Research Article

MicroRNA Gene Signature for Predicting Mechanisms in Nasopharyngeal Carcinoma: A Case Study on the Potential Application of Circulating Biomarkers

Author(s): Tirta Wardana*, Risky Oktriani, Cita Herawati Murjayanto, Denise Utami Putri, Sumadi Lukman Anwar, Teguh Aryandono and Sofia Mubarika Haryana

Volume 12, Issue 1, 2023

Published on: 02 November, 2022

Page: [29 - 44] Pages: 16

DOI: 10.2174/2211536611666220919144834

Price: $65

conference banner
Abstract

Background and Aim: Nasopharyngeal Carcinoma (NPC) is an upper respiratory tract cancer prevalent in Southeast Asia and related to chronic EBV infection. microRNAs (miRNAs) regulate gene expression implicated in NPC’s carcinogenesis. However, this circulating RNA molecule’s role and clinical utility remain unknown. Therefore, this study examined the circulation of miRNAs and their association with clinical data.

Methods: 160 plasma samples of NPC and 80 non-tumor samples were extracted to evaluate and validate the gene expressions. Quantification expression was performed using relative quantification of qPCR analysis level expression methods. The intrinsic cellular roles involving biological signaling in NPC's oncogenesis using Ingenuity Pathways Analysis (IPA) were also used.

Results: The results of the quantification significance profiling of NPC samples revealed decreased miR- 29c-3p (fold change 1.16; p<0.05) and increased 195-5p expression (fold change 1.157; p<0.05). Furthermore, the validation of hsa-miR-29c-3p expression on plasma NPC with known tumor vs. non-tumor and significant changes was also performed using a fold change of 4.45 (medians of 31.45 ± 1.868 and 24.96 ± 1.872, respectively; p<0.0005). miR-29c had a 2.14 fold change correlated with T primary status with a median of 31.99±1.319 and 31.35±2.412, respectively (p<0.05). Stage status with fold change 1.99 also had median levels of 31.98±1.105 and 31.21 ± 2.355, respectively (p-value <0.05). Furthermore, the node’s status for the lower expression of miR-29c with fold change 1.17 had median levels of 32.78 ± 2.221 and 31.33 ± 1.689, respectively (p-value of 0.7). Bioinformatics analysis established the roles and functions of miR-29 in NPC progression, cell death and survival, cellular development, cellular function, and cell maintenance by inhibiting COL4A, PI3K, VEGFA, JUN, and CDK6.

Conclusion: Overall, we conclude that decreased miR-29c expression is associated with poor clinical status and might inhibit NPC's five target genes.

Keywords: MicroRNA, clinical outcome, profiling, nasopharyngeal, cancer, circulating.

Graphical Abstract
[1]
Young LS, Dawson CW. Epstein-Barr virus and nasopharyngeal carcinoma. Chin J Cancer 2014; 33(12): 581-90.
[http://dx.doi.org/10.5732/cjc.014.10197] [PMID: 25418193]
[2]
Luo WJ, Feng YF, Guo R, et al. Patterns of EBV-positive cervical lymph node involvement in head and neck cancer and implications for the management of nasopharyngeal carcinoma T0 classification. Oral Oncol 2019; 91: 7-12.
[http://dx.doi.org/10.1016/j.oraloncology.2019.01.012] [PMID: 30926066]
[3]
Wu D, Lewis ED, Pae M, Meydani SN. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front Immunol 2019; 9: 3160.
[http://dx.doi.org/10.3389/fimmu.2018.03160] [PMID: 30697214]
[4]
Adham M, Kurniawan AN, Muhtadi AI, et al. Nasopharyngeal carcinoma in Indonesia: Epidemiology, incidence, signs, and symptoms at presentation. Chin J Cancer 2012; 31(4): 185-96.
[http://dx.doi.org/10.5732/cjc.011.10328] [PMID: 22313595]
[5]
Mo MH, Chen L, Fu Y, Wang W, Fu SW. Cell-free circulating miRNA biomarkers in cancer. J Cancer 2012; 3: 432-48.
[http://dx.doi.org/10.7150/jca.4919] [PMID: 23074383]
[6]
Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11(6): 426-37.
[http://dx.doi.org/10.1038/nrc3066] [PMID: 21562580]
[7]
Gurtan AM, Sharp PA. The role of miRNAs in regulating gene expression networks. J Mol Biol 2013; 425(19): 3582-600.
[http://dx.doi.org/10.1016/j.jmb.2013.03.007] [PMID: 23500488]
[8]
Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 2010; 251(3): 499-505.
[http://dx.doi.org/10.1097/SLA.0b013e3181cc939f] [PMID: 20134314]
[9]
Chin LJ, Slack FJ. A truth serum for cancer - microRNAs have major potential as cancer biomarkers. Cell Res 2008; 18(10): 983-4.
[http://dx.doi.org/10.1038/cr.2008.290] [PMID: 18833286]
[10]
Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS One 2008; 3(9): e3148.
[http://dx.doi.org/10.1371/journal.pone.0003148] [PMID: 18773077]
[11]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)). Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[12]
Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): D155-62.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[13]
Vlachos IS, Zagganas K, Paraskevopoulou MD, et al. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res 2015; 43(W1): W460-6.
[http://dx.doi.org/10.1093/nar/gkv403] [PMID: 25977294]
[14]
Aoki S. Available from: https://biorender.com/ (Accessed on: 2021 -04 -01).
[15]
Poluan R, Sudigyo D, Rahmawati G, et al. Transcriptome related to avoiding immune destruction in nasopharyngeal cancer in Indonesian patients using next-generation sequencing. Asian Pac J Cancer Prev 2020; 21(9): 2593-601.
[http://dx.doi.org/10.31557/APJCP.2020.21.9.2593] [PMID: 32986357]
[16]
Sengupta S, den Boon JA, Chen IH, et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA 2008; 105(15): 5874-8.
[http://dx.doi.org/10.1073/pnas.0801130105] [PMID: 18390668]
[17]
Wardana T, Gunawan L, Herawati C, et al. Circulation EBV Mir-Bart-7 relating to clinical manifestation in nasopharyngeal carcinoma. Asian Pac J Cancer Prev 2020; 21(9): 2777-82.
[http://dx.doi.org/10.31557/APJCP.2020.21.9.2777] [PMID: 32986380]
[18]
Li L, Feng T, Zhang W, et al. MicroRNA Biomarker hsa-miR-195-5p for Detecting the Risk of Lung Cancer. Int J Genomics 2020; 2020: 1-9.
[http://dx.doi.org/10.1155/2020/7415909] [PMID: 31976313]
[19]
Setiasari DW, Rahmawati G, Sudigyo D, et al. Transcriptome profile of next-generation sequencing data relate to proliferation aberration of nasopharyngeal carcinoma patients in Indonesia. Asian Pac J Cancer Prev 2020; 21(9): 2585-91.
[http://dx.doi.org/10.31557/APJCP.2020.21.9.2585] [PMID: 32986356]
[20]
Huang HY, Lin YCD, Li J, et al. MiRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 2019; 48(D1): gkz896.
[http://dx.doi.org/10.1093/nar/gkz896] [PMID: 31647101]
[21]
Trotta E. On the normalization of the minimum free energy of RNAs by sequence length. PLoS One 2014; 9(11): e113380.
[http://dx.doi.org/10.1371/journal.pone.0113380] [PMID: 25405875]
[22]
Brinkmann MM, Schulz TF. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 2006; 87(5): 1047-74.
[http://dx.doi.org/10.1099/vir.0.81598-0] [PMID: 16603506]
[23]
Franke TF. PI3K/Akt: Getting it right matters. Oncogene 2008; 27(50): 6473-88.
[http://dx.doi.org/10.1038/onc.2008.313] [PMID: 18955974]
[24]
Liao WT, Jiang D, Yuan J, et al. HOXB7 as a prognostic factor and mediator of colorectal cancer progression. Clin Cancer Res 2011; 17(11): 3569-78.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2533] [PMID: 21474578]
[25]
Morrison JA, Gulley ML, Pathmanathan R, Raab-Traub N. Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res 2004; 64(15): 5251-60.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0538] [PMID: 15289331]
[26]
Cristiano BE, Chan JC, Hannan KM, et al. A specific role for AKT3 in the genesis of ovarian cancer through modulation of G(2)-M phase transition. Cancer Res 2006; 66(24): 11718-25.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1968] [PMID: 17178867]
[27]
Francy JM, Nag A, Conroy EJ, Hengst JA, Yun JK. Sphingosine kinase 1 expression is regulated by signaling through PI3K, AKT2, and mTOR in human coronary artery smooth muscle cells. Biochim Biophys Acta Gene Struct Expr 2007; 1769(4): 253-65.
[http://dx.doi.org/10.1016/j.bbaexp.2007.03.005] [PMID: 17482291]
[28]
Lin CC, Chin YT, Shih YJ, et al. Resveratrol antagonizes thyroid hormone-induced expression of checkpoint and proliferative genes in oral cancer cells. J Dent Sci 2019; 14(3): 255-62.
[http://dx.doi.org/10.1016/j.jds.2019.01.013] [PMID: 31528253]
[29]
Zhu LH, Miao XT, Wang NY. Integrated miRNA-mRNA analysis of Epstein-Barr virus-positive nasopharyngeal carcinoma. Genet Mol Res 2015; 14(2): 6028-36.
[http://dx.doi.org/10.4238/2015.June.1.20] [PMID: 26125802]
[30]
Chen L, Xiao H, Wang ZH, et al. MiR-29a suppresses growth and invasion of gastric cancer cells in vitro by targeting VEGF-A. BMB Rep 2014; 47(1): 39-44.
[http://dx.doi.org/10.5483/BMBRep.2014.47.1.079] [PMID: 24209632]
[31]
Chou J, Lin JH, Brenot A, Kim J, Provot S, Werb Z. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 2013; 15(2): 201-13.
[http://dx.doi.org/10.1038/ncb2672] [PMID: 23354167]
[32]
Wildeman MA, Fles R, Herdini C, et al. Primary treatment results of Nasopharyngeal Carcinoma (NPC) in Yogyakarta, Indonesia. PLoS One 2013; 8(5): e63706.
[http://dx.doi.org/10.1371/journal.pone.0063706] [PMID: 23675501]
[33]
Zeng X, Xiang J, Wu M, et al. Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. PLoS One 2012; 7(10): e46367.
[http://dx.doi.org/10.1371/journal.pone.0046367] [PMID: 23056289]
[34]
Garzon R, Heaphy CEA, Havelange V, et al. MicroRNA 29b functions in acute myeloid leukemia. Blood 2009; 114(26): 5331-41.
[http://dx.doi.org/10.1182/blood-2009-03-211938] [PMID: 19850741]
[35]
Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113(25): 6411-8.
[http://dx.doi.org/10.1182/blood-2008-07-170589] [PMID: 19211935]
[36]
Seeger T, Boon RA. MicroRNAs in cardiovascular ageing. J Physiol 2016; 594(8): 2085-94.
[http://dx.doi.org/10.1113/JP270557] [PMID: 26040259]
[37]
Pereira PA, Tomás JF, Queiroz JA, Figueiras AR, Sousa F. Recombinant pre-miR-29b for Alzheimer´s disease therapeutics. Sci Rep 2016; 6(1): 19946.
[http://dx.doi.org/10.1038/srep19946] [PMID: 28442746]
[38]
Jiang H, Zhang G, Wu JH, Jiang CP. Diverse roles of miR-29 in cancer (Review). Oncol Rep 2014; 31(4): 1509-16.
[http://dx.doi.org/10.3892/or.2014.3036] [PMID: 24573597]
[39]
Wang H, Zhu Y, Zhao M, et al. MiRNA-29c suppresses lung cancer cell adhesion to extracellular matrix and metastasis by targeting integrin β1 and matrix metalloproteinase2 (MMP2). PLoS One 2013; 8(8): e70192.
[http://dx.doi.org/10.1371/journal.pone.0070192] [PMID: 23936390]
[40]
Zhu J. T helper 2 (Th2) cell differentiation, type 2 Innate Lymphoid Cell (ILC2) development and regulation of Interleukin-4 (IL-4) and IL-13 production. Cytokine 2015; 75(1): 14-24.
[http://dx.doi.org/10.1016/j.cyto.2015.05.010] [PMID: 26044597]
[41]
Cushing L, Kuang PP, Qian J, et al. MiR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol 2011; 45(2): 287-94.
[http://dx.doi.org/10.1165/rcmb.2010-0323OC] [PMID: 20971881]
[42]
Baldwin A, Li W, Grace M, et al. Kinase requirements in human cells: II. Genetic interaction screens identify kinase requirements following HPV16 E7 expression in cancer cells. Proc Natl Acad Sci USA 2008; 105(43): 16478-83.
[http://dx.doi.org/10.1073/pnas.0806195105] [PMID: 18948598]
[43]
Li Y, Wang F, Xu J, et al. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. J Pathol 2011; 224(4): 484-95.
[http://dx.doi.org/10.1002/path.2873] [PMID: 21503900]
[44]
Li D, Zhao Y, Liu C, et al. Analysis of miR-195 and miR-497 expression, regulation and role in breast cancer. Clin Cancer Res 2011; 17(7): 1722-30.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1800] [PMID: 21350001]
[45]
Mazzoccoli L, Robaina MC, Apa AG, et al. MiR-29 silencing modulates the expression of target genes related to proliferation, apoptosis and methylation in Burkitt lymphoma cells. J Cancer Res Clin Oncol 2018; 144(3): 483-97.
[http://dx.doi.org/10.1007/s00432-017-2575-3] [PMID: 29318382]
[46]
Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets 2010; 11(8): 1000-17.
[http://dx.doi.org/10.2174/138945010791591395] [PMID: 20426765]
[47]
Liu L, Bi N, Wu L, et al. MicroRNA-29c functions as a tumor suppressor by targeting VEGFA in lung adenocarcinoma. Mol Cancer 2017; 16(1): 50.
[http://dx.doi.org/10.1186/s12943-017-0620-0] [PMID: 28241836]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy