Research Article

羟基藏红花黄A诱导的成骨细胞分化和BM-MSCs通过上调核维生素D受体的增殖

卷 23, 期 5, 2023

发表于: 22 September, 2022

页: [410 - 419] 页: 10

弟呕挨: 10.2174/1566524023666220820125924

价格: $65

conference banner
摘要

背景:维生素 D 受体 (VDR) 对于矿物质和骨稳态至关重要,因为它在骨髓间充质干细胞 (BM-MSC)的成骨细胞分化中起着重要作用。羟基红花黄色素 A (HSYA)具有促进骨矿化和抑制骨吸收的潜力,但其详细机制有待阐明。 目的:本研究旨在探讨羟基红花黄色素 A 对BM-MSC增殖分化的作用及其机制。 方法:用不同浓度的羟基红花黄色素 A对BM-MSC和CCK-8、EdU检测细胞活力和增殖。碱性磷酸酶(ALP)用于观察BM-MSC成骨细胞的分化能力。通过茜素红染色观察成骨细胞样细胞的钙摄取和矿化。通过流式细胞术检测细胞中钙离子摄取的水平。 AutoDock 用于羟基红花黄色素 A 与维生素 D 受体 蛋白的分子对接,进行免疫荧光和蛋白质印迹以检测维生素 D 受体表达水平的表达。最后,通过维生素 D 受体抑制剂验证了维生素 D 受体的作用。 结果:羟基红花黄色素 A处理后,BM-MSC的增殖和钙摄取增加。 ALP水平显着升高,并在第12天达到峰值。羟基红花黄色素 A促进钙吸收和钙沉积,以及成骨细胞矿化。蛋白质印迹和免疫荧光显示羟基红花黄色素 A 增加成骨细胞样细胞核中维生素 D 受体的表达,并上调骨钙素、S100 钙结合蛋白 G 和 CYP24A1。此外,羟基红花黄色素 A 治疗增加了骨桥蛋白的表达和成骨蛋白(如 1 型胶原蛋白)的合成。加入VDR抑制剂后,羟基红花黄色素 A的作用减弱。 结论:羟基红花黄色素 A可显着促进成骨细胞的活性和增殖,提高成骨细胞中维生素 D 受体的表达水平。羟基红花黄色素 A还可以通过调节钙结合蛋白和维生素 D 代谢途径相关蛋白的合成来改善成骨细胞对钙的吸收。

关键词: 羟基红花黄色素 A,骨髓间充质干细胞,维生素D受体,钙沉积,增殖,成骨细胞。

[1]
Aspray TJ, Hill TR. Osteoporosis and the ageing skeleton. Subcell Biochem 2019; 91: 453-76.
[http://dx.doi.org/10.1007/978-981-13-3681-2_16] [PMID: 30888662]
[2]
Tsourdi E, Nees JA, Hofbauer LC. Osteoporosis in the geriatric population. Dtsch Med Wochenschr 2020; 145(11): 728-32.
[PMID: 32492741]
[3]
Chen X, Yang L, Ge D, et al. Long non-coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation. Exp Ther Med 2019; 17(1): 803-11.
[PMID: 30651866]
[4]
Li L, Wang B, Li Y, et al. Celastrol regulates bone marrow mesenchymal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing PGC-1 α signaling. Aging (Albany NY) 2020; 12(17): 16887-98.
[http://dx.doi.org/10.18632/aging.103590] [PMID: 32723973]
[5]
Saito A, Nagaishi K, Iba K, et al. Umbilical cord extracts improve osteoporotic abnormalities of bone marrow-derived mesenchymal stem cells and promote their therapeutic effects on ovariectomised rats. Sci Rep 2018; 8(1): 1161.
[http://dx.doi.org/10.1038/s41598-018-19516-6] [PMID: 29348535]
[6]
Yang R, Chen J, Zhang J, et al. 1,25-Dihydroxyvitamin D protects against age-related osteoporosis by a novel VDR-Ezh2-p16 signal axis. Aging Cell 2020; 19(2): e13095.
[http://dx.doi.org/10.1111/acel.13095] [PMID: 31880094]
[7]
He J, Li X, Wang Z, et al. Therapeutic anabolic and anticatabolic benefits of natural chinese medicines for the treatment of osteoporosis. Front Pharmacol 2019; 10: 1344.
[http://dx.doi.org/10.3389/fphar.2019.01344] [PMID: 31824310]
[8]
Alam MR, Kim SM, Lee JI, et al. Effects of Safflower seed oil in osteoporosis induced-ovariectomized rats. Am J Chin Med 2006; 34(4): 601-12.
[http://dx.doi.org/10.1142/S0192415X06004132] [PMID: 16883631]
[9]
Zhu HJ, Wang LJ, Wang XQ, et al. Hydroxysafflor Yellow A (HYSA) inhibited the proliferation and differentiation of 3T3-L1 preadipocytes. Cytotechnology 2015; 67(5): 885-92.
[http://dx.doi.org/10.1007/s10616-014-9783-3] [PMID: 25749912]
[10]
Deng Z, Chen J, Lin B, et al. A novel 3D printed bioactive scaffolds with enhanced osteogenic inspired by ancient Chinese medicine HYSA for bone repair. Exp Cell Res 2020; 394(2): 112139.
[http://dx.doi.org/10.1016/j.yexcr.2020.112139] [PMID: 32562783]
[11]
Niu K, Zhao YJ, Zhang L, Li CG, Wang YJ, Zheng WC. The synergistic effect of amygdalin and HSYA on the IL-1beta induced endplate chondrocytes of rat intervertebral discs. Yao Xue Xue Bao 2014; 49(8): 1136-42.
[PMID: 25322555]
[12]
Liu L, Tao W, Pan W, et al. Hydroxysafflor yellow a promoted bone mineralization and inhibited bone resorption which reversed glucocorticoids-induced osteoporosis. BioMed Res Int 2018; 20186762146.
[http://dx.doi.org/10.1155/2018/6762146] [PMID: 30069475]
[13]
Xia C, Zou Z, Fang L, et al. Bushenhuoxue formula promotes osteogenic differentiation of growth plate chondrocytes through β-catenin-dependent manner during osteoporosis. Biomed Pharmacother 2020; 127110170.
[http://dx.doi.org/10.1016/j.biopha.2020.110170] [PMID: 32334373]
[14]
Gromolak S, Krawczenko A, Antończyk A, Buczak K, Kiełbowicz Z, Klimczak A. Biological characteristics and osteogenic differentiation of ovine bone marrow derived mesenchymal stem cells stimulated with FGF-2 and BMP-2. Int J Mol Sci 2020; 21(24): E9726.
[http://dx.doi.org/10.3390/ijms21249726] [PMID: 33419255]
[15]
Fleet JC. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol Cell Endocrinol 2017; 453: 36-45.
[http://dx.doi.org/10.1016/j.mce.2017.04.008] [PMID: 28400273]
[16]
Huet T, Laverny G, Ciesielski F, et al. A vitamin D receptor selectively activated by gemini analogs reveals ligand dependent and independent effects. Cell Rep 2015; 10(4): 516-26.
[http://dx.doi.org/10.1016/j.celrep.2014.12.045] [PMID: 25620699]
[17]
Balera Brito VG, Chaves-Neto AH, Landim de Barros T, Penha Oliveira SH. Soluble yerba mate (Ilex paraguariensis) extract enhances in vitro osteoblastic differentiation of bone marrow-derived mesenchymal stromal cells. J Ethnopharmacol 2019; 244112131.
[http://dx.doi.org/10.1016/j.jep.2019.112131] [PMID: 31377259]
[18]
Geng X, Shi E, Wang S, Song Y. A comparative analysis of the efficacy and safety of paricalcitol versus other vitamin D patients undergoing hemodialysis: A systematic review receptor activators in and meta-analysis of 15 randomized controlled trials. PLoS One 2020; 15(5): e0233705.
[http://dx.doi.org/10.1371/journal.pone.0233705] [PMID: 32470067]
[19]
Allegra S, Cusato J, De Francia S, et al. Role of CYP24A1, VDR and GC gene polymorphisms on deferasirox pharmacokinetics and clinical outcomes. Pharmacogenomics J 2018; 18(3): 506-15.
[http://dx.doi.org/10.1038/tpj.2017.43] [PMID: 29160302]
[20]
Guo J, Liu S, Wang P, Ren H, Li Y. Characterization of VDR and CYP27B1 expression in the endometrium during the menstrual cycle before embryo transfer: implications for endometrial receptivity. Reprod Biol Endocrinol 2020; 18(1): 24.
[http://dx.doi.org/10.1186/s12958-020-00579-y] [PMID: 32183826]
[21]
Nobre JL, Lisboa PC, Peixoto-Silva N, et al. Role of vitamin D in adipose tissue in obese rats programmed by early weaning and post diet calcium. Mol Nutr Food Res 2016; 60(4): 810-22.
[http://dx.doi.org/10.1002/mnfr.201500735] [PMID: 26778336]
[22]
Feigerlova E, Demarquet L, Melhem H, et al. Methyl donor deficiency impairs bone development via peroxisome proliferator-activated receptor-γ coactivator-1α-dependent vitamin D receptor pathway. FASEB J 2016; 30(10): 3598-612.
[http://dx.doi.org/10.1096/fj.201600332R] [PMID: 27435264]
[23]
Abbas MA. Physiological functions of Vitamin D in adipose tissue. J Steroid Biochem Mol Biol 2017; 165(Pt B): 369-81.
[24]
Pike JW, Meyer MB, Benkusky NA, et al. Genomic determinants of vitamin d-regulated gene expression. Vitam Horm 2016; 100: 21-44.
[http://dx.doi.org/10.1016/bs.vh.2015.10.011] [PMID: 26827947]
[25]
Song X, Su L, Yin H, Dai J, Wei H. Effects of HSYA on the proliferation and apoptosis of MSCs exposed to hypoxic and serum deprivation conditions. Exp Ther Med 2018; 15(6): 5251-60.
[http://dx.doi.org/10.3892/etm.2018.6125] [PMID: 29904409]
[26]
Jang HO, Park YS, Lee JH, et al. Effect of extracts from safflower seeds on osteoblast differentiation and intracellular calcium ion concentration in MC3T3-E1 cells. Nat Prod Res 2007; 21(9): 787-97.
[http://dx.doi.org/10.1080/14786410601133475] [PMID: 17654282]
[27]
Wrobel E, Leszczynska J, Brzoska E. The Characteristics Of Human Bone-Derived Cells (HBDCS) during osteogenesis in vitro. Cell Mol Biol Lett 2016; 21: 26.
[http://dx.doi.org/10.1186/s11658-016-0027-8] [PMID: 28536628]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy