Review Article

古小麦是预防慢性和退行性疾病的有前途的营养保健品

卷 30, 期 30, 2023

发表于: 08 December, 2022

页: [3384 - 3403] 页: 20

弟呕挨: 10.2174/0929867329666220915122216

价格: $65

conference banner
摘要

在均衡饮食的背景下,主要用作全谷物的小麦是一种很好的营养来源,包括纤维和生物活性化合物。谷物属于禾本科植物,由于其营养和化学特性,对于保持健康状态至关重要。最近的研究表明,摄入全谷物和以谷物为基础的产品可以降低氧化应激的风险,从而降低慢性和与年龄相关的疾病,如肥胖、心血管疾病、II 型糖尿病和癌症。事实上,一些研究报告称,经常食用全谷物与较低水平的总胆固醇和低密度脂蛋白胆固醇、甘油三酯、空腹血糖、血压和体重指数有关。此外,古老的小麦品种对人类健康越来越感兴趣,因为它含有多种营养成分,例如维生素和矿物质。事实上,古代小麦中存在的大量植物化学物质(多酚、类胡萝卜素、植物甾醇和酚类化合物)具有抗氧化特性,这对于预防各种慢性和退行性疾病至关重要。本综述旨在报告有关古代小麦品种的信息,与现代品种相比,讨论它们的成分和营养特性,并强调其对人类健康的有益影响。

关键词: 小麦,古小麦,谷物,全谷物,营养保健品,阿魏酸,类胡萝卜素,抗氧化剂,人类健康。

[1]
Păucean, A.; Mureșan, V.; Maria, M.S.; Chiș, M.S.; Mureșan, A.E.; Șerban, L.R.; Pop, A.; Muste, S. Metabolomics as a tool to elucidate the sensory, nutritional and safety quality of wheat bread—a review. Int. J. Mol. Sci., 2021, 22(16), 8945.
[http://dx.doi.org/10.3390/ijms22168945] [PMID: 34445648]
[2]
Stockfood. Available from: https://www.stockfood.com/
[3]
Valli, V.; Taccari, A.; Di Nunzio, M.; Danesi, F.; Bordoni, A. Health benefits of ancient grains. Comparison among bread made with ancient, heritage and modern grain flours in human cultured cells. Food Res. Int., 2018, 107, 206-215.
[http://dx.doi.org/10.1016/j.foodres.2018.02.032] [PMID: 29580479]
[4]
Cadeddu, F.; Motzo, R.; Mureddu, F.; Giunta, F. Ancient wheat species are suitable to grain only and grain plus herbage utilisations in marginal Mediterranean environments. Agron. Sustain. Dev., 2021, 41(2), 1-13.
[http://dx.doi.org/10.1007/s13593-021-00670-7]
[5]
Augimeri, G.; Montalto, F.I.; Giordano, C.; Barone, I.; Lanzino, M.; Catalano, S.; Andò, S.; De Amicis, F.; Bonofiglio, D. Nutraceuticals in the mediterranean diet: Potential avenues for breast cancer treatment. Nutrients, 2021, 13(8), 2557.
[http://dx.doi.org/10.3390/nu13082557] [PMID: 34444715]
[6]
Carroccio, A.; Celano, G.; Cottone, C.; Di Sclafani, G.; Vannini, L.; D’Alcamo, A.; Vacca, M.; Calabrese, F.M.; Mansueto, P.; Soresi, M.; Francavilla, R.; De Angelis, M. WHOLE-meal ancient wheat based diet: Effect on metabolic parameters and microbiota. Dig. Liver Dis., 2021, 53(11), 1412-1421.
[http://dx.doi.org/10.1016/j.dld.2021.04.026] [PMID: 34024731]
[7]
Spisni, E.; Imbesi, V.; Giovanardi, E.; Petrocelli, G.; Alvisi, P.; Valerii, M.C. Differential physiological responses elicited by ancient and heritage wheat cultivars compared to modern ones. Nutrients, 2019, 11(12), 2879.
[http://dx.doi.org/10.3390/nu11122879] [PMID: 31779167]
[8]
Marrelli, M.; Sprovieri, P.; Conforti, F.; Statti, G. Phytochemical content and antioxidant activity of ancient majorca and carosella (triticum aestivum L.) wheat flours. Agronomy, 2021, 11(6), 1217.
[http://dx.doi.org/10.3390/agronomy11061217]
[9]
Zamaratskaia, G.; Gerhardt, K.; Wendin, K. Biochemical characteristics and potential applications of ancient cereals—An underexploited opportunity for sustainable production and consumption. Trends Food Sci. Technol., 2021, 107, 114-123.
[http://dx.doi.org/10.1016/j.tifs.2020.12.006]
[10]
Balli, D.; Cecchi, L.; Pieraccini, G.; Innocenti, M.; Benedettelli, S.; Mulinacci, N. What’s new on total phenols and γ-oryzanol derivatives in wheat? A comparison between modern and ancient varieties. J. Food Compos. Anal., 2022, 2022, 104453.
[http://dx.doi.org/10.1016/j.jfca.2022.104453]
[11]
Adebo, O.A.; Gabriela Medina, M.I. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules, 2020, 25(4), 927.
[http://dx.doi.org/10.3390/molecules25040927] [PMID: 32093014]
[12]
Zrcková, M.; Capouchová, I.; Paznocht, L.; Eliášová, M.; Dvořák, P.; Konvalina, P.; Janovská, D.; Orsák, M.; Bečková, L. Variation of the total content of polyphenols and phenolic acids in einkorn, emmer, spelt and common wheat grain as a function of genotype, wheat species and crop year. Plant Soil Environ., 2019, 65(5), 260-266.
[http://dx.doi.org/10.17221/134/2019-PSE]
[13]
Tundis, R.; Iacopetta, D.; Sinicropi, M.S.; Bonesi, M.; Leporini, M.; Passalacqua, N.G.; Ceramella, J.; Menichini, F.; Loizzo, M.R. Assessment of antioxidant, antitumor and pro-apoptotic effects of Salvia fruticosa mill. subsp. thomasii (lacaita) brullo, guglielmo, pavone & terrasi (lamiaceae). Food Chem. Toxicol., 2017, 106(Pt A), 155-164.
[http://dx.doi.org/10.1016/j.fct.2017.05.040] [PMID: 28552787]
[14]
Ceramella, J.; Loizzo, M.R.; Iacopetta, D.; Bonesi, M.; Sicari, V.; Pellicanò, T.M.; Saturnino, C.; Malzert, F.A.; Tundis, R.; Sinicropi, M.S. Anchusa azurea mill. (Boraginaceae) aerial parts methanol extract interfering with cytoskeleton organization induces programmed cancer cells death. Food Funct., 2019, 10(7), 4280-4290.
[http://dx.doi.org/10.1039/C9FO00582J] [PMID: 31264668]
[15]
Tian, S.; Sun, Y.; Chen, Z.; Yang, Y.; Wang, Y. Functional properties of polyphenols in grains and effects of physicochemical processing on polyphenols. J. Food Qual., 2019, 2019, 2793973.
[http://dx.doi.org/10.1155/2019/2793973]
[16]
Arzani, A.; Ashraf, M. Cultivated ancient wheats (Triticum spp.): A potential source of health beneficial food products. Compr. Rev. Food Sci. Food Saf., 2017, 16(3), 477-488.
[http://dx.doi.org/10.1111/1541-4337.12262] [PMID: 33371554]
[17]
Truzzi, F.; Dinelli, G.; Spisni, E.; Simonetti, E.; Trebbi, G.; Bosi, S.; Marotti, I. Phenolic acids of modern and ancient grains: Effect on in vitro cell model. J. Sci. Food Agric., 2020, 100(11), 4075-4082.
[http://dx.doi.org/10.1002/jsfa.9796] [PMID: 31077369]
[18]
Iacopetta, D.; Ceramella, J.; Catalano, A.; Saturnino, C.; Pellegrino, M.; Mariconda, A.; Longo, P.; Sinicropi, M.S.; Aquaro, S. COVID-19 at a glance: An up to date overview on variants, drug design and therapies. Viruses, 2022, 14(3), 573.
[http://dx.doi.org/10.3390/v14030573] [PMID: 35336980]
[19]
Cappelli, A.; Cini, E. Challenges and opportunities in wheat flour, pasta, bread, and bakery product production chains: A systematic review of innovations and improvement strategies to increase sustainability, productivity, and product quality. Sustainability, 2021, 13, 2608.
[http://dx.doi.org/10.3390/su13052608]
[20]
Gil, A.; Ortega, R.M.; Maldonado, J. Wholegrain cereals and bread: A duet of the Mediterranean diet for the prevention of chronic diseases. Public Health Nutr., 2011, 14(12A), 2316-2322.
[http://dx.doi.org/10.1017/S1368980011002576] [PMID: 22166190]
[21]
Cooper, R. Re-discovering ancient wheat varieties as functional foods. J. Tradit. Complement. Med., 2015, 5(3), 138-143.
[http://dx.doi.org/10.1016/j.jtcme.2015.02.004] [PMID: 26151025]
[22]
Bordoni, A.; Danesi, F.; Di Nunzio, M.; Taccari, A.; Valli, V. Ancient wheat and health: A legend or the reality? A review on KAMUT Khorasan wheat. Int. J. Food Sci. Nutr., 2017, 68(3), 278-286.
[http://dx.doi.org/10.1080/09637486.2016.1247434] [PMID: 27790934]
[23]
Fardet, A. How can both the health potential and sustainability of cereal products be improved? A French perspective. J. Cereal Sci., 2014, 60, 540-548.
[http://dx.doi.org/10.1016/j.jcs.2014.07.013]
[24]
Dinu, M.; Whittaker, A.; Pagliai, G.; Benedettelli, S.; Sofi, F. Specie di grano antico e salute umana: Implicazioni biochimiche e cliniche. J. Nutr. Biochem., 2018, 52, 1-9.
[25]
Fares, C.; Codianni, P.; Cerbino, D.; Perrone, D.; Menga, V. Morphological and qualitative characterization of the “Carosella del Pollino” wheat population. Tec. Molit., 2014, 65, 590-595.
[26]
Hidalgo, A.; Brandolini, A. Lipoxygenase activity in wholemeal flours from Triticum monococcum, Triticum turgidum and Triticum aestivum. Food Chem., 2012, 131(4), 1499-1503.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.132]
[27]
Mefleh, M.; Conte, P.; Fadda, C.; Giunta, F.; Piga, A.; Hassoun, G.; Motzo, R. From ancient to old and modern durum wheat varieties: Interaction among cultivar traits, management, and technological quality. J. Sci. Food Agric., 2019, 99(5), 2059-2067.
[http://dx.doi.org/10.1002/jsfa.9388] [PMID: 30267406]
[28]
Shewry, P.R. Wheat. J. Exp. Bot., 2009, 60(6), 1537-1553.
[http://dx.doi.org/10.1093/jxb/erp058] [PMID: 19386614]
[29]
Shewry, P.R. Do ancient types of wheat have health benefits compared with modern bread wheat? J. Cereal Sci., 2018, 79, 469-476.
[http://dx.doi.org/10.1016/j.jcs.2017.11.010] [PMID: 29497244]
[30]
Zhang, Y.; Hu, X.; Juhasz, A.; Islam, S.; Yu, Z.; Zhao, Y.; Li, G.; Ding, W.; Ma, W. Characterising avenin-like proteins (ALPs) from albumin/globulin fraction of wheat grains by RP-HPLC, SDS-PAGE, and MS/MS peptides sequencing. BMC Plant Biol., 2020, 20(1), 45.
[http://dx.doi.org/10.1186/s12870-020-2259-z] [PMID: 31996140]
[31]
Ziegler, J.U.; Schweiggert, R.M.; Würschum, T.; Longin, C.F.H.; Carle, R. Lipophilic antioxidants in wheat (Triticum spp.): A target for breeding new varieties for future functional cereal products. J. Funct. Foods, 2016, 20, 594-605.
[http://dx.doi.org/10.1016/j.jff.2015.11.022]
[32]
Călinoiu, L.F.; Vodnar, D.C. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients, 2018, 10(11), 1615.
[http://dx.doi.org/10.3390/nu10111615] [PMID: 30388881]
[33]
Ed Nignpense, B.; Francis, N.; Blanchard, C.; Santhakumar, A.B. Bioaccessibility and bioactivity of cereal polyphenols: A review. Foods, 2021, 10(7), 1595.
[http://dx.doi.org/10.3390/foods10071595] [PMID: 34359469]
[34]
Shewry, P.R.; Do, H.S. “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci., 2015, 65, 236-243.
[http://dx.doi.org/10.1016/j.jcs.2015.07.014]
[35]
Kulathunga, J.; Simsek, S. Dietary fiber variation in ancient and modern wheat species: Einkorn, emmer, spelt and hard red spring wheat. J. Cer. Sci., 2022, 2022, 103420.
[36]
Rachón, L.; Szumiło, G.; Brodowska, M.; Woźniak, A. Nutritional value and mineral composition of grain of selected wheat species depending on the intensity of a production technology. J. Elem., 2015, 20, 705-715.
[37]
Laidig, F.; Piepho, H.P.; Rentel, D.; Drobek, T.; Meyer, U.; Huesken, A. Breeding progress, environmental variation and correlation of winter wheat yield and quality traits in German official variety trials and on farm during 1983-2014. Theor. Appl. Genet., 2017, 130(1), 223-245.
[http://dx.doi.org/10.1007/s00122-016-2810-3] [PMID: 27796431]
[38]
Boukid, F.; Folloni, S.; Sforza, S.; Vittadini, E.; Prandi, B. Current trends in ancient grains-based foodstuffs: Insights into nutritional aspects and technological applications. Compr. Rev. Food Sci. Food Saf., 2018, 17(1), 123-136.
[http://dx.doi.org/10.1111/1541-4337.12315] [PMID: 33350067]
[39]
Ranhotra, G.S.; Gelroth, J.A.; Glaser, B.K.; Lorenz, K.J. Nutrient composition of spelt wheat. J. Food Compos. Anal., 1996, 9, 81-84.
[http://dx.doi.org/10.1006/jfca.1996.0009]
[40]
Biel, W.; Jaroszewska, A.; Stankowski, S.; Sobolewska, M.; Kępińska, P.J. Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains. Eur. Food Res. Technol., 2021, 247, 1525-1538.
[http://dx.doi.org/10.1007/s00217-021-03729-7]
[41]
Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur., 2015, 4(3), 178-202.
[http://dx.doi.org/10.1002/fes3.64] [PMID: 27610232]
[42]
Nguyen, T.T.; Nguyen, D.H.; Zhao, B.T.; Le, D.D.; Choi, D.H.; Kim, Y.H.; Nguyen, T.H.; Woo, M.H. A new lignan and a new alkaloid, and α-glucosidase inhibitory compounds from the grains of Echinochloa utilis Ohwi & Yabuno. Bioorg. Chem., 2017, 74, 221-227.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.007] [PMID: 28865293]
[43]
Andersson, A.A.; Kamal, E.A.; Fraś, A.; Boros, D.; Aman, P. Alkylresorcinols in wheat varieties in the healthgrain diversity screen. J. Agric. Food Chem., 2008, 56(21), 9722-9725.
[http://dx.doi.org/10.1021/jf8011344] [PMID: 18921971]
[44]
Suchowilska, E.; Bieńkowska, T.; Stuper, S.K.; Wiwart, M. Concentrations of phenolic acids, flavonoids and carotenoids and the antioxidant activity of the grain, flour and bran of Triticum polonicum as compared with three cultivated wheat species. Agriculture, 2020, 10(12), 591.
[http://dx.doi.org/10.3390/agriculture10120591]
[45]
Boz, H. Ferulic acid in cereals-a review. Czech J. Food Sci., 2015, 33(1), 1-7.
[http://dx.doi.org/10.17221/401/2014-CJFS]
[46]
Dędek, K.; Rosicka, K.J.; Nebesny, E.; Kowalska, G. Characteristics and biological properties of ferulic acid. Biotechnol. Food Sci., 2019, 83(1), 71-85.
[47]
Balasubashini, M.S.; Rukkumani, R.; Viswanathan, P.; Menon, V.P. Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother. Res., 2004, 18(4), 310-314.
[http://dx.doi.org/10.1002/ptr.1440] [PMID: 15162367]
[48]
Ohnishi, M.; Matuo, T.; Tsuno, T.; Hosoda, A.; Nomura, E.; Taniguchi, H.; Sasaki, H.; Morishita, H. Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice and KK-Ay mice. Biofactors, 2004, 21(1-4), 315-319.
[http://dx.doi.org/10.1002/biof.552210161] [PMID: 15630218]
[49]
Mandal, S.; Barik, B.; Mallick, C.; De, D.; Ghosh, D. Therapeutic effect of ferulic acid, an ethereal fraction of ethanolic extract of seed of Syzygium cumini against streptozotocin-induced diabetes in male rat. Methods Find. Exp. Clin. Pharmacol., 2008, 30(2), 121-128.
[http://dx.doi.org/10.1358/mf.2008.30.2.1143090] [PMID: 18560627]
[50]
Choi, R.; Kim, B.H.; Naowaboot, J.; Lee, M.Y.; Hyun, M.R.; Cho, E.J.; Lee, E.S.; Lee, E.Y.; Yang, Y.C.; Chung, C.H. Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes. Exp. Mol. Med., 2011, 43(12), 676-683.
[http://dx.doi.org/10.3858/emm.2011.43.12.078] [PMID: 21975281]
[51]
Elhessy, H.M.; Eltahry, H.; Erfan, O.S.; Mahdi, M.R.; Hazem, N.M.; El-Shahat, M.A. Evaluation of the modulation of nitric oxide synthase expression in the cerebellum of diabetic albino rats and the possible protective effect of ferulic acid. Acta Histochem., 2020, 122(8), 151633.
[http://dx.doi.org/10.1016/j.acthis.2020.151633] [PMID: 33045658]
[52]
Ahmadipour, A.; Sharififar, F.; Anani, H.; Karami, M.S. Protective effects of ferulic acid against isoniazid induced hepatotoxicity in rats. FABAD J. Pharm. Sci., 2021, 46(2), 119-128.
[53]
Alam, M.A. Anti-hypertensive effect of cereal antioxidant ferulic acid and its mechanism of action. Front. Nutr., 2019, 6, 121.
[http://dx.doi.org/10.3389/fnut.2019.00121] [PMID: 31448280]
[54]
Dragan, M.; Stan, C.D.; Iacob, A.T.; Dragostin, O.; Profire, L. Ferulic acid: Potential therapeutic applications. Med. Surg. J. (N.Y.), 2018, 122(2), 388-395.
[55]
Baskaran, N.; Manoharan, S.; Balakrishnan, S.; Pugalendhi, P. Chemopreventive potential of ferulic acid in 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in Sprague-Dawley rats. Eur. J. Pharmacol., 2010, 637(1-3), 22-29.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.054] [PMID: 20385116]
[56]
Tsou, M.F.; Hung, C.F.; Lu, H.F.; Wu, L.T.; Chang, S.H.; Chang, H.L.; Chen, G.W.; Chung, J.G. Effects of caffeic acid, chlorogenic acid and ferulic acid on growth and arylamine N-acetyltransferase activity in Shigella sonnei (group D). Microbios, 2000, 101(398), 37-46.
[PMID: 10677842]
[57]
Ou, S.; Kwok, K.C. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric., 2004, 84(11), 1261-1269.
[http://dx.doi.org/10.1002/jsfa.1873]
[58]
Cai, S.; Wang, O.; Wang, M.; He, J.; Wang, Y.; Zhang, D.; Zhou, F.; Ji, B. In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented Oats (Avena sativa L.) and synergistic effect of three phenolic acids. J. Agric. Food Chem., 2012, 60(29), 7245-7251.
[http://dx.doi.org/10.1021/jf3009958] [PMID: 22765648]
[59]
Yeh, C.T.; Shih, P.H.; Yen, G.C. Synergistic effect of antioxidant phenolic acids on human phenolsulfotransferase activity. J. Agric. Food Chem., 2004, 52(13), 4139-4143.
[http://dx.doi.org/10.1021/jf035339u] [PMID: 15212460]
[60]
Lachman, J.; Hejtmánková, K.; Kotíková, Z. Tocols and carotenoids of einkorn, emmer and spring wheat varieties: Selection for breeding and production. J. Cereal Sci., 2013, 57(2), 207-214.
[http://dx.doi.org/10.1016/j.jcs.2012.05.011]
[61]
Sandan, N.; Batsukh, U. Natural Products of Silk Road Plants; CRC Press: Florida, USA, 2020.
[http://dx.doi.org/10.1201/9780429061547]
[62]
Olmedilla, A.B.; Rodríguez, R.E.; Beltrán, M.B.; Sánchez, P.M.; Estévez, S.R. Changes in lutein status markers (serum and faecal concentrations, macular pigment) in response to a lutein-rich fruit or vegetable (three pieces/day) dietary intervention in normolipemic subjects. Nutrients, 2021, 13(10), 3614.
[http://dx.doi.org/10.3390/nu13103614] [PMID: 34684614]
[63]
Requena, R.M.D.; Hornero, M.D.; Rodríguez, S.C.; Atienza, S.G. Durum Wheat (Triticum durum L.) landraces reveal potential for the improvement of grain carotenoid esterification in breeding programs. Foods, 2021, 10(4), 757.
[http://dx.doi.org/10.3390/foods10040757] [PMID: 33918139]
[64]
Abdel, S.M.; Young, J.C.; Rabalski, I.; Hucl, P.; Fregeau, R.J. Identification and quantification of seed carotenoids in selected wheat species. J. Agric. Food Chem., 2007, 55(3), 787-794.
[http://dx.doi.org/10.1021/jf062764p] [PMID: 17263475]
[65]
Leenhardt, F.; Lyan, B.; Rock, E.; Boussard, A.; Potus, J.; Chanliaud, E.; Remesy, C. Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. Eur. J. Agron., 2006, 25, 170-176.
[http://dx.doi.org/10.1016/j.eja.2006.04.010]
[66]
Ziegler, J.U.; Wahl, S.; Würschum, T.; Longin, C.F.H.; Carle, R.; Schweiggert, R.M. Lutein and lutein esters in whole grain flours made from 75 genotypes of 5 triticum species grown at multiple sites. J. Agric. Food Chem., 2015, 63(20), 5061-5071.
[http://dx.doi.org/10.1021/acs.jafc.5b01477] [PMID: 25946219]
[67]
Li, L.H.; Lee, J.C.; Leung, H.H.; Lam, W.C.; Fu, Z.; Lo, A.C.Y. Lutein supplementation for eye diseases. Nutrients, 2020, 12(6), 1721.
[http://dx.doi.org/10.3390/nu12061721] [PMID: 32526861]
[68]
Zafar, J.; Aqeel, A.; Shah, F.I.; Ehsan, N.; Gohar, U.F.; Moga, M.A.; Festila, D.; Ciurea, C.; Irimie, M.; Chicea, R. Biochemical and immunological implications of lutein and zeaxanthin. Int. J. Mol. Sci., 2021, 22(20), 10910.
[http://dx.doi.org/10.3390/ijms222010910] [PMID: 34681572]
[69]
Zielińska, M.A.; Wesołowska, A.; Pawlus, B.; Hamułka, J. Health effects of carotenoids during pregnancy and lactation. Nutrients, 2017, 9(8), 838.
[http://dx.doi.org/10.3390/nu9080838] [PMID: 28777356]
[70]
Johnson, J.; Wallace, T.; Ross, A.B. Alkylresorcinols. In: Whole grains and their bioactives; John Wiley & Sons Ltd: NY, USA, 2019.
[http://dx.doi.org/10.1002/9781119129486]
[71]
Marklund, M.; Biskup, I.; Kamal-Eldin, A.; Landberg, R. Alkylresorcinols and their metabolites as biomarkers for whole grain wheat and rye. Whole Grains Health, 2021, 99-136.
[http://dx.doi.org/10.1002/9781118939420.ch7]
[72]
Liu, J.; Hao, Y.; Wang, Z.; Ni, F.; Wang, Y.; Gong, L.; Sun, B.; Wang, J. Identification, quantification, and anti-inflammatory activity of 5-n-alkylresorcinols from 21 different wheat varieties. J. Agric. Food Chem., 2018, 66(35), 9241-9247.
[http://dx.doi.org/10.1021/acs.jafc.8b02911] [PMID: 30107738]
[73]
Oishi, K.; Yamamoto, S.; Itoh, N.; Nakao, R.; Yasumoto, Y.; Tanaka, K.; Kikuchi, Y.; Fukudome, S.; Okita, K.; Takano, I.Y. Wheat alkylresorcinols suppress high-fat, high-sucrose diet induced obesity and glucose intolerance by increasing insulin sensitivity and cholesterol excretion in male mice. J. Nutr., 2015, 145(2), 199-206.
[http://dx.doi.org/10.3945/jn.114.202754] [PMID: 25644338]
[74]
Wang, Z.; Hao, Y.; Wang, Y.; Liu, J.; Yuan, X.; Sun, B.; Wang, J. Wheat alkylresorcinols protect human retinal pigment epithelial cells against H2O2-induced oxidative damage through Akt-dependent Nrf2/HO-1 signaling. Food Funct., 2019, 10(5), 2797-2804.
[http://dx.doi.org/10.1039/C8FO02564A] [PMID: 31049492]
[75]
Fan, F.; Zou, Y.; Fang, Y.; Li, P.; Xia, J.; Shen, X.; Liu, Q.; Hu, Q. Potential neuroprotection of wheat alkylresorcinols in hippocampal neurons via Nrf2/ARE pathway. Food Funct., 2020, 11(11), 10161-10169.
[http://dx.doi.org/10.1039/D0FO02285C] [PMID: 33155602]
[76]
Fu, J.; Soroka, D.N.; Zhu, Y.; Sang, S. Induction of apoptosis and cell cycle arrest in human colon cancer cells by whole grain alkylresorcinols via activation of the p53 pathway. J. Agric. Food Chem., 2018, 66(45), 11935-11942.
[http://dx.doi.org/10.1021/acs.jafc.8b04442] [PMID: 30354111]
[77]
Fazio, A.; Iacopetta, D.; La Torre, C.; Ceramella, J.; Muià, N.; Catalano, A.; Carocci, A.; Sinicropi, M.S. Finding solutions for agricultural wastes: Antioxidant and antitumor properties of pomegranate Akko peel extracts and β-glucan recovery. Food Funct., 2018, 9(12), 6618-6631.
[http://dx.doi.org/10.1039/C8FO01394B] [PMID: 30511058]
[78]
Addeo, N.F.; Randazzo, B.; Olivotto, I.; Messina, M.; Tulli, F.; Musco, N.; Piccolo, G.; Nizza, A.; Di Meo, C.; Bovera, F. Replacing maize grain with ancient wheat lines by products in organic laying hens’ diet affects intestinal morphology and enzymatic activity. Sustainability, 2021, 13(12), 6554.
[http://dx.doi.org/10.3390/su13126554]
[79]
Ciccoritti, R.; Taddei, F.; Gazza, L.; Nocente, F. Influence of kernel thermal pre-treatments on 5-n-alkylresorcinols, polyphenols and antioxidant activity of durum and einkorn wheat. Eur. Food Res. Technol., 2021, 247, 353-362.
[http://dx.doi.org/10.1007/s00217-020-03627-4]
[80]
Zhu, D.; Sánchez, F.A.; Nyström, L. Antioxidant activity of individual steryl ferulates from various cereal grain sources. J. Nat. Prod., 2016, 79(2), 308-316.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00880] [PMID: 26790041]
[81]
Nurmi, T.; Nyström, L.; Edelmann, M.; Lampi, A.M.; Piironen, V. Phytosterols in wheat genotypes in the HEALTHGRAIN diversity screen. J. Agric. Food Chem., 2008, 56(21), 9710-9715.
[http://dx.doi.org/10.1021/jf8010678] [PMID: 18921973]
[82]
Luthria, D.L.; Lu, Y.J.; John, K.M.M. Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties. J. Funct. Foods, 2015, 18, 910-925.
[http://dx.doi.org/10.1016/j.jff.2015.01.001]
[83]
Nagy, K.; Actis, G.L.; Redeuil, K.; Barron, D.; Fumeaux, R.; Giuffrida, F.; Cruz-Hernandez, C.; Destaillats, F. Identification of cholesteryl ester of ferulic acid in human plasma by mass spectrometry. J. Chromatogr. A, 2013, 1301, 162-168.
[http://dx.doi.org/10.1016/j.chroma.2013.05.078] [PMID: 23791450]
[84]
Khallouki, F.; Owen, R.W.; Akdad, M.; El Bouhali, B.; Silvente, P.S.; Poirot, M. Vitamin E: An overview. In: Molecular Nutrition; Elsevier: Amsterdam, The Netherlands, 2020; pp. 51-66.
[http://dx.doi.org/10.1016/B978-0-12-811907-5.00001-4]
[85]
Carcea, M. Nutritional value of grain based foods. Foods, 2020, 9(4), 504.
[http://dx.doi.org/10.3390/foods9040504] [PMID: 32316241]
[86]
Karmowski, J.; Hintze, V.; Kschonsek, J.; Killenberg, M.; Böhm, V. Antioxidant activities of tocopherols/tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminescence. Food Chem., 2015, 175, 593-600.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.010] [PMID: 25577124]
[87]
Szewczyk, K.; Chojnacka, A.; Górnicka, M. Tocopherols and tocotrienols—bioactive dietary compounds; what is certain, what is doubt? Int. J. Mol. Sci., 2021, 22(12), 6222.
[http://dx.doi.org/10.3390/ijms22126222] [PMID: 34207571]
[88]
Lampi, A.M.; Nurmi, T.; Ollilainen, V.; Piironen, V. Tocopherols and tocotrienols in wheat genotypes in the healthgrain diversity screen. J. Agric. Food Chem., 2008, 56(21), 9716-9721.
[http://dx.doi.org/10.1021/jf801092a] [PMID: 18921970]
[89]
Hidalgo, A.; Brandolini, A.; Pompei, C.; Piscozzi, R. Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). J. Cereal Sci., 2006, 44, 182-193.
[http://dx.doi.org/10.1016/j.jcs.2006.06.002]
[90]
Hidalgo, A.; Brandolini, A.; Pompei, C. Carotenoids evolution during pasta, bread and water biscuit preparation from wheat flours. Food Chem., 2010, 121(3), 746-751.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.034]
[91]
Jiang, Q. Natural forms of vitamin E as effective agents for cancer prevention and therapy. Adv. Nutr., 2017, 8(6), 850-867.
[http://dx.doi.org/10.3945/an.117.016329] [PMID: 29141970]
[92]
Reboul, E.; Vitamin, E. Bioavailability: Mechanisms of intestinal absorption in the spotlight. Antioxidants, 2017, 6(4), 95.
[http://dx.doi.org/10.3390/antiox6040095] [PMID: 29165370]
[93]
Mohd Mutalip, S.S.; Ab-Rahim, S.; Rajikin, M.H. Vitamin E as an antioxidant in female reproductive health. Antioxidants, 2018, 7(2), 22.
[http://dx.doi.org/10.3390/antiox7020022] [PMID: 29373543]
[94]
FAO-WHO. CODEX Alimentarius. Standard for foods for special dietary use for persons intolerant to gluten; World Health Organization; Rome, 2015.
[95]
Wieser, H. Chemistry of gluten proteins. Food Microbiol., 2007, 24(2), 115-119.
[http://dx.doi.org/10.1016/j.fm.2006.07.004] [PMID: 17008153]
[96]
García, M.D.; Giménez, M.J.; Sánchez, L.S.; Barro, F. Gluten free wheat: Are we there? Nutrients, 2019, 11(3), 487.
[http://dx.doi.org/10.3390/nu11030487] [PMID: 30813572]
[97]
Caio, G.; Volta, U.; Sapone, A.; Leffler, D.A.; De Giorgio, R.; Catassi, C.; Fasano, A. Celiac disease: A comprehensive current review. BMC Med., 2019, 17(1), 142.
[http://dx.doi.org/10.1186/s12916-019-1380-z] [PMID: 31331324]
[98]
Roszkowska, A.; Pawlicka, M.; Mroczek, A.; Bałabuszek, K.; Nieradko, I.B. Non-celiac gluten sensitivity: A review. Medicina, 2019, 55(6), 222.
[http://dx.doi.org/10.3390/medicina55060222] [PMID: 31142014]
[99]
Cianferoni, A. Wheat allergy: Diagnosis and management. J. Asthma Allergy, 2016, 9, 13-25.
[http://dx.doi.org/10.2147/JAA.S81550] [PMID: 26889090]
[100]
Sharma, N.; Bhatia, S.; Chunduri, V.; Kaur, S.; Sharma, S.; Kapoor, P.; Kumari, A.; Garg, M. Pathogenesis of celiac disease and other gluten related disorders in wheat and strategies for mitigating them. Front. Nutr., 2020, 7, 6.
[http://dx.doi.org/10.3389/fnut.2020.00006] [PMID: 32118025]
[101]
Colombo, F.; Di Lorenzo, C.; Biella, S.; Bani, C.; Restani, P. Ancient and modern cereals as ingredients of the gluten-free diet: Are they safe enough for celiac consumers? Foods, 2021, 10(4), 906.
[http://dx.doi.org/10.3390/foods10040906] [PMID: 33924221]
[102]
Geisslitz, S.; Longin, C.F.H.; Scherf, K.A.; Koehler, P. Comparative study on gluten protein composition of ancient (Einkorn, Emmer and Spelt) and modern wheat species (Durum and Common Wheat). Foods, 2019, 8(9), 409.
[http://dx.doi.org/10.3390/foods8090409] [PMID: 31547385]
[103]
Malalgoda, M.; Ohm, J.B.; Simsek, S. Celiac antigenicity of ancient wheat species. Foods, 2019, 8(12), 675.
[http://dx.doi.org/10.3390/foods8120675] [PMID: 31842464]
[104]
Colomba, M.S.; Gregorini, A. Are ancient durum wheats less toxic to celiac patients? A study of α-gliadin from Graziella Ra and Kamut, Scient. World J., 2012, 2012
[105]
Geisslitz, S.; Longin, C.F.H.; Koehler, P.; Scherf, K.A. Comparative quantitative LC-MS/MS analysis of 13 amylase/trypsin inhibitors in ancient and modern Triticum species. Sci. Rep., 2020, 10(1), 14570.
[http://dx.doi.org/10.1038/s41598-020-71413-z] [PMID: 32883982]
[106]
Friedman, S.L.; Neuschwander, T.B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med., 2018, 24(7), 908-922.
[http://dx.doi.org/10.1038/s41591-018-0104-9] [PMID: 29967350]
[107]
De Maio, A.C.; Basile, G.; Iacopetta, D.; Catalano, A.; Ceramella, J.; Cafaro, D.; Saturnino, C.; Sinicropi, M.S. The significant role of nutraceutical compounds in ulcerative colitis treatment. Curr. Med. Chem., 2022, 29, 4216-4234.
[http://dx.doi.org/10.2174/0929867329666211227121321]
[108]
Whittaker, A.; Dinu, M.; Cesari, F.; Gori, A.M.; Fiorillo, C.; Becatti, M.; Casini, A.; Marcucci, R.; Benedettelli, S.; Sofi, F. A khorasan wheat based replacement diet improves risk profile of patients with type 2 diabetes mellitus (T2DM): A randomized crossover trial. Eur. J. Nutr., 2017, 56(3), 1191-1200.
[http://dx.doi.org/10.1007/s00394-016-1168-2] [PMID: 26853601]
[109]
Trozzi, C.; Raffaelli, F.; Vignini, A.; Nanetti, L.; Gesuita, R.; Mazzanti, L. Evaluation of antioxidative and diabetes-preventive properties of an ancient grain, KAMUT® khorasan wheat, in healthy volunteers. Eur. J. Nutr., 2019, 58(1), 151-161.
[http://dx.doi.org/10.1007/s00394-017-1579-8] [PMID: 29143934]
[110]
Dall’Asta, M.; Dodi, R.; Pede, G.D.; Marchini, M.; Spaggiari, M.; Gallo, A.; Righetti, L.; Brighenti, F.; Galaverna, G.; Dall’Asta, C.; Ranieri, R.; Folloni, S.; Scazzina, F. Postprandial blood glucose and insulin responses to breads formulated with different wheat evolutionary populations (Triticum aestivum L.): A randomized controlled trial on healthy subjects. Nutrition, 2022, 94, 111533.
[http://dx.doi.org/10.1016/j.nut.2021.111533] [PMID: 34936948]
[111]
Sereni, A.; Cesari, F.; Gori, A.M.; Maggini, N.; Marcucci, R.; Casini, A.; Sofi, F. Cardiovascular benefits from ancient grain bread consumption: Findings from a double-blinded randomized crossover intervention trial. Int. J. Food Sci. Nutr., 2017, 68(1), 97-103.
[http://dx.doi.org/10.1080/09637486.2016.1216528] [PMID: 27687519]
[112]
Pagliai, G.; Venturi, M.; Dinu, M.; Galli, V.; Colombini, B.; Giangrandi, I.; Maggini, N.; Sofi, F.; Granchi, L. Effect of consumption of ancient grain bread leavened with sourdough or with baker’s yeast on cardio metabolic risk parameters: A dietary intervention trial. Int. J. Food Sci. Nutr., 2021, 72(3), 367-374.
[http://dx.doi.org/10.1080/09637486.2020.1799956] [PMID: 32718191]
[113]
Ghiselli, L.; Sofi, F.; Whittaker, A.; Gori, A.M.; Casini, A.; Abbate, R.; Gensini, G.F.; Dinelli, G.; Marotti, I.; Benedettelli, S. Effects of pasta consumption obtained by an old Italian durum wheat variety on cardiovascular parameters: An intervention study. Prog. Nutr., 2013, 15, 265-273.
[114]
Zanini, B.; Villanacci, V.; De Leo, L.; Lanzini, A. Triticum monococcum in patients with celiac disease: A phase II open study on safety of prolonged daily administration. Eur. J. Nutr., 2015, 54(6), 1027-1029.
[http://dx.doi.org/10.1007/s00394-015-0892-3] [PMID: 25840666]
[115]
Picascia, S.; Camarca, A.; Malamisura, M.; Mandile, R.; Galatola, M.; Cielo, D.; Gazza, L.; Mamone, G.; Auricchio, S.; Troncone, R.; Greco, L.; Auricchio, R.; Gianfrani, C. In celiac disease patients the in vivo challenge with the diploid Triticum monococcum elicits a reduced immune response compared to hexaploid wheat. Mol. Nutr. Food Res., 2020, 64(11), e1901032.
[http://dx.doi.org/10.1002/mnfr.201901032] [PMID: 32374905]
[116]
Di Loreto, A.; Di Silvestro, R.; Dinelli, G.; Bregola, V.; Stenico, V.; Sferrazza, R.E.; Marotti, I.; Quinn, R.; Bosi, S. Nutritional and nutraceutical aspects of KAMUT khorasan wheat grown during the last two decades. J. Agric. Sci., 2017, 155(6), 954-965.
[http://dx.doi.org/10.1017/S002185961700003X]
[117]
Quinn, R.M. Kamut: Ancient grain, new cereal. In: Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, Egypt, 1999; pp. 182-183.
[118]
Grausgruber, H.; Oberforster, M.; Ghambashidze, G.; Ruckenbauer, P. Yield and agronomic traits of Khorasan wheat (Triticum turanicum jakubz.). Field Crops Res., 2005, 91, 319-327.
[http://dx.doi.org/10.1016/j.fcr.2004.08.001]
[119]
Sofi, F.; Whittaker, A.; Cesari, F.; Gori, A.M.; Fiorillo, C.; Becatti, M.; Marotti, I.; Dinelli, G.; Casini, A.; Abbate, R.; Gensini, G.F.; Benedettelli, S. Characterization of Khorasan wheat (Kamut) and impact of a replacement diet on cardiovascular risk factors: Cross over dietary intervention study. Eur. J. Clin. Nutr., 2013, 67(2), 190-195.
[http://dx.doi.org/10.1038/ejcn.2012.206] [PMID: 23299714]
[120]
Sofi, F.; Whittaker, A.; Gori, A.M.; Cesari, F.; Surrenti, E.; Abbate, R.; Gensini, G.F.; Benedettelli, S.; Casini, A. Effect of Triticum turgidum subsp. turanicum wheat on irritable bowel syndrome: A double blinded randomised dietary intervention trial. Br. J. Nutr., 2014, 111(11), 1992-1999.
[http://dx.doi.org/10.1017/S000711451400018X] [PMID: 24521561]
[121]
Whittaker, A.; Sofi, F.; Luisi, M.L.; Rafanelli, E.; Fiorillo, C.; Becatti, M.; Abbate, R.; Casini, A.; Gensini, G.F.; Benedettelli, S. An organic khorasan wheat based replacement diet improves risk profile of patients with acute coronary syndrome: A randomized crossover trial. Nutrients, 2015, 7(5), 3401-3415.
[http://dx.doi.org/10.3390/nu7053401] [PMID: 25970146]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy