Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Study of the Antihypertensive and Vasorelaxant Activities of Haloxylon scoparium in Rats

Author(s): Smail Amtaghri and Mohamed Eddouks*

Volume 21, Issue 2, 2023

Published on: 19 October, 2022

Page: [139 - 153] Pages: 15

DOI: 10.2174/1871525720666220823163542

Price: $65

Abstract

Aims: The work aimed to study the antihypertensive ability of Haloxylon scoparium.

Background: Haloxylon scoparium Pomel is used to treat various diseases, including hypertension.

Objective: This study aimed to evaluate the antihypertensive effect of Haloxylon scoparium (H. scoparium) in hypertensive rats, and to evaluate its probable vasorelaxant activity.

Materials and Methods: The aqueous extract of Haloxylon scoparium (AEHS) was prepared and used to investigate its antihypertensive ability in L-NAME(Nω-L-arginine methyl ester)-induced hypertensive rats, and its vasorelaxant activity was studied on the isolated thoracic aorta of rats. The acute and subchronic effects of (AEHS) on blood pressure parameters were evaluated after oral administration of AEHS (60 and 100 mg/kg body weight) for 6 h for the acute experiment and for 7 days for the subchronic test.

Results: The results indicated that AEHS decreased blood pressure parameters (systolic, mean, and diastolic blood pressure) after repeated oral administration in hypertensive rats without affecting normal rats. In addition, AEHS (375-1250 μg/mL) revealed a vasorelaxant effect in thoracic aortic rings precontracted with norepinephrine (NE) (10 μM) or KCl (80 mM). This effect was partially decreased in the presence of nifedipine by inhibition of the vascular calcium channel pathway in isolated rat thoracic aorta.

Conclusion: The study demonstrates the beneficial effect of Haloxylon scoparium as an antihypertensive agent. Moreover, this plant exerts vasorelaxant activity via the blockade of Ca2+ channels.

Keywords: Haloxylon scoparium pomel, hypertension, L-NAME, vasorelaxant, MLN-4760, angiotensin converting enzyme- 2(ACE2), Ca2+ channels.

Graphical Abstract
[1]
Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet, 2005, 365(9455), 217-223.
[http://dx.doi.org/10.1016/S0140-6736(05)17741-1] [PMID: 15652604]
[2]
He, J.; Whelton, P.K. Epidemiology and prevention of hypertension. Med. Clin. North Am., 1997, 81(5), 1077-1097.
[http://dx.doi.org/10.1016/S0025-7125(05)70568-X] [PMID: 9308599]
[3]
Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr; Roccella, E.J. The Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. JAMA, 2003, 289(19), 2560-2572.
[http://dx.doi.org/10.1001/jama.289.19.2560] [PMID: 12748199]
[4]
Mendis, S.; Puska, P.; Norrving, B. World Health Organization. Global atlas on cardiovascular disease prevention and control; World Health Organization, 2011.
[5]
Kharchoufa, L.; Bouhrim, M.; Bencheikh, N.; El Assri, S.; Amirou, A.; Yamani, A.; Choukri, M.; Mekhfi, H.; Elachouri, M. Acute and subacute toxicity studies of the aqueous extract from Haloxylon scoparium Pomel (Hammada scoparia (Pomel)) by oral administration in rodents. BioMed Res. Int., 2020, 2020, 4020647.
[http://dx.doi.org/10.1155/2020/4020647] [PMID: 33123573]
[6]
Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M.L.; Jouad, H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol., 2002, 82(2-3), 97-103.
[http://dx.doi.org/10.1016/S0378-8741(02)00164-2] [PMID: 12241983]
[7]
Abouri, M.; El Mousadik, A.; Msanda, F.; Boubaker, H.; Saadi, B.; Cherifi, K. An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. Int. J. Med. Plants Res., 2012, 1(7), 99-123.
[8]
Jamila, F.; Mostafa, E. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J. Ethnopharmacol., 2014, 154(1), 76-87.
[http://dx.doi.org/10.1016/j.jep.2014.03.016] [PMID: 24685583]
[9]
Kabbaj, F.; Meddah, B.; Cherrah, Y.; Faouzi, E. Ethnopharmacological profile of traditional plants used in Morocco by cancer patients as herbal therapeutics. Phytopharmacology, 2012, 2(2), 243-256.
[10]
Ghourri, M.; Zidane, L.; Rochdi, A.; Fadli, M.; Douira, A. Etude floristique et ethnobotanique des plantes médicinales de la ville d’El Ouatia (Maroc Saharien). Kastamonu University J. of Forestry Facul., 2012, 12(2), 218-235.
[11]
Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant Sci., 2001, 161(5), 839-851.
[http://dx.doi.org/10.1016/S0168-9452(01)00490-3]
[12]
Zerriouh, M. Contribution to the phytochemical study and antidiabetic activity of Hammada scoparia (Pomel), 'Remth'., PhD Thesis, Abou Bekr Belkaid University, 2015.
[13]
Haida, S.; Kribii, A. Chemical composition, phenolic content and antioxidant capacity of Haloxylon scoparium extracts. S. Afr. J. Bot., 2020, 131, 151-160.
[http://dx.doi.org/10.1016/j.sajb.2020.01.037]
[14]
Ajebli, M.; Eddouks, M. Buxus sempervirens L. Improves streptozotocin-induced diabetes mellitus in rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[15]
Ajebli, M.; Eddouks, M. Antihypertensive activity of Petroselinum crispum through inhibition of vascular calcium channels in rats. J. Ethnopharmacol., 2019, 242, 112039.
[http://dx.doi.org/10.1016/j.jep.2019.112039] [PMID: 31252093]
[16]
Désiré, D.D.P.; D’Alex, T.T.C.; Danielle, B.; Claude, A.O.B.F.; Pierre, K.; Théophile, D. Endothelium-dependent and independent vasorelaxant effect of Terminalia superba (Combretaceae) on rat aorta. J. Phytopharmacol, 2013, 2, 21-27.
[http://dx.doi.org/10.31254/phyto.2013.2504]
[17]
Anwar, M.A.; Samaha, A.A.; Ballan, S.; Saleh, A.I.; Iratni, R.; Eid, A.H. Salvia fruticosa induces vasorelaxation in rat isolated thoracic aorta: Role of the PI3K/Akt/eNOS/NO/cGMP signaling pathway. Sci. Rep., 2017, 7(1), 686.
[http://dx.doi.org/10.1038/s41598-017-00790-9] [PMID: 28386068]
[18]
Kopincová, J.; Púzserová, A.; Bernátová, I. L-NAME in the cardiovascular system - nitric oxide synthase activator? Pharmacol. Rep., 2012, 64(3), 511-520.
[http://dx.doi.org/10.1016/S1734-1140(12)70846-0] [PMID: 22814004]
[19]
Kiriyama, A.; Honbo, A.; Nishimura, A.; Shibata, N.; Iga, K. Pharmacokinetic-pharmacodynamic analyses of antihypertensive drugs, nifedipine and propranolol, in spontaneously hypertensive rats to investigate characteristics of effect and side effects. Regul. Toxicol. Pharmacol., 2016, 76, 21-29.
[http://dx.doi.org/10.1016/j.yrtph.2016.01.003] [PMID: 26773344]
[20]
Potue, P.; Wunpathe, C.; Maneesai, P.; Kukongviriyapan, U.; Prachaney, P.; Pakdeechote, P. Nobiletin alleviates vascular alterations through modulation of Nrf-2/HO-1 and MMP pathways in l-NAME induced hypertensive rats. Food Funct., 2019, 10(4), 1880-1892.
[http://dx.doi.org/10.1039/C8FO02408A] [PMID: 30864566]
[21]
Aekthammarat, D.; Pannangpetch, P.; Tangsucharit, P. Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. Phytomedicine, 2019, 54, 9-16.
[http://dx.doi.org/10.1016/j.phymed.2018.10.023] [PMID: 30668387]
[22]
Bilanda, D.C.; Dzeufiet, P.D.D.; Kouakep, L.; Aboubakar, B.F.O.; Tedong, L.; Kamtchouing, P.; Dimo, T. Bidens pilosa Ethylene acetate extract can protect against L-NAME-induced hypertension on rats. BMC Complement. Altern. Med., 2017, 17(1), 479.
[http://dx.doi.org/10.1186/s12906-017-1972-0] [PMID: 29017485]
[23]
Ajebli, M.; Eddouks, M. Phytotherapy of hypertension: An updated overview. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(6), 812-839.
[http://dx.doi.org/10.2174/1871530320666191227104648] [PMID: 31880255]
[24]
Stenmark, K.R.; Rabinovitch, M. Emerging therapies for the treatment of pulmonary hypertension. Pediatr. Crit. Care Med., 2010, 11(2)(Suppl.), S85-S90.
[http://dx.doi.org/10.1097/PCC.0b013e3181c76db3] [PMID: 20216170]
[25]
El-Ouady, F.; Eddouks, M. Warionia saharae induces antihypertensive and vasorelaxant activities through nitric oxide and KATP channels pathways in rats. J. Complement. Integr. Med., 2019, 17(1), /j/jcim.2019.17.
[http://dx.doi.org/10.1515/jcim-2019-0024]
[26]
Akdad, M.; Ajebli, M.; Breuer, A.; Khallouki, F.; Owen, R.W.; Eddouks, M. Study of antihypertensive activity of anvillea radiata in L-name-induced hypertensive rats and HPLC-ESI-MS analysis. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(7), 1059-1072.
[http://dx.doi.org/10.2174/1871530319666191115114023] [PMID: 31729295]
[27]
Rawat, P.; Singh, P.K.; Kumar, V. Anti-hypertensive medicinal plants and their mode of action. J. Herb. Med., 2016, 6(3), 107-118.
[http://dx.doi.org/10.1016/j.hermed.2016.06.001]
[28]
El-Ouady, F.; Eddouks, M. Ruta montana evokes antihypertensive activity through an increase of prostaglandins release in L-name-induced hypertensive rats. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(2), 305-314.
[http://dx.doi.org/10.2174/1871530320666200628025430] [PMID: 32600240]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy