Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Possibility of Liver Cancer Treatment By Nanoformulation of Phenolic Phytochemicals

Author(s): Debayan Banik and Prasun Patra*

Volume 12, Issue 2, 2022

Published on: 26 September, 2022

Page: [108 - 125] Pages: 18

DOI: 10.2174/2468187312666220908094042

Price: $65

Abstract

Cancer is a group of disease where the body cells continuously grow without proper cell division thereby causing tumours and leading to metastasis. Among many types of cancer, liver cancer remains a common and leading cause of human death. Plants have always been a great source of medicine and pharmacotherapy. Phytochemicals are plant-produced metabolites and phenolic phytochemicals are a subclass of it. Phenolic phytochemicals like curcumin, gallic acid and EGCG are secondary plant metabolites. They have been found to be effective and can improve the cell signalling pathways that govern cancer cell proliferations, inflammations, nearby invasions, and apoptosis. These phenolic phytochemicals greatly induce cell apoptosis and inhibit cancer cell growth. In this review article, we discuss how to improve the mentioned phytochemical's potency against hepatocellular carcinoma (HCC). One of the best approaches to improve the efficacy of these natural phytochemicals is to prepare nano formulations of these phytochemicals. Nano formulations impressively increase bioavailability, stability, absorption in the body and increased efficiency of these phytochemicals. The diverse character of many nanoparticles (NP) discussed in this article enables these systems to exhibit strong anticancer activity, emphasising combined therapy's benefits and necessity to combat cancer. In addition, nano formulations of these phenolic phytochemicals remarkably show a high apoptosis rate against HepG2 cells (HCC).

Keywords: Phenolic phytochemicals, nano formulation, liver cancer, treatment, HepG2 cells (HCC), apoptosis.

Next »
Graphical Abstract
[1]
National Cancer Institute. What is Cancer?, Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer
[2]
[3]
Chopra, H.; Dey, P.S.; Das, D. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules, 2021, 26(16), 4998.
[http://dx.doi.org/10.3390/molecules26164998] [PMID: 34443593]
[4]
American Cancer Society. What is liver cancer?, Available from: https://www.cancer.org/cancer/liver-cancer/about/what-is-liver-cancer.html
[5]
Mokdad, A.A.; Singal, A.G.; Yopp, A.C. Liver cancer. Jama, 2015, 314(24), 2701.
[http://dx.doi.org/10.1001/jama.2015.15425] [PMID: 26720038]
[7]
Bosch, F.X.; Ribes, J.; Díaz, M.; Cléries, R. Primary liver cancer: Worldwide incidence and trends. Gastroenterology, 2004, 127(5)(Suppl. 1), S5-S16.
[http://dx.doi.org/10.1053/j.gastro.2004.09.011] [PMID: 15508102]
[8]
Bosch, F.X.; Ribes, J.; Borràs, J. Epidemiology of primary liver cancer. Semin. Liver Dis., 1999, 19(3), 271-285.
[http://dx.doi.org/10.1055/s-2007-1007117] [PMID: 10518307]
[9]
Zhu, Y.; Song, M.; Yan, E. Identifying liver cancer and its relations with diseases, drugs, and genes: A literature-based approach. PLoS One, 2016, 11(5), e0156091.
[http://dx.doi.org/10.1371/journal.pone.0156091] [PMID: 27195695]
[10]
Balogh, J.; Victor, D., III; Asham, E.H. Hepatocellular carcinoma: A review. J. Hepatocell. Carcinoma, 2016, 3, 41-53.
[http://dx.doi.org/10.2147/JHC.S61146] [PMID: 27785449]
[11]
Tunissiolli, N.M.; Castanhole-Nunes, M.; Biselli-Chicote, P.M. Hepatocellular Carcinoma: A comprehensive review of biomarkers, clinical aspects, and therapy. APJCP, 2017, 18(4), 863-872.
[PMID: 28545181]
[12]
Aravalli, R.N.; Steer, C.J.; Cressman, E.N.K. Molecular mechanisms of hepatocellular carcinoma. Hepatology, 2008, 48(6), 2047-2063.
[http://dx.doi.org/10.1002/hep.22580] [PMID: 19003900]
[13]
Giaccia, A.J.; Kastan, M.B. The complexity of p53 modulation: Emerging patterns from divergent signals. Genes Dev., 1998, 12(19), 2973-2983.
[http://dx.doi.org/10.1101/gad.12.19.2973] [PMID: 9765199]
[14]
Hickman, E.S.; Moroni, M.C.; Helin, K. The role of p53 and pRB in apoptosis and cancer. Curr. Opin. Genet. Dev., 2002, 12(1), 60-66.
[http://dx.doi.org/10.1016/S0959-437X(01)00265-9] [PMID: 11790556]
[15]
Popper, H.; Roth, L.; Purcell, R.H.; Tennant, B.C.; Gerin, J.L. Hepatocarcinogenicity of the woodchuck hepatitis virus. Proc. Natl. Acad. Sci. USA, 1987, 84(3), 866-870.
[http://dx.doi.org/10.1073/pnas.84.3.866] [PMID: 3468514]
[16]
Whittaker, S.; Marais, R.; Zhu, A.X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene, 2010, 29(36), 4989-5005.
[http://dx.doi.org/10.1038/onc.2010.236] [PMID: 20639898]
[17]
Tsochatzis, E.A.; Bosch, J.; Burroughs, A.K. Liver cirrhosis. Lancet, 2014, 383(9930), 1749-1761.
[http://dx.doi.org/10.1016/S0140-6736(14)60121-5] [PMID: 24480518]
[18]
Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS, 2010, 5(6), 463-466.
[http://dx.doi.org/10.1097/COH.0b013e32833ed177] [PMID: 20978388]
[19]
WHO International Programme on Chemical Safety. Biomarkers and riskassessment: concepts andprinciples; , 1993. Available from: http://www.inchem.org/documents/ehc/ehc/ehc155.htm
[20]
Guan, M.C.; Ouyang, W.; Wang, M.D. Biomarkers for hepatocellular carcinoma based on body fluids and feces. World J. Gastrointest. Oncol., 2021, 13(5), 351-365.
[http://dx.doi.org/10.4251/wjgo.v13.i5.351] [PMID: 34040698]
[21]
Nakano, M; Kuromatsu, R; Niizeki, T Immunological inflammatory biomarkers as prognostic predictors for advanced hepatocellular carcinoma. EMSO open, 2021, 6(1), 100020.
[http://dx.doi.org/10.1016/j.esmoop.2020.100020]
[22]
Lou, J.; Zhang, L.; Lv, S.; Zhang, C.; Jiang, S. Biomarkers for hepatocellular carcinoma. Biomark. Cancer, 2017, 1-9.
[http://dx.doi.org/10.1177/1179299X16684640]
[23]
Spangenberg, H.C.; Thimme, R.; Blum, H.E. Serum markers of hepatocellular carcinoma. Semin. Liver Dis., 2006, 26(4), 385-390.
[http://dx.doi.org/10.1055/s-2006-951606] [PMID: 17051452]
[24]
Behne, T.; Copur, M.S. Biomarkers for hepatocellular carcinoma. Int. J. Hepatol., 2012, 2012, 859076.
[http://dx.doi.org/10.1155/2012/859076] [PMID: 22655201]
[25]
Chen, D.S.; Sung, J.L.; Sheu, J.C. Serum alpha-fetoprotein in the early stage of human hepatocellular carcinoma. Gastroenterology, 1984, 86(6), 1404-1409.
[http://dx.doi.org/10.1016/S0016-5085(84)80151-1] [PMID: 6201411]
[26]
Sung, J.L.; Lai, M-Y. M.D HBeAg and anti-HBe in chronic hepatitis B virus infection. Gastroenterology, 1981, 80(4)
[http://dx.doi.org/10.1016/0016-5085(81)90173-6]
[27]
Wu, J.T. Serum alpha-fetoprotein and its lectin reactivity in liver diseases: A review. Ann. Clin. Lab. Sci., 1990, 20(2), 98-105.
[PMID: 1691611]
[28]
Murugavel, K.G.; Mathews, S.; Jayanthi, V. Alpha-fetoprotein as a tumor marker in hepatocellular carcinoma: Investigations in south Indian subjects with hepatotropic virus and aflatoxin etiologies. Int. J. Infect. Dis., 2008, 12(6), e71-e76.
[http://dx.doi.org/10.1016/j.ijid.2008.04.010] [PMID: 18658001]
[29]
Khien, V.V.; Mao, H.V.; Chinh, T.T. Clinical evaluation of lentil lectin-reactive alpha-fetoprotein-L3 in histology-proven hepatocellular carcinoma. Int. J. Biol. Markers, 2001, 16(2), 105-111.
[http://dx.doi.org/10.1177/172460080101600204] [PMID: 11471892]
[30]
Oka, H.; Saito, A.; Ito, K. Multicenter prospective analysis of newly diagnosed hepatocellular carcinoma with respect to the percentage of Lens culinaris agglutinin-reactive alpha-fetoprotein. J. Gastroenterol. Hepatol., 2001, 16(12), 1378-1383.
[http://dx.doi.org/10.1046/j.1440-1746.2001.02643.x] [PMID: 11851836]
[31]
Taketa, K.; Sekiya, C.; Namiki, M. Lectin-reactive profiles of alpha-fetoprotein characterizing hepatocellular carcinoma and related conditions. Gastroenterology, 1990, 99(2), 508-518.
[http://dx.doi.org/10.1016/0016-5085(90)91034-4] [PMID: 1694805]
[32]
Johnson, P.J.; Poon, T.C.W.; Hjelm, N.M.; Ho, C.S.; Blake, C.; Ho, S.K.W. Structures of disease-specific serum alpha-fetoprotein isoforms. Br. J. Cancer, 2000, 83(10), 1330-1337.
[http://dx.doi.org/10.1054/bjoc.2000.1441] [PMID: 11044358]
[33]
Cheng, J.; Wang, W.; Zhang, Y. Prognostic role of pre-treatment serum AFP-L3% in hepatocellular carcinoma: Systematic review and meta-analysis. PLoS One, 2014, 9(1), e87011.
[http://dx.doi.org/10.1371/journal.pone.0087011] [PMID: 24498011]
[34]
Filmus, J. The contribution of in vivo manipulation of gene expression to the understanding of the function of glypicans. Glycoconj. J., 2002, 19(4-5), 319-323.
[http://dx.doi.org/10.1023/A:1025312819804] [PMID: 12975611]
[35]
Chauhan, R; Lahiri, N Tissue and serum-associated biomarkers of hepatocellular carcinoma. Biomarkers Cancer, 2016. 8s1:BIC.S34413
[36]
Capurro, M.; Wanless, I.R.; Sherman, M. Glypican-3: A novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology, 2003, 125(1), 89-97.
[http://dx.doi.org/10.1016/S0016-5085(03)00689-9] [PMID: 12851874]
[37]
Yamauchi, N.; Watanabe, A.; Hishinuma, M. The glypican 3 oncofetal protein is a promising diagnostic marker for hepatocellular carcinoma. Mod. Pathol., 2005, 18(12), 1591-1598.
[http://dx.doi.org/10.1038/modpathol.3800436] [PMID: 15920546]
[38]
Zhou, L.; Liu, J.; Luo, F. Serum tumor markers for detection of hepatocellular carcinoma. World J. Gastroenterol., 2006, 12(8), 1175-1181.
[http://dx.doi.org/10.3748/wjg.v12.i8.1175] [PMID: 16534867]
[39]
Sung, Y.K.; Hwang, S.Y.; Park, M.K. Glypican-3 is overexpressed in human hepatocellular carcinoma. Cancer Sci., 2003, 94(3), 259-262.
[http://dx.doi.org/10.1111/j.1349-7006.2003.tb01430.x] [PMID: 12824919]
[40]
Filmus, J.; Selleck, S.B. Glypicans: Proteoglycans with a surprise. J. Clin. Invest., 2001, 108(4), 497-501.
[http://dx.doi.org/10.1172/JCI200113712] [PMID: 11518720]
[41]
Nakatsura, T.; Yoshitake, Y.; Senju, S. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem. Biophys. Res. Commun., 2003, 306(1), 16-25.
[http://dx.doi.org/10.1016/S0006-291X(03)00908-2] [PMID: 12788060]
[42]
Wahle, K.W.; Brown, I.; Rotondo, D.; Heys, S.D. Plant phenolics in the prevention and treatment of cancer. Adv. Exp. Med. Biol., 2010, 698, 36-51.
[http://dx.doi.org/10.1007/978-1-4419-7347-4_4] [PMID: 21520702]
[43]
Quispe, C.; Cruz-Martins, N.; Manca, M.L. Nano-derived therapeutic formulations with curcumin in inflammation-related diseases. Oxid. Med. Cell. Longev., 2021, 2021, 3149223.
[http://dx.doi.org/10.1155/2021/3149223] [PMID: 34584616]
[44]
Li, Z.; Jiang, H.; Xu, C.; Gu, L. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll., 2015, 43, 153-164.
[http://dx.doi.org/10.1016/j.foodhyd.2014.05.010]
[45]
Eigner, D.; Scholz, D. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J. Ethnopharmacol., 1999, 67(1), 1-6.
[http://dx.doi.org/10.1016/S0378-8741(98)00234-7] [PMID: 10616954]
[46]
Basnet, P.; Skalko-Basnet, N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules, 2011, 16(6), 4567-4598.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[47]
Fadus, M.C.; Lau, C.; Bikhchandani, J.; Lynch, H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med., 2016, 7(3), 339-346.
[http://dx.doi.org/10.1016/j.jtcme.2016.08.002] [PMID: 28725630]
[48]
Różański G, Kujawski S, Newton JL, Zalewski P, Słomko J. Curcumin and biochemical parameters in Metabolic-Associated Fatty Liver Disease (MAFLD)-A Review. Nutrients, 2021, 13(8), 2654.
[http://dx.doi.org/10.3390/nu13082654] [PMID: 34444811]
[49]
Lao, C.D.; Ruffin, M.T., IV; Normolle, D. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6, 10.
[http://dx.doi.org/10.1186/1472-6882-6-10] [PMID: 16545122]
[50]
Rahmani, A.H.; Alsahli, M.A.; Aly, S.M.; Khan, M.A.; Aldebasi, Y.H. Role of curcumin in disease prevention and treatment. Adv. Biomed. Res., 2018, 7, 38.
[http://dx.doi.org/10.4103/abr.abr_147_16] [PMID: 29629341]
[51]
Chandran, B.; Goel, A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother. Res., 2012, 26(11), 1719-1725.
[http://dx.doi.org/10.1002/ptr.4639] [PMID: 22407780]
[52]
Kang, Q.; Chen, A. Curcumin suppresses expression of low-density lipoprotein (LDL) receptor, leading to the inhibition of LDL-induced activation of hepatic stellate cells. Br. J. Pharmacol., 2009, 157(8), 1354-1367.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00261.x] [PMID: 19594758]
[53]
Mathew, A.; Fukuda, T.; Nagaoka, Y. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One, 2012, 7(3), e32616.
[http://dx.doi.org/10.1371/journal.pone.0032616] [PMID: 22403681]
[54]
Epelbaum, R.; Schaffer, M.; Vizel, B.; Badmaev, V.; Bar-Sela, G. Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr. Cancer, 2010, 62(8), 1137-1141.
[http://dx.doi.org/10.1080/01635581.2010.513802] [PMID: 21058202]
[55]
Bayet-Robert, M.; Morvan, D. Metabolomics reveals metabolic targets and biphasic responses in breast cancer cells treated by curcumin alone and in association with docetaxel. PLoS One, 2013, 8(3), e57971.
[http://dx.doi.org/10.1371/journal.pone.0057971] [PMID: 23472124]
[56]
Todaro, M.; Francipane, M.G.; Medema, J.P.; Stassi, G. Colon cancer stem cells: Promise of targeted therapy. Gastroenterology, 2010, 138(6), 2151-2162.
[http://dx.doi.org/10.1053/j.gastro.2009.12.063] [PMID: 20420952]
[57]
Paulucci, V.P.; Couto, R.O.; Teixeira, C.C.C.; Freitas, L.A.P. Optimization of the extraction of curcumin from Curcuma longa rhizomes. Rev. Bras. Farmacogn., 2013, 23(1), 94-100.
[http://dx.doi.org/10.1590/S0102-695X2012005000117]
[58]
Lee, K.J.; Yang, H.J.; Jeong, S.W.; Ma, J.Y. Solid-phase extraction of curcuminoid from turmericusing physical process method. Korean J. Pharmacogn., 2012, 43, 250-256.
[59]
Lee, K.J.; Ma, J.Y.; Kim, Y.S.; Kim, D.S.; Jin, Y. High purity extraction and simultaneoushigh-performance liquid chromatography analysis of curcuminoids in turmeric. J. Appl. Biol. Chem., 2012, 55, 61-65.
[http://dx.doi.org/10.3839/jabc.2011.060]
[60]
Li, M.; Ngadi, M.O.; Ma, Y. Optimisation of pulsed ultrasonic and microwave-assisted extraction for curcuminoids by response surface methodology and kinetic study. Food Chem., 2014, 165, 29-34.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.115] [PMID: 25038645]
[61]
Patel, K.; Krishna, G.; Sokoloski, E.; Ito, Y. Preparative separation of curcuminoids from crude curcumin and turmeric powder by ph-zone-refining countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol., 2000, 23(14), 2209-2218.
[http://dx.doi.org/10.1081/JLC-100100482]
[62]
Ali, I.; Haque, A.; Saleem, K. Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column. Anal. Methods, 2014, 6(8), 2526-2536.
[http://dx.doi.org/10.1039/C3AY41987H]
[63]
Optimization of the conditions for the analysis of curcumin and a related compound in Curcuma longa with mobile-phase composition and column temperature via RP-HPLC. 2013, 25(11)
[64]
Lee, K.J.; Kim, Y.S.; Ma, J.Y. Separation and Identification of Curcuminoids from Asian Turmeric (Curcuma longa L.) Using RP-HPLC and LC-MS. Asian J. Chem., 2013, 25(2), 909-912.
[http://dx.doi.org/10.14233/ajchem.2013.13129]
[65]
Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[66]
Kim, Y.J.; Lee, H.J.; Shin, Y. Optimization and validation of high-performance liquid chromatography method for individual curcuminoids in turmeric by heat-refluxed extraction. J. Agric. Food Chem., 2013, 61(46), 10911-10918.
[http://dx.doi.org/10.1021/jf402483c] [PMID: 24164304]
[67]
Baumann, W.; Rodrigues, S.; Viana, L. Pigments and their solubility in and extractability by supercritical CO2 - I: The case of curcumin. Braz. J. Chem. Eng., 2000, 17, 323-328.
[http://dx.doi.org/10.1590/S0104-66322000000300008]
[68]
Chassagnez-Mendez, A.L.; Correa, N.C.F.; Franca, L.F.; Machado, N.T.; Araujo, M.E. Masstransfer model applied to the supercritical extraction with CO2 of curcumins from turmericrhizomes. Braz. J. Chem. Eng., 2000, 17, 315-322.
[http://dx.doi.org/10.1590/S0104-66322000000300007]
[69]
Paramasivam, M.; Poi, R.; Banerjee, H.; Bandyopadhyay, A. High-performance thin layer chromatographic method for quantitative determination of curcuminoids in Curcuma longa germplasm. Food Chem., 2009, 113(2), 640-644.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.051]
[70]
Marczylo, T.H.; Steward, W.P.; Gescher, A.J. Rapid analysis of curcumin and curcumin metabolites in rat biomatrices using a novel ultraperformance liquid chromatography (UPLC) method. J. Agric. Food Chem., 2009, 57(3), 797-803.
[http://dx.doi.org/10.1021/jf803038f] [PMID: 19152267]
[71]
Asai, A.; Miyazawa, T. Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci., 2000, 67(23), 2785-2793.
[http://dx.doi.org/10.1016/S0024-3205(00)00868-7] [PMID: 11105995]
[72]
Ireson, C.R.; Jones, D.J.L.; Orr, S. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol. Biomarkers Prev., 2002, 11(1), 105-111.
[PMID: 11815407]
[73]
Wahlström, B.; Blennow, G. A study on the fate of curcumin in the rat. Acta Pharmacol. Toxicol. (Copenh.), 1978, 43(2), 86-92.
[http://dx.doi.org/10.1111/j.1600-0773.1978.tb02240.x] [PMID: 696348]
[74]
Garcea, G.; Jones, D.J.; Singh, R. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br. J. Cancer, 2004, 90(5), 1011-1015.
[http://dx.doi.org/10.1038/sj.bjc.6601623] [PMID: 14997198]
[75]
Hoehle, S.I.; Pfeiffer, E.; Sólyom, A.M.; Metzler, M. Metabolism of curcuminoids in tissue slices and subcellular fractions from rat liver. J. Agric. Food Chem., 2006, 54(3), 756-764.
[http://dx.doi.org/10.1021/jf058146a] [PMID: 16448179]
[76]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[77]
Wortelboer, H.M.; Usta, M.; van der Velde, A.E. Interplay between MRP inhibition and metabolism of MRP inhibitors: The case of curcumin. Chem. Res. Toxicol., 2003, 16(12), 1642-1651.
[http://dx.doi.org/10.1021/tx034101x] [PMID: 14680379]
[78]
Logan-Smith, M.J.; Lockyer, P.J.; East, J.M.; Lee, A.G. Curcumin, a molecule that inhibits the Ca2+-ATPase of sarcoplasmic reticulum but increases the rate of accumulation of Ca2+. J. Biol. Chem., 2001, 276(50), 46905-46911.
[http://dx.doi.org/10.1074/jbc.M108778200] [PMID: 11592968]
[79]
Lin, J.K. Molecular targets of curcumin. In: The molecular targets and therapeutic uses of curcumin in health and disease; Aggarwal, B.B.; Surh, Y-J.; Shishodia, S., Eds.; Springer: New York, NY, USA, 2007; pp. 227-243.
[http://dx.doi.org/10.1007/978-0-387-46401-5_10]
[80]
Das, T.; Sa, G.; Saha, B.; Das, K. Multifocal signal modulation therapy of cancer: ancient weapon, modern targets. Mol. Cell. Biochem., 2010, 336(1-2), 85-95.
[http://dx.doi.org/10.1007/s11010-009-0269-0] [PMID: 19826768]
[81]
Nabavi, S.F.; Daglia, M.; Moghaddam, A.H.; Habtemariam, S.; Nabavi, S.M. Curcumin and liver disease: From chemistry to medicine. Compr. Rev. Food Sci. Food Saf., 2014, 13(1), 62-77.
[http://dx.doi.org/10.1111/1541-4337.12047] [PMID: 33412694]
[82]
Wang, J.; Wang, C.; Bu, G. Curcumin inhibits the growth of liver cancer stem cells through the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Exp. Ther. Med., 2018, 15(4), 3650-3658.
[83]
Darvesh, A.S.; Aggarwal, B.B.; Bishayee, A. Curcumin and liver cancer: A review. Curr. Pharm. Biotechnol., 2012, 13(1), 218-228.
[http://dx.doi.org/10.2174/138920112798868791] [PMID: 21466422]
[84]
Kang, J.; Chen, J.; Shi, Y.; Jia, J.; Zhang, Y. Curcumin-induced histone hypoacetylation: The role of reactive oxygen species. Biochem. Pharmacol., 2005, 69(8), 1205-1213.
[http://dx.doi.org/10.1016/j.bcp.2005.01.014]
[85]
Cui, S.X.; Qu, X.J.; Xie, Y.Y. Curcumin inhibits telomerase activity in human cancer cell lines. Int. J. Mol. Med., 2006, 18(2), 227-231.
[http://dx.doi.org/10.3892/ijmm.18.2.227]
[86]
Jia, L.; Wang, H.; Qu, S.; Miao, X.; Zhang, J. CD147 regulates vascular endothelial growth factor-A expression, tumorigenicity, and chemosensitivity to curcumin in hepatocellular carcinoma. IUBMB Life, 2008, 60(1), 57-63.
[http://dx.doi.org/10.1002/iub.11] [PMID: 18379992]
[87]
Wang, W.Z.; Cheng, J.; Luo, J.; Zhuang, S.M. Abrogation of G2/M arrest sensitizes curcumin-resistant hepatoma cells to apoptosis. FEBS Lett., 2008, 582(18), 2689-2695.
[88]
Cao, J.; Jia, L.; Zhou, H.M.; Liu, Y.; Zhong, L.F. Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol. Sci., 2006, 91(2), 476-483.
[http://dx.doi.org/10.1093/toxsci/kfj153] [PMID: 16537656]
[89]
Cao, J.; Liu, Y.; Jia, L. Curcumin induces apoptosis through mitochondrial hyperpolarization and mtDNA damage in human hepatoma G2 cells. Free Radic. Biol. Med., 2007, 43(6), 968-975.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.06.006] [PMID: 17697941]
[90]
Roy, M.; Pear, W.S.; Aster, J.C. The multifaceted role of Notch in cancer. Curr. Opin. Genet. Dev., 2007, 17(1), 52-59.
[http://dx.doi.org/10.1016/j.gde.2006.12.001] [PMID: 17178457]
[91]
Ning, L; Wentworth, L; Chen, H; Weber, SM 2009, Down-regulation of Notch1 signaling inhibits tumor growth in human hepatocellular carcinoma. Am J Transl Res10, 2009, 1(4), 358-66.
[92]
Simoni, D.; Rizzi, M.; Rondanin, R. Antitumor effects of curcumin and structurally beta-diketone modified analogs on multidrug resistant cancer cells. Bioorg. Med. Chem. Lett., 2008, 18(2), 845-849.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.021] [PMID: 18039573]
[93]
Bhawana, B.R.K.; Basniwal, R.K.; Buttar, H.S.; Jain, V.K.; Jain, N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J. Agric. Food Chem., 2011, 59(5), 2056-2061.
[http://dx.doi.org/10.1021/jf104402t] [PMID: 21322563]
[94]
Brinkevich, S.D.; Ostrovskaya, N.I.; Parkhach, M.E.; Samovich, S.N.; Shadyro, O.I. Effects of curcumin and related compounds on processes involving α-hydroxyethyl radicals. Free Radic. Res., 2012, 46(3), 295-302.
[http://dx.doi.org/10.3109/10715762.2011.653966] [PMID: 22239556]
[95]
Lee, W.H.; Loo, C.Y.; Bebawy, M.; Luk, F.; Mason, R.S.; Rohanizadeh, R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol., 2013, 11(4), 338-378.
[http://dx.doi.org/10.2174/1570159X11311040002] [PMID: 24381528]
[96]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398.
[PMID: 12680238]
[97]
Vareed, S.K.; Kakarala, M.; Ruffin, M.T. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev., 2008, 17(6), 1411-1417.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2693] [PMID: 18559556]
[98]
Nair, K.L.; Thulasidasan, A.K.; Deepa, G.; Anto, R.J.; Kumar, G.S. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. Int. J. Pharm., 2012, 425(1-2), 44-52.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.003] [PMID: 22266528]
[99]
Kulthe, S.S.; Choudhari, Y.M.; Inamdar, N.N.; Mourya, V. Polymeric micelles: Authoritative aspects for drug delivery. Des. Monomers Polym., 2012, 15(5), 465-521.
[http://dx.doi.org/10.1080/1385772X.2012.688328]
[100]
Lin, H.Y.; Thomas, J.L.; Chen, H.W.; Shen, C.M.; Yang, W.J.; Lee, M.H. In vitro suppression of oral squamous cell carcinoma growth by ultrasound-mediated delivery of curcumin microemulsions. Int. J. Nanomedicine, 2012, 7, 941-951.
[PMID: 22393291]
[101]
Lin, Y.L.; Liu, Y.K.; Tsai, N.M. A Lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells. Nanomedicine, 2012, 8(3), 318-327.
[http://dx.doi.org/10.1016/j.nano.2011.06.011] [PMID: 21704596]
[102]
Gou, M.; Men, K.; Shi, H. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale, 2011, 3(4), 1558-1567.
[http://dx.doi.org/10.1039/c0nr00758g] [PMID: 21283869]
[103]
Song, Z.; Feng, R.; Sun, M. Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. J. Colloid Interface Sci., 2011, 354(1), 116-123.
[http://dx.doi.org/10.1016/j.jcis.2010.10.024] [PMID: 21044788]
[104]
Lee, W.H.; Loo, C.Y.; Young, P.M.; Traini, D.; Mason, R.S.; Rohanizadeh, R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin. Drug Deliv., 2014, 11(8), 1183-1201.
[http://dx.doi.org/10.1517/17425247.2014.916686] [PMID: 24857605]
[105]
Hu-Lieskovan, S.; Heidel, J.D.; Bartlett, D.W.; Davis, M.E.; Triche, T.J. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res., 2005, 65(19), 8984-8992.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0565] [PMID: 16204072]
[106]
Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[107]
Mohanty, C.; Sahoo, S.K. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials, 2010, 31(25), 6597-6611.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.062] [PMID: 20553984]
[108]
Grabovac, V.; Bernkop-Schnürch, A. Development and in vitro evaluation of surface modified poly(lactide-co-glycolide) nanoparticles with chitosan-4-thiobutylamidine. Drug Dev. Ind. Pharm., 2007, 33(7), 767-774.
[http://dx.doi.org/10.1080/03639040601050163] [PMID: 17654025]
[109]
Yallapu, M.M.; Gupta, B.K.; Jaggi, M.; Chauhan, S.C. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J. Colloid Interface Sci., 2010, 351(1), 19-29.
[http://dx.doi.org/10.1016/j.jcis.2010.05.022] [PMID: 20627257]
[110]
Punfa, W.; Yodkeeree, S.; Pitchakarn, P.; Ampasavate, C.; Limtrakul, P. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells. Acta Pharmacol. Sin., 2012, 33(6), 823-831.
[http://dx.doi.org/10.1038/aps.2012.34] [PMID: 22580738]
[111]
Cortés, J.; Saura, C. Nanoparticle albumin-bound (nab™)-paclitaxel: Improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Ejc Supplements, 2010, 8, 1-10.
[http://dx.doi.org/10.1016/S1359-6349(10)70002-1]
[112]
Jithan, A.; Madhavi, K.; Madhavi, M.; Prabhakar, K. Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. Int. J. Pharm. Investig., 2011, 1(2), 119-125.
[http://dx.doi.org/10.4103/2230-973X.82432] [PMID: 23071931]
[113]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Curcumin nanoformulations: A future nanomedicine for cancer. Drug Discov. Today, 2012, 17(1-2), 71-80.
[http://dx.doi.org/10.1016/j.drudis.2011.09.009] [PMID: 21959306]
[114]
Anuradha, C.A.; Aukunuru, J. Preparation, characterisation and in vivo evaluation of bis-demethoxy curcumin analogue (BDMCA) nanoparticles. Trop. J. Pharma Res., 2010, 9(1), 9.
[http://dx.doi.org/10.4314/tjpr.v9i1.52036]
[115]
Kunwar, A.; Barik, A.; Pandey, R.; Priyadarsini, K.I. Transport of liposomal and albumin loaded curcumin to living cells: An absorption and fluorescence spectroscopic study. Biochim. Biophys. Acta, 2006, 1760(10), 1513-1520.
[http://dx.doi.org/10.1016/j.bbagen.2006.06.012] [PMID: 16904830]
[116]
Ghosh, M.; Singh, A.T.K.; Xu, W.; Sulchek, T.; Gordon, L.I.; Ryan, R.O. Curcumin nanodisks: Formulation and characterization. Nanomedicine, 2011, 7(2), 162-167.
[http://dx.doi.org/10.1016/j.nano.2010.08.002] [PMID: 20817125]
[117]
Li, L.; Braiteh, F.S.; Kurzrock, R. Liposome-encapsulated curcumin: In vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer, 2005, 104(6), 1322-1331.
[http://dx.doi.org/10.1002/cncr.21300] [PMID: 16092118]
[118]
Wang, D.; Veena, M.S.; Stevenson, K. Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor kappaB by an AKT-independent pathway. Clin. Cancer Res., 2008, 14(19), 6228-6236.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5177] [PMID: 18829502]
[119]
Li, X.Y.; Nan, K.H.; Li, L.L. In vivo evaluation of curcuminnanoformulationloaded methoxypoly(ethylene glycol)-graft-chitosan composite film for wound healing application. Carbohydr. Polym., 2012, 88, 84-90.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.068]
[120]
Ma, J.; Luo, X.D.; Protiva, P. Bioactive novel polyphenols from the fruit of Manilkara zapota (Sapodilla). J. Nat. Prod., 2003, 66(7), 983-986.
[http://dx.doi.org/10.1021/np020576x] [PMID: 12880319]
[121]
Shahrzad, S.; Bitsch, I. Determination of some pharmacologically active phenolic acids in juices by high-performance liquid chromatography. J. Chromatogr. A, 1996, 741(2), 223-231.
[http://dx.doi.org/10.1016/0021-9673(96)00169-0] [PMID: 8785003]
[122]
Kim, D.O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem., 2002, 50(13), 3713-3717.
[http://dx.doi.org/10.1021/jf020071c] [PMID: 12059148]
[123]
Kroes, B.H.; van den Berg, A.J.; Quarles van Ufford, H.C.; van Dijk, H.; Labadie, R.P. Anti-inflammatory activity of gallic acid. Planta Med., 1992, 58(6), 499-504.
[http://dx.doi.org/10.1055/s-2006-961535] [PMID: 1336604]
[124]
Gichner, T.; Pospísil, F.; Velemínský, J.; Volkeová, V.; Volke, J. Two types of antimutagenic effects of gallic and tannic acids towards N-nitroso-compounds-induced mutagenicity in the Ames Salmonella assay. Folia Microbiol. (Praha), 1987, 32(1), 55-62.
[http://dx.doi.org/10.1007/BF02877259] [PMID: 3546027]
[125]
Locatelli, C.; Filippin-Monteiro, F.B.; Creczynski-Pasa, T.B. Alkyl esters of gallic acid as anticancer agents: A review. Eur. J. Med. Chem., 2013, 60, 233-239.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.056] [PMID: 23291333]
[126]
Liang, C.Z.; Zhang, X.; Li, H. Gallic acid induces the apoptosis of human osteosarcoma cells in vitro and in vivo via the regulation of mitogen-activated protein kinase pathways. Cancer Biother. Radiopharm., 2012, 27(10), 701-710.
[http://dx.doi.org/10.1089/cbr.2012.1245] [PMID: 22849560]
[127]
Chia, Y.C.; Rajbanshi, R.; Calhoun, C.; Chiu, R.H. Anti-neoplastic effects of gallic acid, a major component of Toona sinensis leaf extract, on oral squamous carcinoma cells. Molecules, 2010, 15(11), 8377-8389.
[http://dx.doi.org/10.3390/molecules15118377] [PMID: 21081858]
[128]
Yen, G.C.; Duh, P.D.; Tsai, H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem., 2002, 79(3), 307-313.
[http://dx.doi.org/10.1016/S0308-8146(02)00145-0]
[129]
Aruoma, O.I.; Murcia, A.; Butler, J.; Halliwell, B. Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J. Agric. Food Chem., 1993, 41(11), 1880-1885.
[http://dx.doi.org/10.1021/jf00035a014]
[130]
Lien, E.J.; Ren, S.; Bui, H.H.; Wang, R. Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic. Biol. Med., 1999, 26(3-4), 285-294.
[http://dx.doi.org/10.1016/S0891-5849(98)00190-7] [PMID: 9895218]
[131]
Verma, S.; Singh, A.; Mishra, A. Gallic acid: Molecular rival of cancer. Environ. Toxicol. Pharmacol., 2013, 35(3), 473-485.
[http://dx.doi.org/10.1016/j.etap.2013.02.011] [PMID: 23501608]
[132]
Golumbic, C.; Mattill, H.A. The antioxidant properties of gallic acid and allied compounds. Oil Soap, 1942, 19(8), 144-145.
[http://dx.doi.org/10.1007/BF02545531]
[133]
Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 2015, 5(35), 27540-27557.
[http://dx.doi.org/10.1039/C5RA01911G]
[134]
Inoue, M.; Suzuki, R.; Koide, T.; Sakaguchi, N.; Ogihara, Y.; Yabu, Y. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem. Biophys. Res. Commun., 1994, 204(2), 898-904.
[http://dx.doi.org/10.1006/bbrc.1994.2544] [PMID: 7980558]
[135]
Yoshino, M.; Haneda, M.; Naruse, M. Prooxidant action of gallic acid compounds: Copper-dependent strand breaks and the formation of 8-hydroxy-2′-deoxyguanosine in DNA. Toxicol. In Vitro, 2002, 16(6), 705-709.
[http://dx.doi.org/10.1016/S0887-2333(02)00061-9] [PMID: 12423653]
[136]
Isuzugawa, K.; Inoue, M.; Ogihara, Y. Catalase contents in cells determine sensitivity to the apoptosis inducer gallic acid. Biol. Pharm. Bull., 2001, 24(9), 1022-1026.
[http://dx.doi.org/10.1248/bpb.24.1022] [PMID: 11558562]
[137]
Inoue, M.; Sakaguchi, N.; Isuzugawa, K.; Tani, H.; Ogihara, Y. Role of reactive oxygen species in gallic acid-induced apoptosis. Biol. Pharm. Bull., 2000, 23(10), 1153-1157.
[http://dx.doi.org/10.1248/bpb.23.1153] [PMID: 11041242]
[138]
Faried, A.; Kurnia, D.; Faried, L.S. Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int. J. Oncol., 2007, 30(3), 605-613.
[http://dx.doi.org/10.3892/ijo.30.3.605] [PMID: 17273761]
[139]
Gomes, C.A.; da Cruz, T.G.; Andrade, J.L.; Milhazes, N.; Borges, F.; Marques, M.P.M. Anticancer activity of phenolic acids of natural or synthetic origin: A structure-activity study. J. Med. Chem., 2003, 46(25), 5395-5401.
[http://dx.doi.org/10.1021/jm030956v] [PMID: 14640548]
[140]
Kaur, M.; Velmurugan, B.; Rajamanickam, S.; Agarwal, R.; Agarwal, C. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharm. Res., 2009, 26(9), 2133-2140.
[http://dx.doi.org/10.1007/s11095-009-9926-y] [PMID: 19543955]
[141]
Salucci, M.; Stivala, L.A.; Maiani, G.; Bugianesi, R.; Vannini, V. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Br. J. Cancer, 2002, 86(10), 1645-1651.
[http://dx.doi.org/10.1038/sj.bjc.6600295] [PMID: 12085217]
[142]
Monga, J.; Pandit, S.; Chauhan, R.S.; Chauhan, C.S.; Chauhan, S.S.; Sharma, M. Growth inhibition and apoptosis induction by (+)-Cyanidan-3-ol in hepatocellular carcinoma. PLoS One, 2013, 8(7), e68710.
[http://dx.doi.org/10.1371/journal.pone.0068710] [PMID: 23894334]
[143]
Lima, K.G.; Krause, G.C.; Schuster, A.D. Gallic acid reduces cell growth by induction of apoptosis and reduction of IL-8 in HepG2 cells. Biomed. Pharmacother., 2016, 84, 1282-1290.
[http://dx.doi.org/10.1016/j.biopha.2016.10.048] [PMID: 27810785]
[144]
Sakaguchi, N.; Inoue, M.; Ogihara, Y. Reactive oxygen species and intracellular Ca2+, common signals for apoptosis induced by gallic acid. Biochem. Pharmacol., 1998, 55(12), 1973-1981.
[http://dx.doi.org/10.1016/S0006-2952(98)00041-0] [PMID: 9714317]
[145]
Yoshioka, K.; Kataoka, T.; Hayashi, T.; Hasegawa, M.; Ishi, Y.; Hibasami, H. Induction of apoptosis by gallic acid in human stomach cancer KATO III and colon adenocarcinoma COLO 205 cell lines. Oncol. Rep., 2000, 7(6), 1221-1223.
[http://dx.doi.org/10.3892/or.7.6.1221] [PMID: 11032918]
[146]
Siddaraju, M.N.; Dharmesh, S.M. Inhibition of gastric H+, K+-ATPase and Helicobacter pylori growth by phenolic antioxidants of Zingiber officinale. Mol. Nutr. Food Res., 2007, 51(3), 324-332.
[http://dx.doi.org/10.1002/mnfr.200600202] [PMID: 17295419]
[147]
Agarwal, C.; Tyagi, A.; Agarwal, R. Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Mol. Cancer Ther., 2006, 5(12), 3294-3302.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0483] [PMID: 17172433]
[148]
Chen, H.M.; Wu, Y.C.; Chia, Y.C. Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer Lett., 2009, 286(2), 161-171.
[http://dx.doi.org/10.1016/j.canlet.2009.05.040] [PMID: 19589639]
[149]
Yasuhara, S.; Zhu, Y.; Matsui, T. Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J. Histochem. Cytochem., 2003, 51(7), 873-885.
[http://dx.doi.org/10.1177/002215540305100703] [PMID: 12810838]
[150]
You, B.R.; Moon, H.J.; Han, Y.H.; Park, W.H. Gallic acid inhibits the growth of hela cervical cancer cells via apoptosis and/or necrosis. Food Chem. Toxicol., 2010, 48(5), 1334-1340.
[http://dx.doi.org/10.1016/j.fct.2010.02.034] [PMID: 20197077]
[151]
Pellegrina, C.D.; Padovani, G.; Mainente, F. Anti-tumour potential of a gallic acid-containing phenolic fraction from Oenothera biennis. Cancer Lett., 2005, 226(1), 17-25.
[http://dx.doi.org/10.1016/j.canlet.2004.11.033] [PMID: 16004929]
[152]
Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M.H. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int. J. Nanomedicine, 2017, 12, 2689-2702.
[http://dx.doi.org/10.2147/IJN.S131973] [PMID: 28435252]
[153]
Rosman, R.; Saifullah, B.; Maniam, S.; Dorniani, D.; Hussein, M.Z.; Fakurazi, S. Improved anticancer effect of magnetite nanocomposite formulation of gallic acid (Fe₃O₄-PEG-GA) against lung, breast and colon cancer cells. Nanomaterials (Basel), 2018, 8(2), 83.
[http://dx.doi.org/10.3390/nano8020083] [PMID: 29393902]
[154]
Tang, M.F.; Lei, L.; Guo, S.R.; Huang, W.L. Recent progress in nanotechnology for cancer therapy. Chin. J. Cancer, 2010, 29(9), 775-780.
[http://dx.doi.org/10.5732/cjc.010.10075] [PMID: 20800018]
[155]
Parveen, S.; Sahoo, S.K. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur. J. Pharmacol., 2011, 670(2-3), 372-383.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.023] [PMID: 21951969]
[156]
Abd-Rabou, A.A.; Ahmed, H.H. CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: A novel approach for induction of apoptosis in HepG2 cell line. Adv. Med. Sci., 2017, 62(2), 357-367.
[http://dx.doi.org/10.1016/j.advms.2017.01.003] [PMID: 28521254]
[157]
Sadeeshkumar, V.; Duraikannu, A.; Ravichandran, S.; Fredrick, W.S.; Sivaperumal, R.; Kodisundaram, P. Protective effects of dieckol on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Biomed. Pharmacother., 2016, 84, 1810-1819.
[http://dx.doi.org/10.1016/j.biopha.2016.10.091] [PMID: 27825803]
[158]
Jagan, S.; Ramakrishnan, G.; Anandakumar, P.; Kamaraj, S.; Devaki, T. Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma. Mol. Cell. Biochem., 2008, 319(1-2), 51-59.
[http://dx.doi.org/10.1007/s11010-008-9876-4] [PMID: 18629614]
[159]
Sun, G.; Zhang, S.; Xie, Y.; Zhang, Z.; Zhao, W. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncol. Lett., 2016, 11(1), 150-158.
[http://dx.doi.org/10.3892/ol.2015.3845] [PMID: 26870182]
[160]
Ahmed, H.H.; Galal, A.F.; Shalby, A.B.; Abd-Rabou, A.A.; Mehaya, F.M. Improving anti-cancer potentiality and bioavailability of gallic acid by designing polymeric nanocomposite formulation. Asian Pac. J. Cancer Prev., 2018, 19(11), 3137-3146.
[http://dx.doi.org/10.31557/APJCP.2018.19.11.3137] [PMID: 30486601]
[161]
Tang, P.; Sun, Q.; Yang, H.; Tang, B.; Pu, H.; Li, H. Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. Int. J. Pharm., 2018, 545(1-2), 74-83.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.060] [PMID: 29715531]
[162]
Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer, 2009, 9(6), 429-439.
[http://dx.doi.org/10.1038/nrc2641] [PMID: 19472429]
[163]
Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial effects of green tea: A literature review. Chin. Med., 2010, 5, 13.
[http://dx.doi.org/10.1186/1749-8546-5-13] [PMID: 20370896]
[164]
Chu, C.; Deng, J.; Man, Y.; Qu, Y. Green tea extracts epigallocatechin-3-gallate for different treatments. BioMed Res. Int., 2017, 2017, 5615647.
[http://dx.doi.org/10.1155/2017/5615647] [PMID: 28884125]
[165]
Kishimoto, Y.; Tani, M.; Kondo, K. Pleiotropic preventive effects of dietary polyphenols in cardiovascular diseases. Eur. J. Clin. Nutr., 2013, 67(5), 532-535.
[http://dx.doi.org/10.1038/ejcn.2013.29] [PMID: 23403879]
[166]
Nagle, D.G.; Ferreira, D.; Zhou, Y.D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives. Phytochemistry, 2006, 67(17), 1849-1855.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.020] [PMID: 16876833]
[167]
Aras, A.; Khokhar, A.R.; Qureshi, M.Z. Targeting cancer with nano-bullets: curcumin, EGCG, resveratrol and quercetin on flying carpets. Asian Pac. J. Cancer Prev., 2014, 15(9), 3865-3871.
[http://dx.doi.org/10.7314/APJCP.2014.15.9.3865] [PMID: 24935565]
[168]
Shammas, M.A.; Neri, P.; Koley, H. Specific killing of multiple myeloma cells by (-)-epigallocatechin-3-gallate extracted from green tea: Biologic activity and therapeutic implications. Blood, 2006, 108(8), 2804-2810.
[http://dx.doi.org/10.1182/blood-2006-05-022814] [PMID: 16809610]
[169]
Fu, N.; Zhou, Z.; Jones, T.B. Production of monodisperse epigallocatechin gallate (EGCG) microparticles by spray drying for high antioxidant activity retention. Int. J. Pharm., 2011, 413(1-2), 155-166.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.056] [PMID: 21554936]
[170]
Nishida, H.; Omori, M.; Fukutomi, Y. Inhibitory effects of (-)-epigallocatechin gallate on spontaneous hepatoma in C3H/HeNCrj mice and human hepatoma-derived PLC/PRF/5 cells. Jpn. J. Cancer Res., 1994, 85(3), 221-225.
[http://dx.doi.org/10.1111/j.1349-7006.1994.tb02085.x] [PMID: 7514585]
[171]
Zhang, G.; Miura, Y.; Yagasaki, K. Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity. Cancer Lett., 2000, 159(2), 169-173.
[http://dx.doi.org/10.1016/S0304-3835(00)00545-0] [PMID: 10996728]
[172]
Park, H.J.; Shin, D.H.; Chung, W.J. Epigallocatechin gallate reduces hypoxia-induced apoptosis in human hepatoma cells. Life Sci., 2006, 78(24), 2826-2832.
[http://dx.doi.org/10.1016/j.lfs.2005.11.001] [PMID: 16445947]
[173]
Zhao, L.; Liu, S.; Xu, J. A new molecular mechanism underlying the EGCG-mediated autophagic modulation of AFP in HepG2 cells. Cell Death Dis., 2017, 8(11), e3160.
[http://dx.doi.org/10.1038/cddis.2017.563] [PMID: 29095434]
[174]
Shimizu, M.; Shirakami, Y.; Sakai, H. EGCG inhibits activation of the insulin-like growth factor (IGF)/IGF-1 receptor axis in human hepatocellular carcinoma cells. Cancer Lett., 2008, 262(1), 10-18.
[http://dx.doi.org/10.1016/j.canlet.2007.11.026] [PMID: 18164805]
[175]
Shen, X.; Zhang, Y.; Feng, Y. Epigallocatechin-3-gallate inhibits cell growth, induces apoptosis and causes S phase arrest in hepatocellular carcinoma by suppressing the AKT pathway. Int. J. Oncol., 2014, 44(3), 791-796.
[http://dx.doi.org/10.3892/ijo.2014.2251] [PMID: 24402647]
[176]
Zhang, Y.; Duan, W.; Owusu, L.; Wu, D.; Xin, Y. Epigallocatechin-3-gallate induces the apoptosis of hepatocellular carcinoma LM6 cells but not non-cancerous liver cells. Int. J. Mol. Med., 2015, 35(1), 117-124.
[http://dx.doi.org/10.3892/ijmm.2014.1988] [PMID: 25370579]
[177]
Li, S.; Wu, L.; Feng, J. In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity. Sci. Rep., 2016, 6, 28479.
[http://dx.doi.org/10.1038/srep28479] [PMID: 27349173]
[178]
Bimonte, S.; Albino, V.; Piccirillo, M. Epigallocatechin-3-gallate in the prevention and treatment of hepatocellular carcinoma: Experimental findings and translational perspectives. Drug Des. Devel. Ther., 2019, 13, 611-621.
[http://dx.doi.org/10.2147/DDDT.S180079] [PMID: 30858692]
[179]
Toniolo, A.; Buccellati, C.; Pinna, C.; Gaion, R.M.; Sala, A.; Bolego, C. Cyclooxygenase-1 and prostacyclin production by endothelial cells in the presence of mild oxidative stress. PLoS One, 2013, 8(2), e56683.
[http://dx.doi.org/10.1371/journal.pone.0056683] [PMID: 23441213]
[180]
Chen, R.; Wang, J.B.; Zhang, X.Q.; Ren, J.; Zeng, C.M. Green tea polyphenol epigallocatechin-3-gallate (EGCG) induced intermolecular cross-linking of membrane proteins. Arch. Biochem. Biophys., 2011, 507(2), 343-349.
[http://dx.doi.org/10.1016/j.abb.2010.12.033] [PMID: 21211509]
[181]
Elbling, L.; Herbacek, I.; Weiss, R.M. Hydrogen peroxide mediates EGCG-induced antioxidant protection in human keratinocytes. Free Radic. Biol. Med., 2010, 49(9), 1444-1452.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.08.008] [PMID: 20708679]
[182]
Kwak, I.H.; Shin, Y.H.; Kim, M. Epigallocatechin-3-gallate inhibits paracrine and autocrine hepatocyte growth factor/scatter factor-induced tumor cell migration and invasion. Exp. Mol. Med., 2011, 43(2), 111-120.
[http://dx.doi.org/10.3858/emm.2011.43.2.013] [PMID: 21209554]
[183]
Lim, Y.C.; Park, H.Y.; Hwang, H.S. (-)-Epigallocatechin-3-gallate (EGCG) inhibits HGF-induced invasion and metastasis in hypopharyngeal carcinoma cells. Cancer Lett., 2008, 271(1), 140-152.
[http://dx.doi.org/10.1016/j.canlet.2008.05.048] [PMID: 18632202]
[184]
Hussain, S.; Ashafaq, M. Epigallocatechin-3-Gallate (EGCG): Mechanisms, perspectives and clinical applications in cervical cancer. J. Cancer Prev. Curr. Res., 2018, 9(4), 178-182.
[http://dx.doi.org/10.15406/jcpcr.2018.09.00345]
[185]
Shankar, S.; Marsh, L.; Srivastava, R.K. EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin. Mol. Cell. Biochem., 2013, 372(1-2), 83-94.
[http://dx.doi.org/10.1007/s11010-012-1448-y] [PMID: 22971992]
[186]
Braicu, C.; Gherman, C.D.; Irimie, A.; Berindan-Neagoe, I. Epigallocatechin-3-Gallate (EGCG) inhibits cell proliferation and migratory behaviour of triple negative breast cancer cells. J. Nanosci. Nanotechnol., 2013, 13(1), 632-637.
[http://dx.doi.org/10.1166/jnn.2013.6882] [PMID: 23646788]
[187]
Nagai, K.; Jiang, M.H.; Hada, J. (-)-Epigallocatechin gallate protects against NO stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res., 2002, 956(2), 319-322.
[http://dx.doi.org/10.1016/S0006-8993(02)03564-3] [PMID: 12445701]
[188]
Carbonaro, M.; Grant, G.; Pusztai, A. Evaluation of polyphenol bioavailability in rat small intestine. Eur. J. Nutr., 2001, 40(2), 84-90.
[http://dx.doi.org/10.1007/s003940170020] [PMID: 11518204]
[189]
Wang, Q.; Cheng, H.; Peng, H.; Zhou, H.; Li, P.Y.; Langer, R. Non-genetic engineering of cells for drug delivery and cell-based therapy. Adv. Drug Deliv. Rev., 2015, 91, 125-140.
[http://dx.doi.org/10.1016/j.addr.2014.12.003] [PMID: 25543006]
[190]
Cao, J.; Wang, R.; Gao, N. A7RC peptide modified paclitaxel liposomes dually target breast cancer. Biomater. Sci., 2015, 3(12), 1545-1554.
[http://dx.doi.org/10.1039/C5BM00161G] [PMID: 26291480]
[191]
Chung, J.E.; Tan, S.; Gao, S.J. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat. Nanotechnol., 2014, 9(11), 907-912.
[http://dx.doi.org/10.1038/nnano.2014.208] [PMID: 25282044]
[192]
Nguyen, T.X.; Huang, L.; Gauthier, M.; Yang, G.; Wang, Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine, 2016, 11(9), 1169-1185.
[http://dx.doi.org/10.2217/nnm.16.9] [PMID: 27074098]
[193]
Peng, H.; Wang, C.; Xu, X.; Yu, C.; Wang, Q. An intestinal Trojan horse for gene delivery. Nanoscale, 2015, 7(10), 4354-4360.
[http://dx.doi.org/10.1039/C4NR06377E] [PMID: 25619169]
[194]
Jia, F.; Liu, X.; Li, L.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J. Control. Release, 2013, 172(3), 1020-1034.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.012] [PMID: 24140748]
[195]
Zheng, H.; Yin, L.; Zhang, X. Redox sensitive shell and core crosslinked hyaluronic acid nanocarriers for tumor-targeted drug delivery. J. Biomed. Nanotechnol., 2016, 12(8), 1641-1653.
[http://dx.doi.org/10.1166/jbn.2016.2279] [PMID: 29342343]
[196]
Shpigelman, A.; Israeli, G.; Livney, Y.D. Thermally-induced protein–polyphenol co-assemblies: Beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocoll., 2010, 24(8), 735-743.
[http://dx.doi.org/10.1016/j.foodhyd.2010.03.015]
[197]
Srivastava, A.K.; Bhatnagar, P.; Singh, M. Synthesis of PLGA nanoparticles of tea polyphenols and their strong in vivo protective effect against chemically induced DNA damage. Int. J. Nanomedicine, 2013, 8, 1451-1462.
[PMID: 23717041]
[198]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[199]
Siddiqui, I.A.; Adhami, V.M.; Ahmad, N.; Mukhtar, H. Nanochemoprevention: sustained release of bioactive food components for cancer prevention. Nutr. Cancer, 2010, 62(7), 883-890.
[http://dx.doi.org/10.1080/01635581.2010.509537] [PMID: 20924964]
[200]
Yang, Y.; Jin, P.; Zhang, X. New epigallocatechin gallate (EGCG) nanocomplexes Co-Assembled with 3-Mercapto-1-Hexanol and β-lactoglobulin for improvement of antitumor activity. J. Biomed. Nanotechnol., 2017, 13(7), 805-814.
[http://dx.doi.org/10.1166/jbn.2017.2400]
[201]
Zimet, P.; Livney, Y.D. Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocoll., 2009, 23(4), 1120-1126.
[http://dx.doi.org/10.1016/j.foodhyd.2008.10.008]
[202]
Shpigelman, A.; Cohen, Y.; Livney, Y.D. Thermally-induced β-lactoglobulin–EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocoll., 2012, 29(1), 57-67.
[http://dx.doi.org/10.1016/j.foodhyd.2012.01.016]
[203]
Trompezinski, S.; Denis, A.; Schmitt, D.; Viac, J. Comparative effects of polyphenols from green tea (EGCG) and soybean (genistein) on VEGF and IL-8 release from normal human keratinocytes stimulated with the proinflammatory cytokine TNFalpha. Arch. Dermatol. Res., 2003, 295(3), 112-116.
[http://dx.doi.org/10.1007/s00403-003-0402-y] [PMID: 12811578]
[204]
Radhakrishnan, R.; Kulhari, H.; Pooja, D. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chem. Phys. Lipids, 2016, 198, 51-60.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.05.006] [PMID: 27234272]
[205]
Potenza, M.A.; Marasciulo, F.L.; Tarquinio, M. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am. J. Physiol. Endocrinol. Metab., 2007, 292(5), E1378-E1387.
[http://dx.doi.org/10.1152/ajpendo.00698.2006] [PMID: 17227956]
[206]
Liang, J.; Li, F.; Fang, Y. Synthesis, characterization and cytotoxicity studies of chitosan-coated tea polyphenols nanoparticles. Colloids Surf. B Biointerfaces, 2011, 82(2), 297-301.
[http://dx.doi.org/10.1016/j.colsurfb.2010.08.045] [PMID: 20888740]
[207]
Liang, J.; Yan, H.; Yang, H.J. Synthesis and controlled-release properties of chitosan/β-Lactoglobulin nanoparticles as carriers for oral administration of epigallocatechin gallate. Food Sci. Biotechnol., 2016, 25(6), 1583-1590.
[http://dx.doi.org/10.1007/s10068-016-0244-y] [PMID: 30263448]
[208]
Liang, J.; Li, F.; Fang, Y. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells. Mater. Sci. Eng. C, 2014, 36, 7-13.
[http://dx.doi.org/10.1016/j.msec.2013.11.039] [PMID: 24433880]
[209]
Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Alhumaydhi, F.A.; Alsahli, M.A.; Rahmani, A.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules, 2020, 25(14), 3146.
[http://dx.doi.org/10.3390/molecules25143146] [PMID: 32660101]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy