Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Various Aspects of Fasting on the Biodistribution of Radiopharmaceuticals

Author(s): Sajjad Ahmadpour*, Mohammad Amin Habibi and Seyed Jalal Hosseinimehr*

Volume 23, Issue 10, 2022

Published on: 12 October, 2022

Page: [827 - 841] Pages: 15

DOI: 10.2174/1389200223666220919121354

Price: $65

Abstract

It is demonstrated that fasting can alter the biodistribution of radiopharmaceuticals in nuclear medicine. Various studies have highlighted that fasting is interpreted to be easy for physicians during PET study, fasting is one of the most important factors determining the usefulness of this protocol. It is well documented that fasting can suppress normal 18F-FDG PET uptake during nuclear cardiology. However, there is no consensus about the usefulness of fasting on radiopharmaceuticals, especially on 18F-FDG in PET imaging, but special attention should be paid to the setting of the fasting duration. Nevertheless, it does seem we still need extensive clinical studies in the future. The present study aims to review the various aspects of fasting, especially metabolic alteration on radiopharmaceutical biodistribution. In this study, we focused more on the effect of fasting on 18F-FDG biodistribution, which alters its imaging contrast in cardiology and cancer imaging. Therefore, shifting substrate metabolism from glucose to free fatty acids during fasting can be an alternative approach to suppress physiological myocardial uptake.

Keywords: Fasting, nuclear medicine, cardiology, oncology, 18F-FDG, radiopharmaceuticals metabolism, biodistribution.

Graphical Abstract
[1]
Kostakoglu, L.; Agress, H., Jr; Goldsmith, S.J. Clinical role of FDG PET in evaluation of cancer patients. Radiographics, 2003, 23(2), 315-340.
[http://dx.doi.org/10.1148/rg.232025705] [PMID: 12640150]
[2]
White, J.A.; Rajchl, M.; Butler, J.; Thompson, R.T.; Prato, F.S.; Wisenberg, G. Active cardiac sarcoidosis: First clinical experience of sim-ultaneous positron emission tomography-magnetic resonance imaging for the diagnosis of cardiac disease. Circulation, 2013, 127(22), e639-e641.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.001217] [PMID: 23733970]
[3]
Nensa, F.; Poeppel, T.D.; Krings, P.; Schlosser, T. Multiparametric assessment of myocarditis using simultaneous positron emission to-mography/magnetic resonance imaging. Eur. Heart J., 2014, 35(32), 2173.
[http://dx.doi.org/10.1093/eurheartj/ehu086] [PMID: 24578391]
[4]
Nensa, F.; Tezgah, E.; Poeppel, T.D.; Jensen, C.J.; Schelhorn, J.; Köhler, J.; Heusch, P.; Bruder, O.; Schlosser, T.; Nassenstein, K. Integrat-ed 18F-FDG PET/MR imaging in the assessment of cardiac masses: A pilot study. J. Nucl. Med., 2015, 56(2), 255-260.
[http://dx.doi.org/10.2967/jnumed.114.147744] [PMID: 25552667]
[5]
Nappi, C.; Altiero, M.; Imbriaco, M.; Nicolai, E.; Giudice, C.A.; Aiello, M.; Diomiaiuti, C.T.; Pisani, A.; Spinelli, L.; Cuocolo, A. First ex-perience of simultaneous PET/MRI for the early detection of cardiac involvement in patients with Anderson-Fabry disease. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(7), 1025-1031.
[http://dx.doi.org/10.1007/s00259-015-3036-3] [PMID: 25808629]
[6]
Bucerius, J.; Mani, V.; Moncrieff, C.; Machac, J.; Fuster, V.; Farkouh, M.E.; Tawakol, A.; Rudd, J.H.F.; Fayad, Z.A. Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: The impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(2), 369-383.
[http://dx.doi.org/10.1007/s00259-013-2569-6] [PMID: 24271038]
[7]
Sheikine, Y.; Akram, K. FDG-PET imaging of atherosclerosis: Do we know what we see? Atherosclerosis, 2010, 211(2), 371-380.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.01.002] [PMID: 20202637]
[8]
He, Z.X.; Shi, R.F.; Wu, Y.J.; Tian, Y.Q.; Liu, X.J.; Wang, S.W.; Shen, R.; Qin, X.W.; Gao, R.L.; Narula, J.; Jain, D. Direct imaging of exer-cise-induced myocardial ischemia with fluorine-18-labeled deoxyglucose and Tc-99m-sestamibi in coronary artery disease. Circulation, 2003, 108(10), 1208-1213.
[http://dx.doi.org/10.1161/01.CIR.0000088784.25089.D9] [PMID: 12939208]
[9]
Shreve, P.D.; Anzai, Y.; Wahl, R.L. Pitfalls in oncologic diagnosis with FDG PET imaging: Physiologic and benign variants. Radiographics, 1999, 19(1), 61-77.
[http://dx.doi.org/10.1148/radiographics.19.1.g99ja0761] [PMID: 9925392]
[10]
Rudd, J.H.F.; Hyafil, F.; Fayad, Z.A. Inflammation imaging in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2009, 29(7), 1009-1016.
[http://dx.doi.org/10.1161/ATVBAHA.108.165563] [PMID: 19304673]
[11]
Elkhawad, M.; Rudd, J.H.F. Radiotracer imaging of atherosclerotic plaque biology. Cardiol. Clin., 2009, 27(2), 345-354.
[http://dx.doi.org/10.1016/j.ccl.2008.12.006] [PMID: 19306774]
[12]
Tawakol, A.; Migrino, R.Q.; Bashian, G.G.; Bedri, S.; Vermylen, D.; Cury, R.C.; Yates, D.; LaMuraglia, G.M.; Furie, K.; Houser, S.; Gewirtz, H.; Muller, J.E.; Brady, T.J.; Fischman, A.J. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J. Am. Coll. Cardiol., 2006, 48(9), 1818-1824.
[http://dx.doi.org/10.1016/j.jacc.2006.05.076] [PMID: 17084256]
[13]
Zhuang, H.M.; Cortés-Blanco, A.; Pourdehnad, M.; Adam, L.E.; Yamamoto, A.J.; Martínez-Lázaro, R.; Lee, J.H.; Loman, J.C.; Rossman, M.D.; Alavi, A. Do high glucose levels have differential effect on FDG uptake in inflammatory and malignant disorders? Nucl. Med. Commun., 2001, 22(10), 1123-1128.
[http://dx.doi.org/10.1097/00006231-200110000-00011] [PMID: 11567186]
[14]
Zhao, S.; Kuge, Y.; Tsukamoto, E.; Mochizuki, T.; Kato, T.; Hikosaka, K.; Hosokawa, M.; Kohanawa, M.; Tamaki, N. Effects of insulin and glucose loading on FDG uptake in experimental malignant tumours and inflammatory lesions. Eur. J. Nucl. Med., 2001, 28(6), 730-735.
[http://dx.doi.org/10.1007/s002590100517] [PMID: 11440033]
[15]
Zhao, S.; Kuge, Y.; Tsukamoto, E.; Mochizuki, T.; Kato, T.; Hikosaka, K.; Nakada, K.; Hosokawa, M.; Kohanawa, M.; Tamaki, N. Fluorodeoxyglucose uptake and glucose transporter expression in experimental inflammatory lesions and malignant tumours: Effects of insulin and glucose loading. Nucl. Med. Commun., 2002, 23(6), 545-550.
[http://dx.doi.org/10.1097/00006231-200206000-00006] [PMID: 12029209]
[16]
Bucerius, J.; Mani, V.; Moncrieff, C.; Rudd, J.H.F.; Machac, J.; Fuster, V.; Farkouh, M.E.; Fayad, Z.A. Impact of noninsulin-dependent type 2 diabetes on carotid wall 18F-fluorodeoxyglucose positron emission tomography uptake. J. Am. Coll. Cardiol., 2012, 59(23), 2080-2088.
[http://dx.doi.org/10.1016/j.jacc.2011.11.069] [PMID: 22651864]
[17]
Youssef, G.; Leung, E.; Mylonas, I.; Nery, P.; Williams, K.; Wisenberg, G.; Gulenchyn, K.Y.; deKemp, R.A.; DaSilva, J.; Birnie, D.; Wells, G.A.; Beanlands, R.S.B. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: A systematic review and metaanalysis including the Ontario experience. J. Nucl. Med., 2012, 53(2), 241-248.
[http://dx.doi.org/10.2967/jnumed.111.090662] [PMID: 22228794]
[18]
Ishimaru, S.; Tsujino, I.; Takei, T.; Tsukamoto, E.; Sakaue, S.; Kamigaki, M.; Ito, N.; Ohira, H.; Ikeda, D.; Tamaki, N.; Nishimura, M. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur. Heart J., 2005, 26(15), 1538-1543.
[http://dx.doi.org/10.1093/eurheartj/ehi180] [PMID: 15809286]
[19]
Ohira, H.; Tsujino, I.; Ishimaru, S.; Oyama, N.; Takei, T.; Tsukamoto, E.; Miura, M.; Sakaue, S.; Tamaki, N.; Nishimura, M. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(5), 933-941.
[http://dx.doi.org/10.1007/s00259-007-0650-8] [PMID: 18084757]
[20]
Ohira, H.; Tsujino, I.; Yoshinaga, K. 18F-Fluoro-2-deoxyglucose positron emission tomography in cardiac sarcoidosis. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(9), 1773-1783.
[http://dx.doi.org/10.1007/s00259-011-1832-y] [PMID: 21559980]
[21]
Obunai, K.; Misra, D.; Vantosh, A.; Bergmann, S. Metabolic evidence of myocardial stunning in takotsubo cardiomyopathy: A positron emission tomography study. J. Nucl. Cardiol., 2005, 12(6), 742-744.
[http://dx.doi.org/10.1016/j.nuclcard.2005.06.087] [PMID: 16344237]
[22]
Feola, M.; Chauvie, S.; Rosso, G.L.; Biggi, A.; Ribichini, F.; Bobbio, M. Reversible impairment of coronary flow reserve in takotsubo cardiomyopathy: A myocardial PET study. J. Nucl. Cardiol., 2008, 15(6), 811-817.
[http://dx.doi.org/10.1007/BF03007363] [PMID: 18984457]
[23]
Okumura, W.; Iwasaki, T.; Toyama, T.; Iso, T.; Arai, M.; Oriuchi, N.; Endo, K.; Yokoyama, T.; Suzuki, T.; Kurabayashi, M. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J. Nucl. Med., 2004, 45(12), 1989-1998.
[PMID: 15585472]
[24]
Inglese, E.; Leva, L.; Matheoud, R.; Sacchetti, G.; Secco, C.; Gandolfo, P.; Brambilla, M.; Sambuceti, G. Spatial and temporal heterogeneity of regional myocardial uptake in patients without heart disease under fasting conditions on repeated whole-body 18F-FDG PET/CT. J. Nucl. Med., 2007, 48(10), 1662-1669.
[http://dx.doi.org/10.2967/jnumed.107.041574] [PMID: 17873124]
[25]
Tenley, N.; Corn, D.J.; Yuan, L.; Lee, Z. The effect of fasting on PET imaging of hepatocellular carcinoma. J. Cancer Ther., 2013, 4(2), 562-567.
[http://dx.doi.org/10.4236/jct.2013.42071] [PMID: 24683497]
[26]
Hafez, S.M.N.A.; Elbassuoni, E. Dysfunction of aged liver of male albino rats and the effect of intermitted fasting; Biochemical, histologi-cal, and immunohistochemical study. Int. Immunopharmacol., 2022, 103, 108465.
[http://dx.doi.org/10.1016/j.intimp.2021.108465] [PMID: 34952467]
[27]
Rynders, C.A.; Thomas, E.A.; Zaman, A.; Pan, Z.; Catenacci, V.A.; Melanson, E.L. Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients, 2019, 11(10), 2442.
[http://dx.doi.org/10.3390/nu11102442] [PMID: 31614992]
[28]
Halpern, B.; Mendes, T.B. Intermittent fasting for obesity and related disorders: Unveiling myths, facts, and presumptions. Arch. Endocrinol. Metab., 2021, 65(1), 14-23.
[http://dx.doi.org/10.20945/2359-3997000000322] [PMID: 33444495]
[29]
Queiroz, J.N.; Macedo, R.C.O.; Tinsley, G.M.; Reischak-Oliveira, A. Time-restricted eating and circadian rhythms: The biological clock is ticking. Crit. Rev. Food Sci. Nutr., 2021, 61(17), 2863-2875.
[http://dx.doi.org/10.1080/10408398.2020.1789550] [PMID: 32662279]
[30]
Stekovic, S.; Hofer, S.J.; Tripolt, N.; Aon, M.A.; Royer, P.; Pein, L.; Stadler, J.T.; Pendl, T.; Prietl, B.; Url, J.; Schroeder, S.; Tadic, J.; Ei-senberg, T.; Magnes, C.; Stumpe, M.; Zuegner, E.; Bordag, N.; Riedl, R.; Schmidt, A.; Kolesnik, E.; Verheyen, N.; Springer, A.; Madl, T.; Sinner, F.; de Cabo, R.; Kroemer, G.; Obermayer-Pietsch, B.; Dengjel, J.; Sourij, H.; Pieber, T.R.; Madeo, F. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell Metab., 2019, 30(3), 462-476.e6.
[http://dx.doi.org/10.1016/j.cmet.2019.07.016] [PMID: 31471173]
[31]
Swoap, S.J.; Bingaman, M.J.; Hult, E.M.; Sandstrom, N.J. Alternate-day feeding leads to improved glucose regulation on fasting days with-out significant weight loss in genetically obese mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2019, 317(3), R461-R469.
[http://dx.doi.org/10.1152/ajpregu.00140.2019] [PMID: 31290685]
[32]
Deligiorgi, M.V.; Liapi, C.; Trafalis, D.T. How far are we from prescribing fasting as anticancer medicine? Int. J. Mol. Sci., 2020, 21(23), 9175.
[http://dx.doi.org/10.3390/ijms21239175] [PMID: 33271979]
[33]
Michalsen, A.; Hoffmann, B.; Moebus, S.; Bäcker, M.; Langhorst, J.; Dobos, G.J. Incorporation of fasting therapy in an integrative medi-cine ward: Evaluation of outcome, safety, and effects on lifestyle adherence in a large prospective cohort study. J. Altern. Complement. Med., 2005, 11(4), 601-607.
[http://dx.doi.org/10.1089/acm.2005.11.601] [PMID: 16131283]
[34]
Guiducci, L.; Grönroos, T.; Järvisalo, M.J.; Kiss, J.; Viljanen, A.; Naum, A.G.; Viljanen, T.; Savunen, T.; Knuuti, J.; Ferrannini, E.; Salva-dori, P.A.; Nuutila, P.; Iozzo, P. Biodistribution of the fatty acid analogue 18F-FTHA: Plasma and tissue partitioning between lipid pools during fasting and hyperinsulinemia. J. Nucl. Med., 2007, 48(3), 455-462.
[PMID: 17332624]
[35]
Lee, K.H.; Ko, B.H.; Paik, J.Y.; Jung, K.H.; Choe, Y.S.; Choi, Y.; Kim, B.T. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J. Nucl. Med., 2005, 46(9), 1531-1536.
[PMID: 16157537]
[36]
Wondergem, M.; van der Zant, F.M.; Vlottes, P.W.; Knol, R.J.J. Effects of fasting on 18 F-DCFPyL uptake in prostate cancer lesions and tissues with known high physiologic uptake. J. Nucl. Med., 2018, 59(7), 1081-1084.
[http://dx.doi.org/10.2967/jnumed.117.207316] [PMID: 29496983]
[37]
Huang, Y.C.; Hsu, C.C.; Wu, Y.C.; Chen, H.J.; Chiu, N.T. Effect of fasting duration on myocardial fluorodeoxyglucose uptake in diabetic and nondiabetic patients. Nucl. Med. Commun., 2021, 42(3), 300-305.
[http://dx.doi.org/10.1097/MNM.0000000000001339] [PMID: 33306629]
[38]
Kang, J.Y.; Lee, M.Y.; Kim, Y.H. Associations of physiologic myocardial 18F-FDG uptake with fasting duration, HbA1c, and regular exer-cise. Ann. Nucl. Med., 2021, 35(2), 195-202.
[http://dx.doi.org/10.1007/s12149-020-01551-x] [PMID: 33387280]
[39]
Hai, W.; Wu, X.; Shi, S.; Yang, Y.; Yang, Z.; Li, B.; Xu, Y.; Peng, J. The effects of season change and fasting on Brown adipose tissue FDG-PET in mice. Biochem. Biophys. Res. Commun., 2020, 529(2), 398-403.
[http://dx.doi.org/10.1016/j.bbrc.2020.06.015] [PMID: 32703442]
[40]
Ishida, Y.; Sakanaka, K.; Itasaka, S.; Nakamoto, Y.; Togashi, K.; Mizowaki, T.; Hiraoka, M. Effect of long fasting on myocardial accumulation in 18F-fluorodeoxyglucose positron emission tomography after chemoradiotherapy for esophageal carcinoma. J. Radiat. Res. (Tokyo), 2018, 59(2), 182-189.
[http://dx.doi.org/10.1093/jrr/rrx076] [PMID: 29281031]
[41]
Nensa, F.; Tezgah, E.; Schweins, K.; Goebel, J.; Heusch, P.; Nassenstein, K.; Schlosser, T.; Poeppel, T.D. Evaluation of a low-carbohydrate diet-based preparation protocol without fasting for cardiac PET/MR imaging. J. Nucl. Cardiol., 2017, 24(3), 980-988.
[http://dx.doi.org/10.1007/s12350-016-0443-1] [PMID: 26993494]
[42]
Giorgetti, A.; Marras, G.; Genovesi, D.; Filidei, E.; Bottoni, A.; Mangione, M.; Emdin, M.; Marzullo, P. Effect of prolonged fasting and low molecular weight heparin or warfarin therapies on 2-deoxy-2-[18F]-fluoro-D-glucose PET cardiac uptake. J. Nucl. Cardiol., 2018, 25(4), 1364-1371.
[http://dx.doi.org/10.1007/s12350-017-0800-8] [PMID: 28160263]
[43]
Thientunyakit, T.; Wongsurawat, N.; Hannanthawiwat, C.; Nimmannit, A. Relationship between fasting blood glucose level and 18F-FDG PET/CT biodistribution quality in patients with cancer: How much should we concern? J. Med. Assoc. Thai., 2017, 100(5), 108-117.
[44]
Manabe, O.; Yoshinaga, K.; Ohira, H.; Masuda, A.; Sato, T.; Tsujino, I.; Yamada, A.; Oyama-Manabe, N.; Hirata, K.; Nishimura, M.; Tamaki, N. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial 18F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involve-ment sarcoidosis. J. Nucl. Cardiol., 2016, 23(2), 244-252.
[http://dx.doi.org/10.1007/s12350-015-0226-0] [PMID: 26243179]
[45]
Belohlavek, O.; Jaruskova, M. [18F]FDG-PET scan in patients with fasting hyperglycemia. Q. J. Nucl. Med. Mol. Imaging, 2016, 60(4), 404-412.
[PMID: 25017897]
[46]
Kobylecka, M.; Budnik, M.; Kochanowski, J.; Piatkowski, R.; Chojnowski, M.; Fronczewska-Wieniawska, K.; Mazurek, T.; Maczewska, J.; Peller, M.; Opolski, G.; Krolicki, L. Takotsubo cardiomyopathy: FDG myocardial uptake pattern in fasting patients. Comparison of PET/CT, SPECT, and ECHO results. J. Nucl. Cardiol., 2018, 25(4), 1260-1270.
[http://dx.doi.org/10.1007/s12350-016-0775-x] [PMID: 28054182]
[47]
Masuda, A.; Naya, M.; Manabe, O.; Magota, K.; Yoshinaga, K.; Tsutsui, H.; Tamaki, N. Administration of unfractionated heparin with prolonged fasting could reduce physiological 18F-fluorodeoxyglucose uptake in the heart. Acta Radiol., 2016, 57(6), 661-668.
[http://dx.doi.org/10.1177/0284185115600916] [PMID: 26339041]
[48]
Lee, H.Y.; Nam, H.Y.; Shin, S.K. Comparison of myocardial F-18 FDG uptake between overnight and non-overnight fasting in non-diabetic healthy subjects. Jpn. J. Radiol., 2015, 33(7), 385-391.
[http://dx.doi.org/10.1007/s11604-015-0428-z] [PMID: 25981760]
[49]
Morooka, M.; Moroi, M.; Uno, K.; Ito, K.; Wu, J.; Nakagawa, T.; Kubota, K.; Minamimoto, R.; Miyata, Y.; Okasaki, M.; Okazaki, O.; Yamada, Y.; Yamaguchi, T.; Hiroe, M. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res., 2014, 4(1), 1-11.
[http://dx.doi.org/10.1186/2191-219X-4-1] [PMID: 24382020]
[50]
Patel, C.D.; Malhotra, A.; Singla, S.; Kumar, P. Effect of duration of fasting and diet on the myocardial uptake of F-18-2-fluoro-2-deoxyglucose (F-18 FDG) at rest. Indian J. Nucl. Med., 2014, 29(3), 140-145.
[http://dx.doi.org/10.4103/0972-3919.136559] [PMID: 25210278]
[51]
Lindholm, P.; Minn, H.; Leskinen-Kallio, S.; Bergman, J.; Ruotsalainen, U.; Joensuu, H. Influence of the blood glucose concentration on FDG uptake in cancer--a PET study. J. Nucl. Med., 1993, 34(1), 1-6.
[PMID: 8418248]
[52]
Turcotte, E.; Leblanc, M.; Carpentier, A.; Bénard, F. Optimization of whole-body positron emission tomography imaging by using delayed 2-deoxy-2-[F-18]fluoro-D: -glucose Injection following I.V. Insulin in diabetic patients. Mol. Imaging Biol., 2006, 8(6), 348-354.
[http://dx.doi.org/10.1007/s11307-006-0064-1] [PMID: 17053859]
[53]
Garcia, J.R.; Sanchis, A.; Juan, J.; Tomas, J.; Domenech, A.; Soler, M.; Moragas, M.; Riera, E. Influence of subcutaneous administration of rapid-acting insulin in the quality of 18F-FDG PET/CT studies. Nucl. Med. Commun., 2014, 35(5), 459-465.
[http://dx.doi.org/10.1097/MNM.0000000000000082] [PMID: 24535382]
[54]
Langah, R.; Spicer, K.; Gebregziabher, M.; Gordon, L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J. Nucl. Cardiol., 2009, 16(5), 801-810.
[http://dx.doi.org/10.1007/s12350-009-9110-0] [PMID: 19548047]
[55]
Fukuchi, K.; Ohta, H.; Matsumura, K.; Ishida, Y. Benign variations and incidental abnormalities of myocardial FDG uptake in the fasting state as encountered during routine oncology positron emission tomography studies. Br. J. Radiol., 2007, 80(949), 3-11.
[http://dx.doi.org/10.1259/bjr/92105597] [PMID: 17005513]
[56]
Kaneta, T.; Hakamatsuka, T.; Takanami, K.; Yamada, T.; Takase, K.; Sato, A.; Higano, S.; Kinomura, S.; Fukuda, H.; Takahashi, S.; Yamada, S. Evaluation of the relationship between physiological FDG uptake in the heart and age, blood glucose level, fasting period, and hospitalization. Ann. Nucl. Med., 2006, 20(3), 203-208.
[http://dx.doi.org/10.1007/BF03027431] [PMID: 16715951]
[57]
de Groot, M.; Meeuwis, A.P.W.; Kok, P.J.M.; Corstens, F.H.M.; Oyen, W.J.G. Influence of blood glucose level, age and fasting period on non-pathological FDG uptake in heart and gut. Eur. J. Nucl. Med. Mol. Imaging, 2005, 32(1), 98-101.
[http://dx.doi.org/10.1007/s00259-004-1670-2] [PMID: 15605289]
[58]
Mirpour, S.; Meteesatien, P.; Khandani, A.H. Does hyperglycemia affect the diagnostic value of 18F-FDG PET/CT? Rev. Esp. Med. Nucl. Imagen Mol., 2012, 31(2), 71-77.
[PMID: 22088805]
[59]
Büsing, K.A.; Schönberg, S.O.; Brade, J.; Wasser, K. Impact of blood glucose, diabetes, insulin, and obesity on standardized uptake values in tumors and healthy organs on 18F-FDG PET/CT. Nucl. Med. Biol., 2013, 40(2), 206-213.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.10.014] [PMID: 23228852]
[60]
Liu, Y.; Ghesani, N.V.; Zuckier, L.S. Physiology and pathophysiology of incidental findings detected on FDG-PET scintigraphy. Semin. Nucl. Med., 2010, 40(4), 294-315.
[http://dx.doi.org/10.1053/j.semnuclmed.2010.02.002] [PMID: 20513451]
[61]
Wahl, R.L.; Henry, C.A.; Ethier, S.P. Serum glucose: Effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-D-glucose in rodents with mammary carcinoma. Radiology, 1992, 183(3), 643-647.
[http://dx.doi.org/10.1148/radiology.183.3.1584912] [PMID: 1584912]
[62]
Delbeke, D.; Coleman, R.E.; Guiberteau, M.J.; Brown, M.L.; Royal, H.D.; Siegel, B.A.; Townsend, D.W.; Berland, L.L.; Parker, J.A.; Hub-ner, K.; Stabin, M.G.; Zubal, G.; Kachelriess, M.; Cronin, V.; Holbrook, S. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J. Nucl. Med., 2006, 47(5), 885-895.
[PMID: 16644760]
[63]
Bombardieri, E.; Aktolun, C.; Baum, R.P.; Bishof-Delaloye, A.; Buscombe, J.; Chatal, J.F.; Maffioli, L.; Moncayo, R.; Mortelmans, L.; Reske, S.N. FDG-PET: Procedure guidelines for tumour imaging. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(12), BP115-BP124.
[PMID: 14989224]
[64]
Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; Stroobants, S.; Delbeke, D.; Donohoe, K.J.; Holbrook, S.; Graham, M.M.; Testanera, G.; Hoekstra, O.S.; Zijlstra, J.; Visser, E.; Hoekstra, C.J.; Pruim, J.; Willemsen, A.; Arends, B.; Kotzerke, J.; Bockisch, A.; Beyer, T.; Chiti, A.; Krause, B.J. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(2), 328-354.
[http://dx.doi.org/10.1007/s00259-014-2961-x] [PMID: 25452219]
[65]
Boellaard, R.; O’Doherty, M.J.; Weber, W.A.; Mottaghy, F.M.; Lonsdale, M.N.; Stroobants, S.G.; Oyen, W.J.G.; Kotzerke, J.; Hoekstra, O.S.; Pruim, J.; Marsden, P.K.; Tatsch, K.; Hoekstra, C.J.; Visser, E.P.; Arends, B.; Verzijlbergen, F.J.; Zijlstra, J.M.; Comans, E.F.I.; Lammertsma, A.A.; Paans, A.M.; Willemsen, A.T.; Beyer, T.; Bockisch, A.; Schaefer-Prokop, C.; Delbeke, D.; Baum, R.P.; Chiti, A.; Krause, B.J. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(1), 181-200.
[http://dx.doi.org/10.1007/s00259-009-1297-4] [PMID: 19915839]
[66]
Israel, O.; Weiler-Sagie, M.; Rispler, S.; Bar-Shalom, R.; Frenkel, A.; Keidar, Z.; Bar-Shalev, A.; Strauss, H.W. PET/CT quantitation of the effect of patient-related factors on cardiac 18F-FDG uptake. J. Nucl. Med., 2007, 48(2), 234-239.
[PMID: 17268020]
[67]
Williams, G.; Kolodny, G.M. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. Am. J. Roentgenol., 2008, 190(2), W151-W156.
[http://dx.doi.org/10.2214/AJR.07.2409] [PMID: 18212199]
[68]
Ogawa, M.; Ishino, S.; Mukai, T.; Asano, D.; Teramoto, N.; Watabe, H.; Kudomi, N.; Shiomi, M.; Magata, Y.; Iida, H.; Saji, H. (18)F-FDG accumulation in atherosclerotic plaques: Immunohistochemical and PET imaging study. J. Nucl. Med., 2004, 45(7), 1245-1250.
[PMID: 15235073]
[69]
Scholtens, A.M.; Verberne, H.J.; Budde, R.P.J.; Lam, M.G.E.H. Additional heparin preadministration improves cardiac glucose metabo-lism suppression over low-carbohydrate diet alone in 18F-FDG PET imaging. J. Nucl. Med., 2016, 57(4), 568-573.
[http://dx.doi.org/10.2967/jnumed.115.166884] [PMID: 26659348]
[70]
Ambrosini, V.; Zompatori, M.; Fasano, L.; Nanni, C.; Nava, S.; Rubello, D.; Fanti, S. (18)F-FDG PET/CT for the assessment of disease extension and activity in patients with sarcoidosis: Results of a preliminary prospective study. Clin. Nucl. Med., 2013, 38(4), e171-e177.
[http://dx.doi.org/10.1097/RLU.0b013e31827a27df] [PMID: 23429384]
[71]
Dilsizian, V.; Bacharach, S.L.; Beanlands, R.S.; Bergmann, S.R.; Delbeke, D.; Dorbala, S.; Gropler, R.J.; Knuuti, J.; Schelbert, H.R.; Travin, M.I. ASNC imaging guidelines/SNMMI procedure standard for Positron Emission Tomography (PET) nuclear cardiology procedures. J. Nucl. Cardiol., 2016, 23(5), 1187-1226.
[http://dx.doi.org/10.1007/s12350-016-0522-3] [PMID: 27392702]
[72]
Fallavollita, J.A.; Luisi, A.J., Jr; Yun, E.; deKemp, R.A.; Canty, J.M., Jr An abbreviated hyperinsulinemic-euglycemic clamp results in similar myocardial glucose utilization in both diabetic and non-diabetic patients with ischemic cardiomyopathy. J. Nucl. Cardiol., 2010, 17(4), 637-645.
[http://dx.doi.org/10.1007/s12350-010-9228-0] [PMID: 20387134]
[73]
Harisankar, C.N.B.; Mittal, B.R.; Agrawal, K.L.; Abrar, M.L.; Bhattacharya, A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J. Nucl. Cardiol., 2011, 18(5), 926-936.
[http://dx.doi.org/10.1007/s12350-011-9422-8] [PMID: 21732228]
[74]
Ishida, Y.; Yoshinaga, K.; Miyagawa, M.; Moroi, M.; Kondoh, C.; Kiso, K.; Kumita, S. Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology Recommendations. Ann. Nucl. Med., 2014, 28(4), 393-403.
[http://dx.doi.org/10.1007/s12149-014-0806-0] [PMID: 24464391]
[75]
Schatka, I.; Bengel, F.M. Advanced imaging of cardiac sarcoidosis. J. Nucl. Med., 2014, 55(1), 99-106.
[http://dx.doi.org/10.2967/jnumed.112.115121] [PMID: 24232870]
[76]
Camici, P.; Ferrannini, E.; Opie, L.H. Myocardial metabolism in ischemic heart disease: Basic principles and application to imaging by positron emission tomography. Prog. Cardiovasc. Dis., 1989, 32(3), 217-238.
[http://dx.doi.org/10.1016/0033-0620(89)90027-3] [PMID: 2682779]
[77]
Cheng, V.Y.; Slomka, P.J.; Ahlen, M.; Thomson, L.E.J.; Waxman, A.D.; Berman, D.S. Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: A randomized controlled trial. J. Nucl. Cardiol., 2010, 17(2), 286-291.
[http://dx.doi.org/10.1007/s12350-009-9179-5] [PMID: 20013165]
[78]
Kobayashi, Y.; Kumita, S.; Fukushima, Y.; Ishihara, K.; Suda, M.; Sakurai, M. Significant suppression of myocardial 18F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet. J. Cardiol., 2013, 62(5), 314-319.
[http://dx.doi.org/10.1016/j.jjcc.2013.05.004] [PMID: 23810066]
[79]
Wykrzykowska, J.; Lehman, S.; Williams, G.; Parker, J.A.; Palmer, M.R.; Varkey, S.; Kolodny, G.; Laham, R. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J. Nucl. Med., 2009, 50(4), 563-568.
[http://dx.doi.org/10.2967/jnumed.108.055616] [PMID: 19289431]
[80]
Miyachi, H.; Kumita, S.; Tanaka, K. PET/CT and SPECT/CT cardiac fusion imaging in a patient with takotsubo cardiomyopathy. Eur. Heart J., 2013, 34(5), 397.
[http://dx.doi.org/10.1093/eurheartj/ehs272] [PMID: 22922294]
[81]
Baba, S.; Engles, J.M.; Huso, D.L.; Ishimori, T.; Wahl, R.L. Comparison of uptake of multiple clinical radiotracers into brown adipose tissue under cold-stimulated and nonstimulated conditions. J. Nucl. Med., 2007, 48(10), 1715-1723.
[http://dx.doi.org/10.2967/jnumed.107.041715] [PMID: 17873137]
[82]
Nicholls, D.G. A history of UCPI. Biochem. Soc. Trans., 2001, 29(6), 751-755.
[http://dx.doi.org/10.1042/bst0290751] [PMID: 11709069]
[83]
Townsend, K.; Tseng, Y.H. Brown adipose tissue. Adipocyte, 2012, 1(1), 13-24.
[http://dx.doi.org/10.4161/adip.18951] [PMID: 23700507]
[84]
Ma, S.W.Y.; Foster, D.O. Brown adipose tissue, liver, and diet-induced thermogenesis in cafeteria diet-fed rats. Can. J. Physiol. Pharmacol., 1989, 67(4), 376-381.
[http://dx.doi.org/10.1139/y89-061] [PMID: 2758378]
[85]
Tatsumi, M.; Engles, J.M.; Ishimori, T.; Nicely, O.; Cohade, C.; Wahl, R.L. Intense (18)F-FDG uptake in brown fat can be reduced phar-macologically. J. Nucl. Med., 2004, 45(7), 1189-1193.
[PMID: 15235065]
[86]
Vrieze, A.; Schopman, J.E.; Admiraal, W.M.; Soeters, M.R.; Nieuwdorp, M.; Verberne, H.J.; Holleman, F. Fasting and postprandial activity of brown adipose tissue in healthy men. J. Nucl. Med., 2012, 53(9), 1407-1410.
[http://dx.doi.org/10.2967/jnumed.111.100701] [PMID: 22851631]
[87]
Nakayama, M.; Okizaki, A.; Takahashi, K. Fasting hypoglycemia on 18F-FDG PET/CT scan. Intern. Med., 2017, 56(8), 991.
[http://dx.doi.org/10.2169/internalmedicine.56.8092] [PMID: 28420855]
[88]
Webb, R.L.; Landau, E.; Klein, D.; DiPoce, J.; Volkin, D.; Belman, J.; Voutsinas, N.; Brenner, A. Effects of varying serum glucose levels on 18F-FDG biodistribution. Nucl. Med. Commun., 2015, 36(7), 717-721.
[http://dx.doi.org/10.1097/MNM.0000000000000319] [PMID: 25888357]
[89]
Minamimoto, R.; Hotta, M.; Hiroe, M.; Awaya, T.; Nakajima, K.; Okazaki, O.; Yamashita, H.; Kaneko, H.; Hiroi, Y. Proliferation imaging with 11C-4DST PET/CT for the evaluation of cardiac sarcoidosis, compared with FDG-PET/CT given a long fasting preparation protocol. J. Nucl. Cardiol., 2021, 28(2), 752-755.
[http://dx.doi.org/10.1007/s12350-020-02069-5] [PMID: 32052294]
[90]
Rahbar, K.; Afshar-Oromieh, A.; Seifert, R.; Wagner, S.; Schäfers, M.; Bögemann, M.; Weckesser, M. Do fasting or high caloric drinks affect the physiological uptake of fluorine-18 prostate-specific membrane antigen-1007 in liver and bowel? World J. Nucl. Med., 2019, 19(3), 220-223.
[PMID: 33354176]
[91]
Oka, S.; Kanagawa, M.; Doi, Y.; Schuster, D.; Goodman, M.; Yoshimura, H. Fasting enhances the contrast of bone metastatic lesions in 18F-Fluciclovine-PET: Preclinical study using a rat model of mixed osteolytic/osteoblastic bone metastases. Int. J. Mol. Sci., 2017, 18(5), 934.
[http://dx.doi.org/10.3390/ijms18050934] [PMID: 28468238]
[92]
Wondergem, M.; van der Zant, F.M.; Knol, R.J.J.; Pruim, J.; de Jong, I.J. Impact of fasting on 18F-fluorocholine gastrointestinal uptake and detection of lymph node metastases in patients with prostate cancer. EJNMMI Res., 2016, 6(1), 2.
[http://dx.doi.org/10.1186/s13550-015-0159-2] [PMID: 26739297]
[93]
Minamimoto, R.; Toyohara, J.; Seike, A.; Ito, H.; Endo, H.; Morooka, M.; Nakajima, K.; Mitsumoto, T.; Ito, K.; Okasaki, M.; Ishiwata, K.; Kubota, K. 4′-[Methyl-11C]-thiothymidine PET/CT for proliferation imaging in non-small cell lung cancer. J. Nucl. Med., 2012, 53(2), 199-206.
[http://dx.doi.org/10.2967/jnumed.111.095539] [PMID: 22190643]
[94]
Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, J.; Ceci, F.; Cho, S.; Giesel, F.; Haberkorn, U.; Hope, T.A.; Kopka, K.; Krause, B.J.; Mottaghy, F.M.; Schöder, H.; Sunderland, J.; Wan, S.; Wester, H.J.; Fanti, S.; Herrmann, K. 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(6), 1014-1024.
[http://dx.doi.org/10.1007/s00259-017-3670-z] [PMID: 28283702]
[95]
Rahbar, K.; Afshar-Oromieh, A.; Seifert, R.; Wagner, S.; Schäfers, M.; Bögemann, M.; Weckesser, M. Diagnostic performance of 18F-PSMA-1007 PET/CT in patients with biochemical recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(12), 2055-2061.
[http://dx.doi.org/10.1007/s00259-018-4089-x] [PMID: 30027419]
[96]
Giesel, F.L.; Knorr, K.; Spohn, F.; Will, L.; Maurer, T.; Flechsig, P.; Neels, O.; Schiller, K.; Amaral, H.; Weber, W.A.; Haberkorn, U.; Schwaiger, M.; Kratochwil, C.; Choyke, P.; Kramer, V.; Kopka, K.; Eiber, M. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 pa-tients with biochemical recurrence of prostate cancer after radical prostatectomy. J. Nucl. Med., 2019, 60(3), 362-368.
[http://dx.doi.org/10.2967/jnumed.118.212233] [PMID: 30042163]
[97]
Afshar-Oromieh, A.; Holland-Letz, T.; Giesel, F.L.; Kratochwil, C.; Mier, W.; Haufe, S.; Debus, N.; Eder, M.; Eisenhut, M.; Schäfer, M.; Neels, O.; Hohenfellner, M.; Kopka, K.; Kauczor, H.U.; Debus, J.; Haberkorn, U. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: Evaluation in 1007 patients. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(8), 1258-1268.
[http://dx.doi.org/10.1007/s00259-017-3711-7] [PMID: 28497198]
[98]
Bluemel, C.; Krebs, M.; Polat, B.; Linke, F.; Eiber, M.; Samnick, S.; Lapa, C.; Lassmann, M.; Riedmiller, H.; Czernin, J.; Rubello, D.; Bley, T.; Kropf, S.; Wester, H.J.; Buck, A.K.; Herrmann, K. 68Ga-PSMA-PET/CT in patients with biochemical prostate cancer recurrence and negative 18F-Choline-PET/CT. Clin. Nucl. Med., 2016, 41(7), 515-521.
[http://dx.doi.org/10.1097/RLU.0000000000001197] [PMID: 26975008]
[99]
Szabo, Z.; Mena, E.; Rowe, S.P.; Plyku, D.; Nidal, R.; Eisenberger, M.A.; Antonarakis, E.S.; Fan, H.; Dannals, R.F.; Chen, Y.; Mease, R.C.; Vranesic, M.; Bhatnagar, A.; Sgouros, G.; Cho, S.Y.; Pomper, M.G. Initial evaluation of [18F]DCFPyL for Prostate-Specific Membrane Antigen (PSMA)-targeted PET imaging of prostate cancer. Mol. Imaging Biol., 2015, 17(4), 565-574.
[http://dx.doi.org/10.1007/s11307-015-0850-8] [PMID: 25896814]
[100]
Lindholm, P.; Leskinen-Kallio, S.; Kirvelä, O.; Någren, K.; Lehikoinen, P.; Pulkki, K.; Peltola, O.; Ruotsalainen, U.; Teräs, M.; Joensuu, H. Head and neck cancer: Effect of food ingestion on uptake of C-11 methionine. Radiology, 1994, 190(3), 863-867.
[http://dx.doi.org/10.1148/radiology.190.3.8115641] [PMID: 8115641]
[101]
Langen, K-J.; Roosen, N.; Coenen, H.H.; Kuikka, J.T.; Kuwert, T.; Herzog, H.; Stöcklin, G. Feinendegen, LE Brain and brain tumor uptake of L-3-[123I] iodo-alpha-methyl tyrosine: Competition with natural L-amino acids. J. Nucl. Med., 1991, 32(6), 1225-1229.
[102]
Pochini, L.; Scalise, M.; Galluccio, M.; Indiveri, C. Membrane transporters for the special amino acid glutamine: Structure/function rela-tionships and relevance to human health. Front Chem., 2014, 2, 61.
[http://dx.doi.org/10.3389/fchem.2014.00061] [PMID: 25157349]
[103]
Ho, C.L.; Yu, S.C.; Yeung, D.W. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J. Nucl. Med., 2003, 44(2), 213-221.
[PMID: 12571212]
[104]
Li, S.; Beheshti, M.; Peck-Radosavljevic, M.; Oezer, S.; Grumbeck, E.; Schmid, M.; Hamilton, G.; Kapiotis, S.; Dudczak, R.; Kletter, K. Comparison of 11 C-acetate positron emission tomography and 67Gallium citrate scintigraphy in patients with hepatocellular carcinoma. Liver Int., 2006, 26(8), 920-927.
[http://dx.doi.org/10.1111/j.1478-3231.2006.01335.x] [PMID: 16953831]
[105]
Hwang, K.H.; Choi, D.J.; Lee, S.Y.; Lee, M.K.; Choe, W. Evaluation of patients with hepatocellular carcinomas using [11C]acetate and [18F]FDG PET/CT: A preliminary study. Appl. Radiat. Isot., 2009, 67(7-8), 1195-1198.
[http://dx.doi.org/10.1016/j.apradiso.2009.02.011] [PMID: 19342249]
[106]
Yamasaki, K.; Zhao, S.; Nishimura, M.; Zhao, Y.; Yu, W.; Shimizu, Y.; Nishijima, K.; Tamaki, N.; Takeda, H.; Kuge, Y. Radiolabeled BMIPP for imaging hepatic fatty acid metabolism: Evaluation of hepatic distribution and metabolism in mice at various metabolic statuses induced by fasting in comparison with palmitic acid. Mol. Imaging, 2015, 14, 14.
[PMID: 25744134]
[107]
Polonsky, K.S.; Given, B.D.; Hirsch, L.; Shapiro, E.T.; Tillil, H.; Beebe, C.; Galloway, J.A.; Frank, B.H.; Karrison, T.; Van Cauter, E. Quantitative study of insulin secretion and clearance in normal and obese subjects. J. Clin. Invest., 1988, 81(2), 435-441.
[http://dx.doi.org/10.1172/JCI113338] [PMID: 3276729]
[108]
Ding, H.J.; Shiau, Y.C.; Wang, J.J.; Ho, S.T.; Kao, A. The influences of blood glucose and duration of fasting on myocardial glucose up-take of [18F]fluoro-2-deoxy-D-glucose. Nucl. Med. Commun., 2002, 23(10), 961-965.
[http://dx.doi.org/10.1097/00006231-200210000-00005] [PMID: 12352594]
[109]
Dandekar, M.; Tseng, J.R. Gambhir, SS Reproducibility of 18F-FDG microPET studies in mouse tumor xenografts. J. Nucl. Med., 2007, 48(4), 602-607.
[110]
Wong, K.P.; Sha, W.; Zhang, X.; Huang, S.C. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice. J. Nucl. Med., 2011, 52(5), 800-807.
[http://dx.doi.org/10.2967/jnumed.110.085092] [PMID: 21498533]
[111]
Fueger, B.J.; Czernin, J.; Hildebrandt, I.; Tran, C.; Halpern, B.S.; Stout, D.; Phelps, M.E.; Weber, W.A. Impact of animal handling on the results of 18F-FDG PET studies in mice. J. Nucl. Med., 2006, 47(6), 999-1006.
[PMID: 16741310]
[112]
Wu, C.; Cheng, W.; Xing, H.; Dang, Y.; Li, F.; Zhu, Z. Brown adipose tissue can be activated or inhibited within an hour before 18F-FDG injection: A preliminary study with microPET. J. Biomed. Biotechnol., 2011, 2011, 1-5.
[http://dx.doi.org/10.1155/2011/159834] [PMID: 21541240]
[113]
Sharara-Chami, R.I.; Joachim, M.; Mulcahey, M.; Ebert, S.; Majzoub, J.A. Effect of epinephrine deficiency on cold tolerance and on brown adipose tissue. Mol. Cell. Endocrinol., 2010, 328(1-2), 34-39.
[http://dx.doi.org/10.1016/j.mce.2010.06.019] [PMID: 20619316]
[114]
Juhani Knuuti, M.; Mäki, M.; Yki-Järvinen, H.; Voipio-Pulkki, L.M.; Härkönen, R.; Haaparanta, M.; Nuutila, P. The effect of insulin and FFA on myocardial glucose uptake. J. Mol. Cell. Cardiol., 1995, 27(7), 1359-1367.
[http://dx.doi.org/10.1006/jmcc.1995.0129] [PMID: 7473782]
[115]
Sugden, M.C.; Holness, M.J.; Liu, Y.L.; Smith, D.M.; Fryer, L.G.; Kruszynska, Y.T. Mechanisms regulating cardiac fuel selection in hy-perthyroidism. Biochem. J., 1992, 286(2), 513-517.
[http://dx.doi.org/10.1042/bj2860513] [PMID: 1530584]
[116]
Bonen, A.; Megeney, L.A.; McCarthy, S.C.; McDermott, J.C.; Tan, M.H. Epinephrine administration stimulates GLUT4 translocation but reduces glucose transport in muscle. Biochem. Biophys. Res. Commun., 1992, 187(2), 685-691.
[http://dx.doi.org/10.1016/0006-291X(92)91249-P] [PMID: 1530625]
[117]
Mooradian, A.D. Effect of ascorbate and dehydroascorbate on tissue uptake of glucose. Diabetes, 1987, 36(9), 1001-1004.
[http://dx.doi.org/10.2337/diab.36.9.1001] [PMID: 3609494]
[118]
Kubota, K.; Kubota, R.; Yamada, S.; Tada, M.; Takahashi, T.; Iwata, R. Re-evaluation of myocardial FDG uptake in hyperglycemia. J. Nucl. Med., 1996, 37(10), 1713-1717.
[PMID: 8862317]
[119]
Claxton, A.J.; Cramer, J.; Pierce, C. A systematic review of the associations between dose regimens and medication compliance. Clin. Ther., 2001, 23(8), 1296-1310.
[http://dx.doi.org/10.1016/S0149-2918(01)80109-0] [PMID: 11558866]
[120]
Nensa, F.; Poeppel, T.D.; Beiderwellen, K.; Schelhorn, J.; Mahabadi, A.A.; Erbel, R.; Heusch, P.; Nassenstein, K.; Bockisch, A.; Forsting, M.; Schlosser, T. Hybrid PET/MR imaging of the heart: Feasibility and initial results. Radiology, 2013, 268(2), 366-373.
[http://dx.doi.org/10.1148/radiol.13130231] [PMID: 23651530]
[121]
Shortman, R.I.; Neriman, D.; Hoath, J.; Millner, L.; Endozo, R.; Azzopardi, G.; O’Meara, C.; Bomanji, J.; Groves, A.M. A comparison of the psychological burden of PET/MRI and PET/CT scans and association to initial state anxiety and previous imaging experiences. Br. J. Radiol., 2015, 88(1052), 20150121.
[http://dx.doi.org/10.1259/bjr.20150121] [PMID: 26090825]
[122]
Junqueira, D.R.; Zorzela, L.M.; Perini, E. Unfractionated heparin versus low molecular weight heparins for avoiding heparin-induced thrombocytopenia in postoperative patients. Cochrane Libr., 2017, 2017(4), CD007557.
[http://dx.doi.org/10.1002/14651858.CD007557.pub3] [PMID: 28431186]
[123]
Arepally, G.M. Heparin-induced thrombocytopenia. Blood, 2017, 129(21), 2864-2872.
[http://dx.doi.org/10.1182/blood-2016-11-709873] [PMID: 28416511]
[124]
Zidane, M.; Schram, M.T.; Planken, E.W.; Molendijk, W.H.; Rosendaal, F.R.; van der Meer, F.J.M.; Huisman, M.V. Frequency of major hemorrhage in patients treated with unfractionated intravenous heparin for deep venous thrombosis or pulmonary embolism: A study in routine clinical practice. Arch. Intern. Med., 2000, 160(15), 2369-2373.
[http://dx.doi.org/10.1001/archinte.160.15.2369] [PMID: 10927736]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy