int J Med Microbiol 2019; 309(1): 13-8.
[http://dx.doi.org/10.1016/j.ijmm.2018.10.008] [PMID: 30385204]
[42]
Norouzi F, Mansouri S, Moradi M, Razavi M. Comparison of cell surface hydrophobicity and biofilm formation among ESBL-and nonESBL-producing Pseudomonas aeruginosa clinical isolates. Afr J Microbiol Res 2010; 4(11): 1143-7.
[43]
Tadepalli S, Prudhivi S, Babu Myneni R, Rao S. Biofilm formation in uropathogenic Escherichia coli isolates and its association with extended spectrum betalactamase production and drug resistance. Saudi J Pathol Microbiol 2016; 1(2): 60-4.
[44]
Lautenbach E, Synnestvedt M, Weiner MG, et al. Imipenem resistance in Pseudomonas aeruginosa: Emergence, epidemiology, and impact on clinical and economic outcomes. Infect Control Hosp Epidemiol 2010; 31(1): 47-53.
[http://dx.doi.org/10.1086/649021] [PMID: 19951202]
[45]
Black JA, Moland ES, Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J Clin Microbiol 2005; 43(7): 3110-3.
[http://dx.doi.org/10.1128/JCM.43.7.3110-3113.2005] [PMID: 16000421]
[46]
Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: A clinical update. Clin Microbiol Rev 2005; 18(4): 657-86.
[http://dx.doi.org/10.1128/CMR.18.4.657-686.2005] [PMID: 16223952]
[47]
Subramanian P, Umadevi S, Kumar S, Stephen S. Determination of correlation between biofilm and extended spectrum β lactamases producers of Enterobacteriaceae. Scholars Res J 2012; 2(1): 2.
[48]
Fuursted K, Schøler L, Hansen F, et al. Virulence of a Klebsiella pneumoniae strain carrying the New Delhi metallo-beta-lactamase-1 (NDM-1). Microbes Infect 2012; 14(2): 155-8.
[http://dx.doi.org/10.1016/j.micinf.2011.08.015] [PMID: 21925284]
[49]
Subramanian P, Shanmugam N, Sivaraman U, Kumar S, Selvaraj S. Antiobiotic resistance pattern of biofilm forming uropathogens isolated from catheterised patients in Pondicherry, India. Australas Med J 2012; 5(7): 344-8.
[http://dx.doi.org/10.4066/AMJ.2012.1193] [PMID: 22905060]
[50]
Jefferson KK. What drives bacteria to produce a biofilm? FEMS Microbiol Lett 2004; 236(2): 163-73.
[http://dx.doi.org/10.1111/j.1574-6968.2004.tb09643.x] [PMID: 15251193]
[51]
Sahly H, Navon-Venezia S, Roesler L, et al. Extended-spectrum β-lactamase production is associated with an increase in cell invasion and expression of fimbrial adhesins in Klebsiella pneumoniae. Antimicrob Agents Chemother 2008; 52(9): 3029-34.
[http://dx.doi.org/10.1128/AAC.00010-08] [PMID: 18573929]
[52]
Du B, Long Y, Liu H, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: Risk factors and clinical outcome. Intensive Care Med 2002; 28(12): 1718-23.
[http://dx.doi.org/10.1007/s00134-002-1521-1] [PMID: 12447513]
[53]
Juhas M. Horizontal gene transfer in human pathogens. Crit Rev Microbiol 2015; 41(1): 101-8.
[http://dx.doi.org/10.3109/1040841X.2013.804031] [PMID: 23862575]
[54]
Sahal G, Avcioglu NH, Bilkay IS. Higher biofilm formation by multidrug resistant K. pneumoniae and K. rhinoscleromatis strains and effects of lemon and ginger essential oils on biofilm formation. Indian J Pharma Edu Res 2016; 50(2): 582-8.
[55]
Sanchez CJ Jr, Mende K, Beckius ML, et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis 2013; 13(1): 47.
[http://dx.doi.org/10.1186/1471-2334-13-47] [PMID: 23356488]
[56]
Hadadi-Fishani M, Khaledi A, Fatemi-Nasab ZS. Correlation between biofilm formation and antibiotic resistance in Pseudomonas aeruginosa: A meta-analysis. Infez Med 2020; 28(1): 47-54.
[PMID: 32172260]
[57]
Musafer HK, Kuchma SL, Naimie AA, Schwartzman JD. AL-Mathkhury HJF, O’Toole GA. Investigating the link between imipenem resistance and biofilm formation by Pseudomonas aeruginosa. Microb Ecol 2014; 68(1): 111-20.
[http://dx.doi.org/10.1007/s00248-013-0361-6] [PMID: 24435545]
[58]
Perez LRR. Acinetobacter baumannii displays inverse relationship between meropenem resistance and biofilm production. J Chemother 2015; 27(1): 13-6.
[http://dx.doi.org/10.1179/1973947813Y.0000000159] [PMID: 24621167]
[59]
Seifi K, Kazemian H, Heidari H, et al. Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur J Microbiol 2016; 9(1): e30682.
[http://dx.doi.org/10.5812/jjm.30682] [PMID: 27099694]
[60]
Kaur J, Chopra S, Sheevani GM, Mahajan G. Modified double disc synergy test to detect ESBL production in urinary isolates of Escherichia coli and Klebsiella pneumoniae. J Clin Diagn Res 2013; 7(2): 229-33.
[http://dx.doi.org/10.7860/JCDR/2013/4619.2734] [PMID: 23543257]
[61]
Vuotto C, Longo F, Balice M, Donelli G, Varaldo P. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens 2014; 3(3): 743-58.
[http://dx.doi.org/10.3390/pathogens3030743] [PMID: 25438022]
[62]
Soto SM. Importance of biofilms in urinary tract infections: New therapeutic approaches. Adv Biol 2014; 2014: 1-13.
[http://dx.doi.org/10.1155/2014/543974]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy