Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Centrosome Clustering & Chemotherapy

Author(s): Farhat Firdous, Hadeeqa Gull Raza, Ghayoor Abbas Chotana, M. Iqbal Choudhary, Amir Faisal and Rahman Shah Zaib Saleem*

Volume 23, Issue 4, 2023

Published on: 19 September, 2022

Page: [429 - 451] Pages: 23

DOI: 10.2174/1389557522666220820113953

Price: $65

conference banner
Abstract

Centrosome abnormalities are the hallmark of cancer. How it affects tumorigenesis is still a mystery. However, the presence of more than two centrosomes at the onset of mitosis often leads to chromosomal instability and subsequent tumorigenesis. Unlike normal cells that undergo repair or apoptosis in response to this instability, cancer cells learn to cope with supernumerary centrosomes through various mechanisms and survive. Centrosome clustering is the most prevalent mechanism, allowing the cancer cells to form two daughter cells through a pseudo-bipolar spindle. Since healthy cells are devoid of the mechanisms involved in clustering, the de-clustering of centrosomes can be considered a promising approach to selectively eliminate cells with extra centrosomes. Several proteins such as PARP, KIFC1, Hsp70, Cortical actin, APC/C-CDH1 complex and Eg5 have been discussed in this review which participate in centrosome clustering, and the inhibition of these proteins can facilitate in impeding tumor growth specifically by declustering centrosomes. In this review, we also present the role of the centrosome in the cell cycle, centrosome amplification, clustering mechanism and reported centrosome de-clustering agents to present the current state of work in the field.

Keywords: Cancer, chromosomal instability, multipolarity, chemotherapy, centrosome duplication cycle, centrosome amplification, centrosome clustering, centrosome de-clustering agents.

Graphical Abstract
[1]
Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci., 2008, 121(Suppl. 1), 1-84.
[http://dx.doi.org/10.1242/jcs.025742] [PMID: 18089652]
[2]
Lerit, D.A.; Poulton, J.S. Centrosomes are multifunctional regulators of genome stability. Chromosome Res., 2016, 24(1), 5-17.
[http://dx.doi.org/10.1007/s10577-015-9506-4] [PMID: 26658800]
[3]
Krämer, A.; Maier, B.; Bartek, J. Centrosome clustering and chromosomal (in)stability: A matter of life and death. Mol. Oncol., 2011, 5(4), 324-335.
[http://dx.doi.org/10.1016/j.molonc.2011.05.003] [PMID: 21646054]
[4]
Raff, J.W. Phase separation and the centrosome: A Fait Accompli? Trends Cell Biol., 2019, 29(8), 612-622.
[http://dx.doi.org/10.1016/j.tcb.2019.04.001] [PMID: 31076235]
[5]
Farina, F.; Gaillard, J.; Guérin, C.; Couté, Y.; Sillibourne, J.; Blanchoin, L.; Théry, M. The centrosome is an actin-organizing centre. Nat. Cell Biol., 2016, 18(1), 65-75.
[http://dx.doi.org/10.1038/ncb3285] [PMID: 26655833]
[6]
Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol., 2002, 14(1), 25-34.
[http://dx.doi.org/10.1016/S0955-0674(01)00290-3] [PMID: 11792541]
[7]
Fu, J.; Hagan, I.M.; Glover, D.M. The centrosome and its duplication cycle. Cold Spring Harb. Perspect. Biol., 2015, 7(2), a015800.
[http://dx.doi.org/10.1101/cshperspect.a015800] [PMID: 25646378]
[8]
Nigg, E.A.; Čajánek, L.; Arquint, C. The centrosome duplication cycle in health and disease. FEBS Lett., 2014, 588(15), 2366-2372.
[http://dx.doi.org/10.1016/j.febslet.2014.06.030] [PMID: 24951839]
[9]
Nigg, E.A.; Holland, A.J. Once and only once: Mechanisms of centriole duplication and their deregulation in disease. Nat. Rev. Mol. Cell Biol., 2018, 19(5), 297-312.
[http://dx.doi.org/10.1038/nrm.2017.127] [PMID: 29363672]
[10]
Joukov, V.; De Nicolo, A. The centrosome and the primary cilium: The Yin and Yang of a hybrid organelle. Cells, 2019, 8(7), 701.
[http://dx.doi.org/10.3390/cells8070701] [PMID: 31295970]
[11]
Harrison, L.E.; Bleiler, M.; Giardina, C. A look into centrosome abnormalities in colon cancer cells, how they arise and how they might be targeted therapeutically. Biochem. Pharmacol., 2018, 147, 1-8.
[http://dx.doi.org/10.1016/j.bcp.2017.11.003] [PMID: 29128368]
[12]
Kalkan, B.M.; Ozcan, S.C.; Quintyne, N.J.; Reed, S.L.; Acilan, C. Keep calm and carry on with extra centrosomes. Cancers (Basel), 2022, 14(2), 442.
[http://dx.doi.org/10.3390/cancers14020442] [PMID: 35053604]
[13]
Mittal, K.; Kaur, J.; Jaczko, M.; Wei, G.; Toss, M.S.; Rakha, E.A.; Janssen, E.A.M.; Søiland, H.; Kucuk, O.; Reid, M.D.; Gupta, M.V.; Aneja, R. Centrosome amplification: A quantifiable cancer cell trait with prognostic value in solid malignancies. Cancer Metastasis Rev., 2021, 40(1), 319-339.
[http://dx.doi.org/10.1007/s10555-020-09937-z] [PMID: 33106971]
[14]
Zhao, J.Z.; Ye, Q.; Wang, L.; Lee, S.C. Centrosome amplification in cancer and cancer-associated human diseases. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188566.
[http://dx.doi.org/10.1016/j.bbcan.2021.188566] [PMID: 33992724]
[15]
Goundiam, O.; Basto, R. Centrosomes in disease: How the same music can sound so different? Curr. Opin. Struct. Biol., 2021, 66, 74-82.
[http://dx.doi.org/10.1016/j.sbi.2020.09.011] [PMID: 33186811]
[16]
Jaiswal, S.; Singh, P. Centrosome dysfunction in human diseases. Semin. Cell Dev. Biol., 2021, 110, 113-122.
[http://dx.doi.org/10.1016/j.semcdb.2020.04.019] [PMID: 32409142]
[17]
Gogendeau, D.; Guichard, P.; Tassin, A-M. Purification of centrosomes from mammalian cell lines. Methods Cell Biol., 2015, 129, 171-189.
[http://dx.doi.org/10.1016/bs.mcb.2015.03.004] [PMID: 26175439]
[18]
Guichard, P.; Hamel, V.; Le Guennec, M.; Banterle, N.; Iacovache, I. Nemčíková, V.; Flückiger, I.; Goldie, K.N.; Stahlberg, H.; Lévy, D.; Zuber, B.; Gönczy, P. Cell-free reconstitution reveals centriole cartwheel assembly mechanisms. Nat. Commun., 2017, 8(1), 14813.
[http://dx.doi.org/10.1038/ncomms14813] [PMID: 28332496]
[19]
LeGuennec, M.; Klena, N.; Aeschlimann, G.; Hamel, V.; Guichard, P. Overview of the centriole architecture. Curr. Opin. Struct. Biol., 2021, 66, 58-65.
[http://dx.doi.org/10.1016/j.sbi.2020.09.015] [PMID: 33176264]
[20]
Yamamoto, S.; Kitagawa, D. Self-organization of Plk4 regulates symmetry breaking in centriole duplication. Nat. Commun., 2019, 10(1), 1810.
[http://dx.doi.org/10.1038/s41467-019-09847-x] [PMID: 31000710]
[21]
Cizmecioglu, O.; Arnold, M.; Bahtz, R.; Settele, F.; Ehret, L.; Haselmann-Weiss, U.; Antony, C.; Hoffmann, I. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol., 2010, 191(4), 731-739.
[http://dx.doi.org/10.1083/jcb.201007107] [PMID: 21059844]
[22]
Wei, Z.; Kim, T.S.; Ahn, J.I.; Meng, L.; Chen, Y.; Ryu, E.K.; Ku, B.; Zhou, M.; Kim, S.J.; Bang, J.K.; van Deursen, J.M.; Park, J.E.; Lee, K.S. Requirement of the Cep57-Cep63 interaction for proper Cep152 recruitment and centriole duplication. Mol. Cell. Biol., 2020, 40(10), e00535-e19.
[http://dx.doi.org/10.1128/MCB.00535-19] [PMID: 32152252]
[23]
Wang-Bishop, L.; Chen, Z.; Gomaa, A.; Lockhart, A.C.; Salaria, S.; Wang, J.; Lewis, K.B.; Ecsedy, J.; Washington, K.; Beauchamp, R.D.; El-Rifai, W. Inhibition of AURKA reduces proliferation and survival of gastrointestinal cancer cells with activated KRAS by preventing activation of RPS6KB1. Gastroenterology, 2019, 156(3), 662-675.e7.
[http://dx.doi.org/10.1053/j.gastro.2018.10.030] [PMID: 30342037]
[24]
Moyer, T.C.; Holland, A.J. PLK4 promotes centriole duplication by phosphorylating STIL to link the procentriole cartwheel to the microtubule wall. eLife, 2019, 8, e46054.
[http://dx.doi.org/10.7554/eLife.46054] [PMID: 31115335]
[25]
Habedanck, R.; Stierhof, Y.D.; Wilkinson, C.J.; Nigg, E.A. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol., 2005, 7(11), 1140-1146.
[http://dx.doi.org/10.1038/ncb1320] [PMID: 16244668]
[26]
Gönczy, P. Centrosomes and cancer: Revisiting a long-standing relationship. Nat. Rev. Cancer, 2015, 15(11), 639-652.
[http://dx.doi.org/10.1038/nrc3995] [PMID: 26493645]
[27]
Fonseca, I.S.; Bettencourt-Dias, M. The cell cycle, cytoskeleton and cancer.Molecular and Cell Biology of Cancer; Fior, R.; Zilhao, R., Eds.; Springer: Cham, 2019, pp. 51-74.
[http://dx.doi.org/10.1007/978-3-030-11812-9_4]
[28]
Dzhindzhev, N.S.; Tzolovsky, G.; Lipinszki, Z.; Abdelaziz, M.; Debski, J.; Dadlez, M.; Glover, D.M. Two-step phosphorylation of Ana2 by Plk4 is required for the sequential loading of Ana2 and Sas6 to initiate procentriole formation. Open Biol., 2017, 7(12), 170247.
[http://dx.doi.org/10.1098/rsob.170247] [PMID: 29263250]
[29]
Schatten, H.; Ripple, M.O. The impact of centrosome pathologies on prostate cancer development and progression. Adv. Exp. Med. Biol., 2018, 1095, 67-81.
[http://dx.doi.org/10.1007/978-3-319-95693-0_4] [PMID: 30229549]
[30]
Mahjoub, M.R.; Xie, Z.; Stearns, T. Cep120 is asymmetrically localized to the daughter centriole and is essential for centriole assembly. J. Cell Biol., 2010, 191(2), 331-346.
[http://dx.doi.org/10.1083/jcb.201003009] [PMID: 20956381]
[31]
Dahl, K.D.; Sankaran, D.G.; Bayless, B.A.; Pinter, M.E.; Galati, D.F.; Heasley, L.R.; Giddings, T.H., Jr; Pearson, C.G. A short CEP135 splice isoform controls centriole duplication. Curr. Biol., 2015, 25(19), 2591-2596.
[http://dx.doi.org/10.1016/j.cub.2015.08.039] [PMID: 26412126]
[32]
Gönczy, P. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol., 2012, 13(7), 425-435.
[http://dx.doi.org/10.1038/nrm3373] [PMID: 22691849]
[33]
Gomez-Ferreria, M.A.; Rath, U.; Buster, D.W.; Chanda, S.K.; Caldwell, J.S.; Rines, D.R.; Sharp, D.J. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol., 2007, 17(22), 1960-1966.
[http://dx.doi.org/10.1016/j.cub.2007.10.019] [PMID: 17980596]
[34]
Paintrand, M.; Moudjou, M.; Delacroix, H.; Bornens, M. Centrosome organization and centriole architecture: Their sensitivity to divalent cations. J. Struct. Biol., 1992, 108(2), 107-128.
[http://dx.doi.org/10.1016/1047-8477(92)90011-X] [PMID: 1486002]
[35]
Schwarz, A.; Sankaralingam, P.; O’Connell, K.F.; Müller-Reichert, T. Revisiting centrioles in nematodes-historic findings and current topics. Cells, 2018, 7(8), 101.
[http://dx.doi.org/10.3390/cells7080101] [PMID: 30096824]
[36]
Schmidt, T.I.; Kleylein-Sohn, J.; Westendorf, J.; Le Clech, M.; Lavoie, S.B.; Stierhof, Y.D.; Nigg, E.A. Control of centriole length by CPAP and CP110. Curr. Biol., 2009, 19(12), 1005-1011.
[http://dx.doi.org/10.1016/j.cub.2009.05.016] [PMID: 19481458]
[37]
Lee, M.; Seo, M.Y.; Chang, J.; Hwang, D.S.; Rhee, K. PLK4 phosphorylation of CP110 is required for efficient centriole assembly. Cell Cycle, 2017, 16(12), 1225-1234.
[http://dx.doi.org/10.1080/15384101.2017.1325555] [PMID: 28562169]
[38]
Maniswami, R.R.; Prashanth, S.; Karanth, A.V.; Koushik, S.; Govindaraj, H.; Mullangi, R.; Rajagopal, S.; Jegatheesan, S.K. PLK4: A link between centriole biogenesis and cancer. Expert Opin. Ther. Targets, 2018, 22(1), 59-73.
[http://dx.doi.org/10.1080/14728222.2018.1410140] [PMID: 29171762]
[39]
Kong, D.; Farmer, V.; Shukla, A.; James, J.; Gruskin, R.; Kiriyama, S.; Loncarek, J. Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. J. Cell Biol., 2014, 206(7), 855-865.
[http://dx.doi.org/10.1083/jcb.201407087] [PMID: 25246616]
[40]
Shukla, A.; Kong, D.; Sharma, M.; Magidson, V.; Loncarek, J. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation. Nat. Commun., 2015, 6(1), 8077.
[http://dx.doi.org/10.1038/ncomms9077] [PMID: 26293378]
[41]
Petretti, C.; Savoian, M.; Montembault, E.; Glover, D.M.; Prigent, C.; Giet, R. The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep., 2006, 7(4), 418-424.
[http://dx.doi.org/10.1038/sj.embor.7400639] [PMID: 16462731]
[42]
An, S.; Kwon, O.S.; Yu, J.; Jang, S.K. A cyclin-dependent kinase, CDK11/p58, represses cap-dependent translation during mitosis. Cell. Mol. Life Sci., 2020, 77(22), 4693-4708.
[http://dx.doi.org/10.1007/s00018-019-03436-3] [PMID: 32030451]
[43]
Kumar, A.; Rajendran, V.; Sethumadhavan, R.; Purohit, R. CEP proteins: The knights of centrosome dynasty. Protoplasma, 2013, 250(5), 965-983.
[http://dx.doi.org/10.1007/s00709-013-0488-9] [PMID: 23456457]
[44]
Agircan, F.G.; Schiebel, E.; Mardin, B.R. Separate to operate: Control of centrosome positioning and separation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1650), 20130461.
[http://dx.doi.org/10.1098/rstb.2013.0461] [PMID: 25047615]
[45]
Mayor, T.; Stierhof, Y-D.; Tanaka, K.; Fry, A.M.; Nigg, E.A. The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J. Cell Biol., 2000, 151(4), 837-846.
[http://dx.doi.org/10.1083/jcb.151.4.837] [PMID: 11076968]
[46]
Nigg, E.A.; Stearns, T. The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol., 2011, 13(10), 1154-1160.
[http://dx.doi.org/10.1038/ncb2345] [PMID: 21968988]
[47]
Hata, S.; Pastor Peidro, A.; Panic, M.; Liu, P.; Atorino, E.; Funaya, C.; Jäkle, U.; Pereira, G.; Schiebel, E. The balance between KIFC3 and EG5 tetrameric kinesins controls the onset of mitotic spindle assembly. Nat. Cell Biol., 2019, 21(9), 1138-1151.
[http://dx.doi.org/10.1038/s41556-019-0382-6] [PMID: 31481795]
[48]
Lane, H.A.; Nigg, E.A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol., 1996, 135(6 Pt 2), 1701-1713.
[http://dx.doi.org/10.1083/jcb.135.6.1701] [PMID: 8991084]
[49]
Joukov, V.; Walter, J.C.; De Nicolo, A. The Cep192-organized aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Mol. Cell, 2014, 55(4), 578-591.
[http://dx.doi.org/10.1016/j.molcel.2014.06.016] [PMID: 25042804]
[50]
Remo, A.; Li, X.; Schiebel, E.; Pancione, M. The centrosome linker and its role in cancer and genetic disorders. Trends Mol. Med., 2020, 26(4), 380-393.
[http://dx.doi.org/10.1016/j.molmed.2020.01.011] [PMID: 32277932]
[51]
Nigg, E.A.; Schnerch, D.; Ganier, O. Impact of centrosome aberrations on chromosome segregation and tissue architecture in cancer. Cold Spring Harb. Symp. Quant. Biol., 2017, 82, 137-144.
[52]
Yang, J.; Adamian, M.; Li, T. Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol. Biol. Cell, 2006, 17(2), 1033-1040.
[http://dx.doi.org/10.1091/mbc.e05-10-0943] [PMID: 16339073]
[53]
He, R.; Huang, N.; Bao, Y.; Zhou, H.; Teng, J.; Chen, J. LRRC45 is a centrosome linker component required for centrosome cohesion. Cell Rep., 2013, 4(6), 1100-1107.
[http://dx.doi.org/10.1016/j.celrep.2013.08.005] [PMID: 24035387]
[54]
Fogeron, M.L.; Müller, H.; Schade, S.; Dreher, F.; Lehmann, V.; Kühnel, A.; Scholz, A.K.; Kashofer, K.; Zerck, A.; Fauler, B.; Lurz, R.; Herwig, R.; Zatloukal, K.; Lehrach, H.; Gobom, J.; Nordhoff, E.; Lange, B.M. LGALS3BP regulates centriole biogenesis and centrosome hypertrophy in cancer cells. Nat. Commun., 2013, 4(1), 1531.
[http://dx.doi.org/10.1038/ncomms2517] [PMID: 23443559]
[55]
Fang, G.; Zhang, D.; Yin, H.; Zheng, L.; Bi, X.; Yuan, L. Centlein mediates an interaction between C-Nap1 and Cep68 to maintain centrosome cohesion. J. Cell Sci., 2014, 127(Pt 8), 1631-1639.
[http://dx.doi.org/10.1242/jcs.139451] [PMID: 24554434]
[56]
Hossain, D.; Shih, S.Y.; Xiao, X.; White, J.; Tsang, W.Y. Cep44 functions in centrosome cohesion by stabilizing rootletin. J. Cell Sci., 2020, 133(4), jcs239616.
[http://dx.doi.org/10.1242/jcs.239616] [PMID: 31974111]
[57]
Fujita, H.; Yoshino, Y.; Chiba, N. Regulation of the centrosome cycle. Mol. Cell. Oncol., 2015, 3(2), e1075643.
[http://dx.doi.org/10.1080/23723556.2015.1075643] [PMID: 27308597]
[58]
Vlijm, R.; Li, X.; Panic, M.; Rüthnick, D.; Hata, S.; Herrmannsdörfer, F.; Kuner, T.; Heilemann, M.; Engelhardt, J.; Hell, S.W.; Schiebel, E. STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles. Proc. Natl. Acad. Sci. USA, 2018, 115(10), E2246-E2253.
[http://dx.doi.org/10.1073/pnas.1716840115] [PMID: 29463719]
[59]
Mardin, B.R.; Lange, C.; Baxter, J.E.; Hardy, T.; Scholz, S.R.; Fry, A.M.; Schiebel, E. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat. Cell Biol., 2010, 12(12), 1166-1176.
[http://dx.doi.org/10.1038/ncb2120] [PMID: 21076410]
[60]
Graser, S.; Stierhof, Y.D.; Nigg, E.A. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J. Cell Sci., 2007, 120(Pt 24), 4321-4331.
[http://dx.doi.org/10.1242/jcs.020248] [PMID: 18042621]
[61]
Woodcock, S.A.; Rushton, H.J.; Castañeda-Saucedo, E.; Myant, K.; White, G.R.; Blyth, K.; Sansom, O.J.; Malliri, A. Tiam1-Rac signaling counteracts Eg5 during bipolar spindle assembly to facilitate chromosome congression. Curr. Biol., 2010, 20(7), 669-675.
[http://dx.doi.org/10.1016/j.cub.2010.02.033] [PMID: 20346677]
[62]
Bondaz, A.; Cirillo, L.; Meraldi, P.; Gotta, M. Cell polarity-dependent centrosome separation in the C. elegans embryo. J. Cell Biol., 2019, 218(12), 4112-4126.
[http://dx.doi.org/10.1083/jcb.201902109] [PMID: 31645459]
[63]
Meraldi, P.; Nigg, E.A. The centrosome cycle. FEBS Lett., 2002, 521(1-3), 9-13.
[http://dx.doi.org/10.1016/S0014-5793(02)02865-X] [PMID: 12067716]
[64]
Jusino, S.; Fernández-Padín, F.M.; Saavedra, H.I. Centrosome aberrations and chromosome instability contribute to tumorigenesis and intra-tumor heterogeneity. J. Cancer Metastasis Treat., 2018, 4, 4.
[http://dx.doi.org/10.20517/2394-4722.2018.24] [PMID: 30381801]
[65]
Wu, Q.; Li, B.; Liu, L.; Sun, S.; Sun, S. Centrosome dysfunction: A link between senescence and tumor immunity. Signal Transduct. Target. Ther., 2020, 5(1), 107.
[http://dx.doi.org/10.1038/s41392-020-00214-7] [PMID: 32606370]
[66]
Pihan, G.A. Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front. Oncol., 2013, 3, 277.
[http://dx.doi.org/10.3389/fonc.2013.00277] [PMID: 24282781]
[67]
Zhang, Y.; Tian, J.; Qu, C.; Peng, Y.; Lei, J.; Sun, L.; Zong, B.; Liu, S. A look into the link between centrosome amplification and breast cancer. Biomed. Pharmacother., 2020, 132, 110924.
[http://dx.doi.org/10.1016/j.biopha.2020.110924] [PMID: 33128942]
[68]
Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov., 2022, 12(1), 31-46.
[http://dx.doi.org/10.1158/2159-8290.CD-21-1059] [PMID: 35022204]
[69]
Duijf, P.H.G.; Nanayakkara, D.; Nones, K.; Srihari, S.; Kalimutho, M.; Khanna, K.K. Mechanisms of genomic instability in breast cancer. Trends Mol. Med., 2019, 25(7), 595-611.
[http://dx.doi.org/10.1016/j.molmed.2019.04.004] [PMID: 31078431]
[70]
Marthiens, V.; Rujano, M.A.; Pennetier, C.; Tessier, S.; Paul-Gilloteaux, P.; Basto, R. Centrosome amplification causes microcephaly. Nat. Cell Biol., 2013, 15(7), 731-740.
[http://dx.doi.org/10.1038/ncb2746] [PMID: 23666084]
[71]
Gheghiani, L.; Loew, D.; Lombard, B.; Mansfeld, J.; Gavet, O. PLK1 activation in late G2 sets up commitment to mitosis. Cell Rep., 2017, 19(10), 2060-2073.
[http://dx.doi.org/10.1016/j.celrep.2017.05.031] [PMID: 28591578]
[72]
Sabat-Pośpiech, D.; Fabian-Kolpanowicz, K.; Prior, I.A.; Coulson, J.M.; Fielding, A.B. Targeting centrosome amplification, an Achilles’ heel of cancer. Biochem. Soc. Trans., 2019, 47(5), 1209-1222.
[http://dx.doi.org/10.1042/BST20190034] [PMID: 31506331]
[73]
Vitre, B.; Holland, A.J.; Kulukian, A.; Shoshani, O.; Hirai, M.; Wang, Y.; Maldonado, M.; Cho, T.; Boubaker, J.; Swing, D.A.; Tessarollo, L.; Evans, S.M.; Fuchs, E.; Cleveland, D.W. Chronic centrosome amplification without tumorigenesis. Proc. Natl. Acad. Sci. USA, 2015, 112(46), E6321-E6330.
[http://dx.doi.org/10.1073/pnas.1519388112] [PMID: 26578792]
[74]
Fan, G.; Sun, L.; Shan, P.; Zhang, X.; Huan, J.; Zhang, X.; Li, D.; Wang, T.; Wei, T.; Zhang, X.; Gu, X.; Yao, L.; Xuan, Y.; Hou, Z.; Cui, Y.; Cao, L.; Li, X.; Zhang, S.; Wang, C. Loss of KLF14 triggers centrosome amplification and tumorigenesis. Nat. Commun., 2015, 6(1), 8450.
[http://dx.doi.org/10.1038/ncomms9450] [PMID: 26439168]
[75]
Stukenberg, P.T. Triggering p53 after cytokinesis failure. J. Cell Biol., 2004, 165(5), 607-608.
[http://dx.doi.org/10.1083/jcb.200405089] [PMID: 15184396]
[76]
Venghateri, J.B.; Jindal, B.; Panda, D. The centrosome: A prospective entrant in cancer therapy. Expert Opin. Ther. Targets, 2015, 19(7), 957-972.
[http://dx.doi.org/10.1517/14728222.2015.1018823] [PMID: 25787715]
[77]
Kwon, M. Using cell culture models of centrosome amplification to study centrosome clustering in cancer. Methods Mol. Biol., 2016, 1413, 367-392.
[http://dx.doi.org/10.1007/978-1-4939-3542-0_23] [PMID: 27193861]
[78]
Vargas-Hurtado, D.; Basto, R. When E-cadherin is away, centrosomes can play. J. Cell Biol., 2018, 217(1), 11-13.
[http://dx.doi.org/10.1083/jcb.201712033] [PMID: 29259095]
[79]
Rhys, A.D.; Monteiro, P.; Smith, C.; Vaghela, M.; Arnandis, T.; Kato, T.; Leitinger, B.; Sahai, E.; McAinsh, A.; Charras, G.; Godinho, S.A. Loss of E-cadherin provides tolerance to centrosome amplification in epithelial cancer cells. J. Cell Biol., 2018, 217(1), 195-209.
[http://dx.doi.org/10.1083/jcb.201704102] [PMID: 29133484]
[80]
Fan, G.; Sun, L.; Meng, L.; Hu, C.; Wang, X.; Shi, Z.; Hu, C.; Han, Y.; Yang, Q.; Cao, L.; Zhang, X.; Zhang, Y.; Song, X.; Xia, S.; He, B.; Zhang, S.; Wang, C. The ATM and ATR kinases regulate centrosome clustering and tumor recurrence by targeting KIFC1 phosphorylation. Nat. Commun., 2021, 12(1), 20.
[http://dx.doi.org/10.1038/s41467-020-20208-x] [PMID: 33397932]
[81]
Kwon, M.; Godinho, S.A.; Chandhok, N.S.; Ganem, N.J.; Azioune, A.; Thery, M.; Pellman, D. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev., 2008, 22(16), 2189-2203.
[http://dx.doi.org/10.1101/gad.1700908] [PMID: 18662975]
[82]
Kim, N.; Song, K. KIFC1 is essential for bipolar spindle formation and genomic stability in the primary human fibroblast IMR-90 cell. Cell Struct. Funct., 2013, 38(1), 21-30.
[http://dx.doi.org/10.1247/csf.12014] [PMID: 23318213]
[83]
Musacchio, A.; Hardwick, K.G. The spindle checkpoint: Structural insights into dynamic signalling. Nat. Rev. Mol. Cell Biol., 2002, 3(10), 731-741.
[http://dx.doi.org/10.1038/nrm929] [PMID: 12360190]
[84]
Kawakami, M.; Liu, X.; Dmitrovsky, E. New cell cycle inhibitors target aneuploidy in cancer therapy. Annu. Rev. Pharmacol. Toxicol., 2019, 59, 361-377.
[http://dx.doi.org/10.1146/annurev-pharmtox-010818-021649] [PMID: 30110577]
[85]
Konotop, G.; Bausch, E.; Nagai, T.; Turchinovich, A.; Becker, N.; Benner, A.; Boutros, M.; Mizuno, K.; Krämer, A.; Raab, M.S. Pharmacological inhibition of centrosome clustering by slingshot-mediated cofilin activation and actin cortex destabilization. Cancer Res., 2016, 76(22), 6690-6700.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1144] [PMID: 27634760]
[86]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17(2), 93-115.
[http://dx.doi.org/10.1038/nrc.2016.138] [PMID: 28127048]
[87]
Scorzoni, L.; de Paula, E. Silva, A.C.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.; Fusco-Almeida, A.M. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front. Microbiol., 2017, 8, 36.
[http://dx.doi.org/10.3389/fmicb.2017.00036] [PMID: 28167935]
[88]
Das, S.; Paul, S. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein. PLoS One, 2018, 13(1), e0190209.
[http://dx.doi.org/10.1371/journal.pone.0190209] [PMID: 29324869]
[89]
Raab, M.S.; Breitkreutz, I.; Anderhub, S.; Rønnest, M.H.; Leber, B.; Larsen, T.O.; Weiz, L.; Konotop, G.; Hayden, P.J.; Podar, K.; Fruehauf, J.; Nissen, F.; Mier, W.; Haberkorn, U.; Ho, A.D.; Goldschmidt, H.; Anderson, K.C.; Clausen, M.H.; Krämer, A. GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo. Cancer Res., 2012, 72(20), 5374-5385.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2026] [PMID: 22942257]
[90]
Panda, D.; Rathinasamy, K.; Santra, M.K.; Wilson, L. Kinetic suppression of microtubule dynamic instability by griseofulvin: Implications for its possible use in the treatment of cancer. Proc. Natl. Acad. Sci. USA, 2005, 102(28), 9878-9883.
[http://dx.doi.org/10.1073/pnas.0501821102] [PMID: 15985553]
[91]
Zacharaki, P.; Stephanou, G.; Demopoulos, N.A. Comparison of the aneugenic properties of nocodazole, paclitaxel and griseofulvin in vitro. Centrosome defects and alterations in protein expression profiles. J. Appl. Toxicol., 2013, 33(9), 869-879.
[http://dx.doi.org/10.1002/jat.2745] [PMID: 22431130]
[92]
Rebacz, B.; Larsen, T.O.; Clausen, M.H.; Rønnest, M.H.; Löffler, H.; Ho, A.D.; Krämer, A. Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res., 2007, 67(13), 6342-6350.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0663] [PMID: 17616693]
[93]
Larizza, L.; Simoni, G.; Tredici, F.; De Carli, L. Griseofulvin: A potential agent of chromosomal segregation in cultured cells. Mutat. Res., 1974, 25(1), 123-130.
[http://dx.doi.org/10.1016/0027-5107(74)90224-3] [PMID: 4139651]
[94]
Liéby-Muller, F.; Heudré Le Baliner, Q.; Grisoni, S.; Fournier, E.; Guilbaud, N.; Marion, F. Synthesis and activities towards resistant cancer cells of sulfone and sulfoxide griseofulvin derivatives. Bioorg. Med. Chem. Lett., 2015, 25(10), 2078-2081.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.081] [PMID: 25872984]
[95]
Rathinasamy, K.; Jindal, B.; Asthana, J.; Singh, P.; Balaji, P.V.; Panda, D. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine. BMC Cancer, 2010, 10(1), 213.
[http://dx.doi.org/10.1186/1471-2407-10-213] [PMID: 20482847]
[96]
Ho, Y.S.; Duh, J.S.; Jeng, J.H.; Wang, Y.J.; Liang, Y.C.; Lin, C.H.; Tseng, C.J.; Yu, C.F.; Chen, R.J.; Lin, J.K. Griseofulvin potentiates antitumorigenesis effects of nocodazole through induction of apoptosis and G2/M cell cycle arrest in human colorectal cancer cells. Int. J. Cancer, 2001, 91(3), 393-401.
[http://dx.doi.org/10.1002/1097-0215(200002)9999:9999<:AID-IJC1070>3.0.CO;2-#] [PMID: 11169965]
[97]
Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Recent Advances in Natural Products Analysis; Silva, A.S.; Nabavi, S.F.; Saeedi, M.; Nabavi, S.M., Eds.; Elsevier: Amsterdam, Netherlands, 2020; pp. 505-567.
[http://dx.doi.org/10.1016/B978-0-12-816455-6.00015-9]
[98]
Rida, P.C. LiVecche, D.; Ogden, A.; Zhou, J.; Aneja, R. The noscapine chronicle: A pharmaco-historic biography of the opiate alkaloid family and its clinical applications. Med. Res. Rev., 2015, 35(5), 1072-1096.
[http://dx.doi.org/10.1002/med.21357] [PMID: 26179481]
[99]
Ghaly, P.E.; Abou El-Magd, R.M.; Churchill, C.D.; Tuszynski, J.A.; West, F.G. A new antiproliferative noscapine analogue: Chemical synthesis and biological evaluation. Oncotarget, 2016, 7(26), 40518-40530.
[http://dx.doi.org/10.18632/oncotarget.9642] [PMID: 27777381]
[100]
Zhou, J.; Panda, D.; Landen, J.W.; Wilson, L.; Joshi, H.C. Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates the spindle checkpoint. J. Biol. Chem., 2002, 277(19), 17200-17208.
[http://dx.doi.org/10.1074/jbc.M110369200] [PMID: 11864974]
[101]
Dash, S.G.; Suri, C.; Nagireddy, P.K.R.; Kantevari, S.; Naik, P.K. Rational design of 9-vinyl-phenyl noscapine as potent tubulin binding anticancer agent and evaluation of the effects of its combination on docetaxel. J. Biomol. Struct. Dyn., 2021, 39(14), 5276-5289.
[http://dx.doi.org/10.1080/07391102.2020.1785945] [PMID: 32608323]
[102]
Ye, K.; Ke, Y.; Keshava, N.; Shanks, J.; Kapp, J.A.; Tekmal, R.R.; Petros, J.; Joshi, H.C. Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proc. Natl. Acad. Sci. USA, 1998, 95(4), 1601-1606.
[http://dx.doi.org/10.1073/pnas.95.4.1601] [PMID: 9465062]
[103]
Pannu, V.; Rida, P.C.; Celik, B.; Turaga, R.C.; Ogden, A.; Cantuaria, G.; Gopalakrishnan, J.; Aneja, R. Centrosome-declustering drugs mediate a two-pronged attack on interphase and mitosis in supercentrosomal cancer cells. Cell Death Dis., 2014, 5(11), e1538.
[http://dx.doi.org/10.1038/cddis.2014.505] [PMID: 25412316]
[104]
Karna, P.; Rida, P.C.; Pannu, V.; Gupta, K.K.; Dalton, W.B.; Joshi, H.; Yang, V.W.; Zhou, J.; Aneja, R. A novel microtubule-modulating noscapinoid triggers apoptosis by inducing spindle multipolarity via centrosome amplification and declustering. Cell Death Differ., 2011, 18(4), 632-644.
[http://dx.doi.org/10.1038/cdd.2010.133] [PMID: 21052096]
[105]
Tomar, V.; Kumar, N.; Tomar, R.; Sood, D.; Dhiman, N.; Dass, S.K.; Prakash, S.; Madan, J.; Chandra, R. Biological evaluation of noscapine analogues as potent and Microtubule-targeted anticancer agents. Sci. Rep., 2019, 9(1), 19542.
[http://dx.doi.org/10.1038/s41598-019-55839-8] [PMID: 31862933]
[106]
Pannu, V.; Rida, P.C.; Ogden, A.; Clewley, R.; Cheng, A.; Karna, P.; Lopus, M.; Mishra, R.C.; Zhou, J.; Aneja, R. Induction of robust de novo centrosome amplification, high-grade spindle multipolarity and metaphase catastrophe: A novel chemotherapeutic approach. Cell Death Dis., 2012, 3(7), e346.
[http://dx.doi.org/10.1038/cddis.2012.82] [PMID: 22785532]
[107]
Aneja, R.; Zhou, J.; Vangapandu, S.N.; Zhou, B.; Chandra, R.; Joshi, H.C. Drug-resistant T-lymphoid tumors undergo apoptosis selectively in response to an antimicrotubule agent, EM011. Blood, 2006, 107(6), 2486-2492.
[http://dx.doi.org/10.1182/blood-2005-08-3516] [PMID: 16282340]
[108]
Naik, P.K.; Chatterji, B.P.; Vangapandu, S.N.; Aneja, R.; Chandra, R.; Kanteveri, S.; Joshi, H.C. Rational design, synthesis and biological evaluations of amino-noscapine: A high affinity tubulin-binding noscapinoid. J. Comput. Aided Mol. Des., 2011, 25(5), 443-454.
[http://dx.doi.org/10.1007/s10822-011-9430-4] [PMID: 21544622]
[109]
Zhang, D.; Kanakkanthara, A. Beyond the paclitaxel and vinca alkaloids: Next generation of plant-derived microtubule-targeting agents with potential anticancer activity. Cancers (Basel), 2020, 12(7), 1721.
[http://dx.doi.org/10.3390/cancers12071721] [PMID: 32610496]
[110]
DeBono, A.J.; Xie, J.H.; Ventura, S.; Pouton, C.W.; Capuano, B.; Scammells, P.J. Synthesis and biological evaluation of N-substituted noscapine analogues. ChemMedChem, 2012, 7(12), 2122-2133.
[http://dx.doi.org/10.1002/cmdc.201200365] [PMID: 23055449]
[111]
Nagireddy, P.K.R.; Kommalapati, V.K.; Siva Krishna, V.; Sriram, D.; Tangutur, A.D.; Kantevari, S. Imidazo[2,1-b]thiazole-coupled natural noscapine derivatives as anticancer agents. ACS Omega, 2019, 4(21), 19382-19398.
[http://dx.doi.org/10.1021/acsomega.9b02789] [PMID: 31763563]
[112]
Devine, S.M.; Yong, C.; Amenuvegbe, D.; Aurelio, L.; Muthiah, D.; Pouton, C.; Callaghan, R.; Capuano, B.; Scammells, P.J. Synthesis and pharmacological evaluation of noscapine-inspired 5-substituted tetrahydroisoquinolines as cytotoxic agents. J. Med. Chem., 2018, 61(18), 8444-8456.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00986] [PMID: 30156410]
[113]
Yong, C.; Devine, S.M.; Gao, X.; Yan, A.; Callaghan, R.; Capuano, B.; Scammells, P.J. A novel class of N-sulfonyl and N-sulfamoyl noscapine derivatives that promote mitotic arrest in cancer cells. ChemMedChem, 2019, 14(23), 1968-1981.
[http://dx.doi.org/10.1002/cmdc.201900477] [PMID: 31714012]
[114]
Kawamura, E.; Fielding, A.B.; Kannan, N.; Balgi, A.; Eaves, C.J.; Roberge, M.; Dedhar, S. Identification of novel small molecule inhibitors of centrosome clustering in cancer cells. Oncotarget, 2013, 4(10), 1763-1776.
[http://dx.doi.org/10.18632/oncotarget.1198] [PMID: 24091544]
[115]
Farrukh, U.B.; Bilal, A.; Zahid, H.; Iqbal, M.; Manzoor, S.; Firdous, F. Synthesis and evaluation of novel carboxamides capable of causing centrosome declustering and apoptosis in breast cancer Cells. ChemistrySelect, 2022, 7(15), e202104218.
[http://dx.doi.org/10.1002/slct.202104218]
[116]
Wu, J.; Mikule, K.; Wang, W.; Su, N.; Petteruti, P.; Gharahdaghi, F.; Code, E.; Zhu, X.; Jacques, K.; Lai, Z.; Yang, B.; Lamb, M.L.; Chuaqui, C.; Keen, N.; Chen, H. Discovery and mechanistic study of a small molecule inhibitor for motor protein KIFC1. ACS Chem. Biol., 2013, 8(10), 2201-2208.
[http://dx.doi.org/10.1021/cb400186w] [PMID: 23895133]
[117]
Watts, C.A.; Richards, F.M.; Bender, A.; Bond, P.J.; Korb, O.; Kern, O.; Riddick, M.; Owen, P.; Myers, R.M.; Raff, J.; Gergely, F.; Jodrell, D.I.; Ley, S.V. Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes. Chem. Biol., 2013, 20(11), 1399-1410.
[http://dx.doi.org/10.1016/j.chembiol.2013.09.012] [PMID: 24210220]
[118]
Zhang, W.; Zhai, L.; Wang, Y.; Boohaker, R.J.; Lu, W.; Gupta, V.V.; Padmalayam, I.; Bostwick, R.J.; White, E.L.; Ross, L.J.; Maddry, J.; Ananthan, S.; Augelli-Szafran, C.E.; Suto, M.J.; Xu, B.; Li, R.; Li, Y. Discovery of a novel inhibitor of kinesin-like protein KIFC1. Biochem. J., 2016, 473(8), 1027-1035.
[http://dx.doi.org/10.1042/BJ20150992] [PMID: 26846349]
[119]
Yang, B.; Lamb, M.L.; Zhang, T.; Hennessy, E.J.; Grewal, G.; Sha, L.; Zambrowski, M.; Block, M.H.; Dowling, J.E.; Su, N.; Wu, J.; Deegan, T.; Mikule, K.; Wang, W.; Kaspera, R.; Chuaqui, C.; Chen, H. Discovery of potent KIFC1 inhibitors using a method of integrated high-throughput synthesis and screening. J. Med. Chem., 2014, 57(23), 9958-9970.
[http://dx.doi.org/10.1021/jm501179r] [PMID: 25458601]
[120]
Parvin, A.; Hao, S-L.; Tan, F-Q.; Yang, W-X. Inhibition of kinesin motor protein KIFC1 by AZ82 induces multipolar mitosis and apoptosis in prostate cancer cell. Gene, 2020, 760, 144989.
[http://dx.doi.org/10.1016/j.gene.2020.144989] [PMID: 32717307]
[121]
Park, H.W.; Ma, Z.; Zhu, H.; Jiang, S.; Robinson, R.C.; Endow, S.A. Structural basis of small molecule ATPase inhibition of a human mitotic kinesin motor protein. Sci. Rep., 2017, 7(1), 15121.
[http://dx.doi.org/10.1038/s41598-017-14754-6] [PMID: 29123223]
[122]
Yukawa, M.; Yamauchi, T.; Kurisawa, N.; Ahmed, S.; Kimura, K.I.; Toda, T. Fission yeast cells overproducing HSET/KIFC1 provides a useful tool for identification and evaluation of human kinesin-14 inhibitors. Fungal Genet. Biol., 2018, 116, 33-41.
[http://dx.doi.org/10.1016/j.fgb.2018.04.006] [PMID: 29684553]
[123]
Bhakta-Guha, D.; Saeed, M.E.; Greten, H.J.; Efferth, T. Dis-organizing centrosomal clusters: Specific cancer therapy for a generic spread? Curr. Med. Chem., 2015, 22(6), 685-694.
[http://dx.doi.org/10.2174/0929867322666141212114529] [PMID: 25515519]
[124]
Pannu, V.; Rida, P.C.; Aneja, R. The human Kinesin-14 motor KifC1/HSET is an attractive anti-cancer drug target. In: Kinesins and Cancer; Springer: Dordrecth, 2015; pp. 101-106.
[http://dx.doi.org/10.1007/978-94-017-9732-0_7]
[125]
Sekino, Y.; Oue, N.; Koike, Y.; Shigematsu, Y.; Sakamoto, N.; Sentani, K.; Teishima, J.; Shiota, M.; Matsubara, A.; Yasui, W. KIFC1 inhibitor CW069 induces apoptosis and reverses resistance to docetaxel in prostate cancer. J. Clin. Med., 2019, 8(2), 225.
[http://dx.doi.org/10.3390/jcm8020225] [PMID: 30744126]
[126]
Wei, Y.L.; Yang, W.X. Kinesin-14 motor protein KIFC1 participates in DNA synthesis and chromatin maintenance. Cell Death Dis., 2019, 10(6), 402.
[http://dx.doi.org/10.1038/s41419-019-1619-9] [PMID: 31127080]
[127]
Chavali, P.L.; Chandrasekaran, G.; Barr, A.R.; Tátrai, P.; Taylor, C.; Papachristou, E.K.; Woods, C.G.; Chavali, S.; Gergely, F.A. CEP215-HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer. Nat. Commun., 2016, 7(1), 11005.
[http://dx.doi.org/10.1038/ncomms11005] [PMID: 26987684]
[128]
Drosopoulos, K.; Tang, C.; Chao, W.C.; Linardopoulos, S. APC/C is an essential regulator of centrosome clustering. Nat. Commun., 2014, 5(1), 3686.
[http://dx.doi.org/10.1038/ncomms4686] [PMID: 24751481]
[129]
Wäsch, R.; Robbins, J.A.; Cross, F.R. The emerging role of APC/CCdh1 in controlling differentiation, genomic stability and tumor suppression. Oncogene, 2010, 29(1), 1-10.
[http://dx.doi.org/10.1038/onc.2009.325] [PMID: 19826416]
[130]
van Leuken, R.; Clijsters, L.; van Zon, W.; Lim, D.; Yao, X.; Wolthuis, R.M.; Yaffe, M.B.; Medema, R.H.; van Vugt, M.A. Polo-like kinase-1 controls Aurora A destruction by activating APC/C-Cdh1. PLoS One, 2009, 4(4), e5282.
[http://dx.doi.org/10.1371/journal.pone.0005282] [PMID: 19390576]
[131]
Sackton, K.L.; Dimova, N.; Zeng, X.; Tian, W.; Zhang, M.; Sackton, T.B.; Meaders, J.; Pfaff, K.L.; Sigoillot, F.; Yu, H.; Luo, X.; King, R.W. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature, 2014, 514(7524), 646-649.
[http://dx.doi.org/10.1038/nature13660] [PMID: 25156254]
[132]
Raab, M.; Sanhaji, M.; Zhou, S.; Rödel, F.; El-Balat, A.; Becker, S.; Strebhardt, K. Blocking mitotic exit of ovarian cancer cells by pharmaceutical inhibition of the anaphase-promoting complex reduces chromosomal instability. Neoplasia, 2019, 21(4), 363-375.
[http://dx.doi.org/10.1016/j.neo.2019.01.007] [PMID: 30851646]
[133]
Kapoor, T.M.; Mayer, T.U.; Coughlin, M.L.; Mitchison, T.J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol., 2000, 150(5), 975-988.
[http://dx.doi.org/10.1083/jcb.150.5.975] [PMID: 10973989]
[134]
Radonova, L.; Svobodova, T.; Skultety, M.; Mrkva, O.; Libichova, L.; Stein, P.; Anger, M. ProTAME arrest in mammalian oocytes and embryos does not require spindle assembly checkpoint activity. Int. J. Mol. Sci., 2019, 20(18), 4537.
[http://dx.doi.org/10.3390/ijms20184537] [PMID: 31540287]
[135]
Zeng, X.; Sigoillot, F.; Gaur, S.; Choi, S.; Pfaff, K.L.; Oh, D.C.; Hathaway, N.; Dimova, N.; Cuny, G.D.; King, R.W. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell, 2010, 18(4), 382-395.
[http://dx.doi.org/10.1016/j.ccr.2010.08.010] [PMID: 20951947]
[136]
Wang, L.; Zhang, J.; Wan, L.; Zhou, X.; Wang, Z.; Wei, W. Targeting CDC20 as a novel cancer therapeutic strategy. Pharmacol. Ther., 2015, 151, 141-151.
[http://dx.doi.org/10.1016/j.pharmthera.2015.04.002] [PMID: 25850036]
[137]
Huang, P.; Le, X.; Huang, F.; Yang, J.; Yang, H.; Ma, J.; Hu, G.; Li, Q.; Chen, Z. Discovery of a Dual tubulin polymerization and cell division cycle 20 homologue inhibitor via structural modification on apcin. J. Med. Chem., 2020, 63(9), 4685-4700.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02097] [PMID: 32290657]
[138]
Maliga, Z.; Kapoor, T.M.; Mitchison, T.J. Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem. Biol., 2002, 9(9), 989-996.
[http://dx.doi.org/10.1016/S1074-5521(02)00212-0] [PMID: 12323373]
[139]
Chen, G-Y.; Kang, Y.J.; Gayek, A.S.; Youyen, W.; Tüzel, E.; Ohi, R.; Hancock, W.O. Eg5 inhibitors have contrasting effects on microtubule stability and metaphase spindle integrity. ACS Chem. Biol., 2017, 12(4), 1038-1046.
[http://dx.doi.org/10.1021/acschembio.6b01040] [PMID: 28165699]
[140]
Luo, L.; Carson, J.D.; Molnar, K.S.; Tuske, S.J.; Coales, S.J.; Hamuro, Y.; Sung, C.M.; Sudakin, V.; Auger, K.R.; Dhanak, D.; Jackson, J.R.; Huang, P.S.; Tummino, P.J.; Copeland, R.A. Conformation-dependent ligand regulation of ATP hydrolysis by human KSP: Activation of basal hydrolysis and inhibition of microtubule-stimulated hydrolysis by a single, small molecule modulator. J. Am. Chem. Soc., 2008, 130(24), 7584-7591.
[http://dx.doi.org/10.1021/ja710889h] [PMID: 18491908]
[141]
Skoufias, D.A.; DeBonis, S.; Saoudi, Y.; Lebeau, L.; Crevel, I.; Cross, R.; Wade, R.H.; Hackney, D.; Kozielski, F. S-trityl-L-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression. J. Biol. Chem., 2006, 281(26), 17559-17569.
[http://dx.doi.org/10.1074/jbc.M511735200] [PMID: 16507573]
[142]
Marconi, G.D.; Carradori, S.; Ricci, A.; Guglielmi, P.; Cataldi, A.; Zara, S. Kinesin Eg5 targeting inhibitors as a new strategy for gastric adenocarcinoma treatment. Molecules, 2019, 24(21), 3948.
[http://dx.doi.org/10.3390/molecules24213948] [PMID: 31683688]
[143]
Li, Y.; Rogoff, H.A.; Keates, S.; Gao, Y.; Murikipudi, S.; Mikule, K.; Leggett, D.; Li, W.; Pardee, A.B.; Li, C.J. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc. Natl. Acad. Sci. USA, 2015, 112(6), 1839-1844.
[http://dx.doi.org/10.1073/pnas.1424171112] [PMID: 25605917]
[144]
Morris, E.J.; Kawamura, E.; Gillespie, J.A.; Balgi, A.; Kannan, N.; Muller, W.J.; Roberge, M.; Dedhar, S. Stat3 regulates centrosome clustering in cancer cells via Stathmin/PLK1. Nat. Commun., 2017, 8(1), 15289.
[http://dx.doi.org/10.1038/ncomms15289] [PMID: 28474672]
[145]
Chong, P.S.Y.; Chng, W.J.; de Mel, S. STAT3: A promising therapeutic target in multiple myeloma. Cancers (Basel), 2019, 11(5), 731.
[http://dx.doi.org/10.3390/cancers11050731] [PMID: 31130718]
[146]
Mohammadian, J.; Molavi, O.; Pirouzpanah, M.B.; Rahimi, A.A.R.; Samadi, N. Stattic enhances the anti-proliferative effect of docetaxel via the Bax/Bcl-2/cyclin B axis in human cancer cells. Process Biochem., 2018, 69, 188-196.
[http://dx.doi.org/10.1016/j.procbio.2018.03.004]
[147]
Han, D.; Yu, T.; Dong, N.; Wang, B.; Sun, F.; Jiang, D. Napabucasin, a novel STAT3 inhibitor suppresses proliferation, invasion and stemness of glioblastoma cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 289.
[http://dx.doi.org/10.1186/s13046-019-1289-6] [PMID: 31277685]
[148]
MacDonagh, L.; Gray, S.G.; Breen, E.; Cuffe, S.; Finn, S.P.; O’Byrne, K.J.; Barr, M.P. BBI608 inhibits cancer stemness and reverses cisplatin resistance in NSCLC. Cancer Lett., 2018, 428, 117-126.
[http://dx.doi.org/10.1016/j.canlet.2018.04.008] [PMID: 29653268]
[149]
Massey, A.J.; Williamson, D.S.; Browne, H.; Murray, J.B.; Dokurno, P.; Shaw, T.; Macias, A.T.; Daniels, Z.; Geoffroy, S.; Dopson, M.; Lavan, P.; Matassova, N.; Francis, G.L.; Graham, C.J.; Parsons, R.; Wang, Y.; Padfield, A.; Comer, M.; Drysdale, M.J.; Wood, M. A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother. Pharmacol., 2010, 66(3), 535-545.
[http://dx.doi.org/10.1007/s00280-009-1194-3] [PMID: 20012863]
[150]
Prakash, A.; Garcia-Moreno, J.F.; Brown, J.A.L.; Bourke, E. Clinically applicable inhibitors impacting genome stability. Molecules, 2018, 23(5), 1166.
[http://dx.doi.org/10.3390/molecules23051166] [PMID: 29757235]
[151]
Huang, L.; Wang, Y.; Bai, J.; Yang, Y.; Wang, F.; Feng, Y.; Zhang, R.; Li, F.; Zhang, P.; Lv, N.; Lei, L.; Hu, J.; He, A. Blockade of HSP70 by VER-155008 synergistically enhances bortezomib-induced cytotoxicity in multiple myeloma. Cell Stress Chaperones, 2020, 25(2), 357-367.
[http://dx.doi.org/10.1007/s12192-020-01078-0] [PMID: 32026316]
[152]
Adam, C.; Baeurle, A.; Brodsky, J.L.; Wipf, P.; Schrama, D.; Becker, J.C.; Houben, R. The HSP70 modulator MAL3-101 inhibits Merkel cell carcinoma. PLoS One, 2014, 9(4), e92041.
[http://dx.doi.org/10.1371/journal.pone.0092041] [PMID: 24694787]
[153]
Julia, I.; Leu, J.; Pimkina, J.; Pandey, P.; Murphy, M.E.; George, D.L. Heat shock protein-70 inhibition by the small-molecule 2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells. Mol. Cancer Res., 2011, 9(7), 936-947.
[154]
Sampson, J.; O’Regan, L.; Dyer, M.J.S.; Bayliss, R.; Fry, A.M. Hsp72 and Nek6 cooperate to cluster amplified centrosomes in cancer cells. Cancer Res., 2017, 77(18), 4785-4796.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3233] [PMID: 28720575]
[155]
Castiel, A.; Visochek, L.; Mittelman, L.; Dantzer, F.; Izraeli, S.; Cohen-Armon, M. A phenanthrene derived PARP inhibitor is an extra-centrosomes de-clustering agent exclusively eradicating human cancer cells. BMC Cancer, 2011, 11(1), 412.
[http://dx.doi.org/10.1186/1471-2407-11-412] [PMID: 21943092]
[156]
Visochek, L.; Atias, D.; Spektor, I.; Castiel, A.; Golan, T.; Cohen-Armon, M. The phenanthrene derivative PJ34 exclusively eradicates human pancreatic cancer cells in xenografts. Oncotarget, 2019, 10(58), 6269-6282.
[http://dx.doi.org/10.18632/oncotarget.27268] [PMID: 31692907]
[157]
Inbar-Rozensal, D.; Castiel, A.; Visochek, L.; Castel, D.; Dantzer, F.; Izraeli, S.; Cohen-Armon, M. A selective eradication of human nonhereditary breast cancer cells by phenanthridine-derived polyADP-ribose polymerase inhibitors. Breast Cancer Res., 2009, 11(6), R78.
[http://dx.doi.org/10.1186/bcr2445] [PMID: 19891779]
[158]
Castiel, A.; Visochek, L.; Mittelman, L.; Zilberstein, Y.; Dantzer, F.; Izraeli, S.; Cohen-Armon, M. Cell death associated with abnormal mitosis observed by confocal imaging in live cancer cells. J. Vis. Exp., 2013, (78), e50568.
[http://dx.doi.org/10.3791/50568] [PMID: 23995751]
[159]
Johannes, J.W.; Almeida, L.; Daly, K.; Ferguson, A.D.; Grosskurth, S.E.; Guan, H.; Howard, T.; Ioannidis, S.; Kazmirski, S.; Lamb, M.L.; Larsen, N.A.; Lyne, P.D.; Mikule, K.; Ogoe, C.; Peng, B.; Petteruti, P.; Read, J.A.; Su, N.; Sylvester, M.; Throner, S.; Wang, W.; Wang, X.; Wu, J.; Ye, Q.; Yu, Y.; Zheng, X.; Scott, D.A. Discovery of AZ0108, an orally bioavailable phthalazinone PARP inhibitor that blocks centrosome clustering. Bioorg. Med. Chem. Lett., 2015, 25(24), 5743-5747.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.079] [PMID: 26546219]
[160]
Huang, S.H.; Xiong, M.; Chen, X.P.; Xiao, Z.Y.; Zhao, Y.F.; Huang, Z.Y. PJ34, an inhibitor of PARP-1, suppresses cell growth and enhances the suppressive effects of cisplatin in liver cancer cells. Oncol. Rep., 2008, 20(3), 567-572.
[PMID: 18695907]
[161]
Krishnakumar, R.; Kraus, W.L. The PARP side of the nucleus: Molecular actions, physiological outcomes, and clinical targets. Mol. Cell, 2010, 39(1), 8-24.
[http://dx.doi.org/10.1016/j.molcel.2010.06.017] [PMID: 20603072]
[162]
Li, Y.; Lu, W.; Chen, D.; Boohaker, R.J.; Zhai, L.; Padmalayam, I.; Wennerberg, K.; Xu, B.; Zhang, W. KIFC1 is a novel potential therapeutic target for breast cancer. Cancer Biol. Ther., 2015, 16(9), 1316-1322.
[http://dx.doi.org/10.1080/15384047.2015.1070980] [PMID: 26177331]
[163]
Myers, S.M.; Collins, I. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med. Chem., 2016, 8(4), 463-489.
[http://dx.doi.org/10.4155/fmc.16.5] [PMID: 26976726]
[164]
Rønnest, M.H.; Rebacz, B.; Markworth, L.; Terp, A.H.; Larsen, T.O.; Krämer, A.; Clausen, M.H. Synthesis and structure-activity relationship of griseofulvin analogues as inhibitors of centrosomal clustering in cancer cells. J. Med. Chem., 2009, 52(10), 3342-3347.
[http://dx.doi.org/10.1021/jm801517j] [PMID: 19402668]
[165]
Visochek, L.; Castiel, A.; Mittelman, L.; Elkin, M.; Atias, D.; Golan, T.; Izraeli, S.; Peretz, T.; Cohen-Armon, M. Exclusive destruction of mitotic spindles in human cancer cells. Oncotarget, 2017, 8(13), 20813-20824.
[http://dx.doi.org/10.18632/oncotarget.15343] [PMID: 28209915]
[166]
Morris, E.J.; Dedhar, S. Stat3 in mitosis: A new role in clustering excess centrosomes. Cell Cycle, 2017, 16(17), 1557-1559.
[http://dx.doi.org/10.1080/15384101.2017.1348064] [PMID: 28783441]
[167]
Wang, C.Y.; Huang, E.Y.; Huang, S.C.; Chung, B.C. DNA-PK/Chk2 induces centrosome amplification during prolonged replication stress. Oncogene, 2015, 34(10), 1263-1269.
[http://dx.doi.org/10.1038/onc.2014.74] [PMID: 24662822]
[168]
Navarro-Serer, B.; Childers, E.P.; Hermance, N.M.; Mercadante, D.; Manning, A.L. Aurora A inhibition limits centrosome clustering and promotes mitotic catastrophe in cells with supernumerary centrosomes. Oncotarget, 2019, 10(17), 1649-1659.
[http://dx.doi.org/10.18632/oncotarget.26714] [PMID: 30899434]
[169]
Sekino, Y.; Oue, N.; Shigematsu, Y.; Ishikawa, A.; Sakamoto, N.; Sentani, K. KIFC1 induces resistance to docetaxel and is associated with survival of patients with prostate cancer. Urol. Oncol., 2017, 35(1), 31.e13-31.e20.
[http://dx.doi.org/10.1016/j.urolonc.2016.08.007] [PMID: 27665358]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy