Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Mini-Review Article

Bioactive Polysaccharides from Microalgae: A Close Look at the Biomedical Applications

Author(s): Mariany C. Depra, Rosangela R. Dias, Mariana M. Maroneze, Tatiele C. Nascimento, Ihana A. Severo, Leila Q. Zepka and Eduardo Jacob-Lopes*

Volume 17, Issue 4, 2023

Published on: 13 September, 2022

Page: [296 - 311] Pages: 16

DOI: 10.2174/1872208316666220820092643

Price: $65

Abstract

There is a current tendency towards bioactive natural products that can be used in different areas such as food, pharmaceutical, and biomedical. In the last decades, polysaccharides have attracted increasing interest because of their potent nontoxic effects, therapeutic properties, and diversified range of applications. Polysaccharides are complex and heterogeneous macromolecules constituted of different monosaccharides and, in some cases, of glucuronic acid and sulphate groups. Polysaccharides with biological activity can be derived from plants, animals and microorganisms, especially microalgae. Microalgae are considered one of the most promising sources of these compounds that have already proved to have several important biological properties. In this sense, our objective is to elucidate the use of bioactive polysaccharides from microalgae in biomedical applications, emphasizing the biological activity of these compounds. Furthermore, the microalgal biomass production systems and polysaccharides extraction methods were presented and discussed.

Keywords: Algae, natural products, bioactive compounds, biological activity, sulphated polysaccharides, exopolysaccharides.

Graphical Abstract
[1]
Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci 2019; 26(4): 709-22.
[http://dx.doi.org/10.1016/j.sjbs.2017.11.003] [PMID: 31048995]
[2]
Zheng Y, Bai L, Zhou Y, et al. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int J Biol Macromol 2019; 121: 1240-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.072] [PMID: 30342938]
[3]
Delattre C, Pierre G, Laroche C, Michaud P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 2016; 34(7): 1159-79.
[http://dx.doi.org/10.1016/j.biotechadv.2016.08.001] [PMID: 27530696]
[4]
Chen L, Huang G. The antiviral activity of polysaccharides and their derivatives. Int J Biol Macromol 2018; 115: 77-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.056] [PMID: 29654857]
[5]
Yildiz H, Karatas N. Microbial exopolysaccharides: Resources and bioactive properties. Process Biochem 2018; 72: 41-6.
[http://dx.doi.org/10.1016/j.procbio.2018.06.009]
[6]
Michaud P. Polysaccharides from microalgae, what’s future? Adv Biotechnol Microbiol 2018; 8(2): 1-2.
[7]
Ramírez MLG, Zepka LQ, Jacob-Lopes E. Current production of microalgae at industrial scale. In: Pires JCM, Ed. Recent Advances in Renewable Energy Microalgae as a Source of Bioenergy: Products, Processes and Economics Sharjah. Bentham Science Publishers 2017; pp. 278-96.
[http://dx.doi.org/10.2174/9781681085227117010013]
[8]
Jacob-Lopes E, Maroneze MM, Deprá MC, Sartori RB, Dias RR, Zepka LQ. Bioactive food compounds from microalgae: An innovative framework on industrial biorefineries. Curr Opin Food Sci 2019; 25: 1-7.
[http://dx.doi.org/10.1016/j.cofs.2018.12.003]
[9]
Levine I, Fleurence J. Microalgae in Health and Disease Prevention. (1st ed.), London: Academic Press 2018.
[10]
Saide A, Martínez KA, Ianora A, Lauritano C. Unlocking the health potential of microalgae as sustainable sources of bioactive compounds. Int J Mol Sci 2021; 22(9): 4383.
[http://dx.doi.org/10.3390/ijms22094383] [PMID: 33922258]
[11]
Khanra S, Mondal M, Halder G, Tiwari ON, Gayen K, Bhowmick TK. Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food Bioprod Process 2018; 110: 60-84.
[http://dx.doi.org/10.1016/j.fbp.2018.02.002]
[12]
Guiry MD. How many species of algae are there? J Phycol 2012; 48(5): 1057-63.
[http://dx.doi.org/10.1111/j.1529-8817.2012.01222.x] [PMID: 27011267]
[13]
Ogbonna JC, Uzochukwu S, Nwoba EG, et al. Fermentation and Algal Biotechnologies for the Food, Beverage and Other Bioproduct Industries. (1st ed.). Boca Raton: CRC Press 2022; p. 284. [Epub Ahead of Print]
[http://dx.doi.org/10.1201/9781003178378]
[14]
Maroneze MM, Queiroz MI. Microalgal production systems with highlights of bioenergy production. In: Jacob-Lopes E, Zepka LQ, Queiroz MI, Eds. Energy from Microalgae. Switzerland: Springer 2018; pp. 5-34.
[http://dx.doi.org/10.1007/978-3-319-69093-3_2]
[15]
Khan F, Ahmad SR. Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 2013; 13(4): 395-421.
[http://dx.doi.org/10.1002/mabi.201200409] [PMID: 23512290]
[16]
Cheng P, Li Y, Wang C, et al. Integrated marine microalgae biorefineries for improved bioactive compounds: A review. Sci Total Environ 2022; 817: 152895.
[http://dx.doi.org/10.1016/j.scitotenv.2021.152895] [PMID: 34998757]
[17]
Siqueira SF, Maroneze MM, Dias RR, et al. Mapping the performance of photobioreactors for microalgae cultivation: Geographic position and local climate. J Chem Technol Biotechnol 2020; 95(9): 2411-20.
[http://dx.doi.org/10.1002/jctb.6423]
[18]
Bernaerts TMM, Gheysen L, Kyomugasho C, et al. Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. Algal Res 2018; 32: 150-61.
[http://dx.doi.org/10.1016/j.algal.2018.03.017]
[19]
Raposo MFJ, De Morais AMMB. Microalgae for the prevention of cardiovascular disease and stroke. Life Sci 2015; 125: 32-41.
[http://dx.doi.org/10.1016/j.lfs.2014.09.018] [PMID: 25277945]
[20]
Qi J, Kim SM. Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea. Int J Biol Macromol 2017; 95: 106-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.039] [PMID: 27856321]
[21]
Guzmán S, Gato A, Lamela M, Freire-Garabal M, Calleja JM. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 2003; 17(6): 665-70.
[http://dx.doi.org/10.1002/ptr.1227] [PMID: 12820237]
[22]
Dai J, Wu Y, Chen S, et al. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydr Polym 2010; 82(3): 629-35.
[http://dx.doi.org/10.1016/j.carbpol.2010.05.029]
[23]
Geun GB, Baek G, Jin Choi D, et al. Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresour Technol 2013; 129: 343-50.
[http://dx.doi.org/10.1016/j.biortech.2012.11.077] [PMID: 23262010]
[24]
Bafana A. Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydr Polym 2013; 95(2): 746-52.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.016] [PMID: 23648037]
[25]
Trabelsi L, Chaieb O, Mnari A, Abid ES, Aleya L. Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. BMC Complement Altern Med 2016; 16(1): 210.
[http://dx.doi.org/10.1186/s12906-016-1198-6] [PMID: 27405739]
[26]
Mourelle M, Gómez C, Legido J. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics 2017; 4(4): 46.
[http://dx.doi.org/10.3390/cosmetics4040046]
[27]
Santoyo S, Jaime L, Plaza M, et al. Antiviral compounds obtained from microalgae commonly used as carotenoid sources. J Appl Phycol 2012; 24(4): 731-41.
[http://dx.doi.org/10.1007/s10811-011-9692-1]
[28]
Raposo De Jesus MF, De Morais A, De Morais R. Marine polysaccharides from algae with potential biomedical aplications. Mar Drugs 2015; 13(5): 2967-3028.
[http://dx.doi.org/10.3390/md13052967] [PMID: 25988519]
[29]
Raposo M, De Morais R, De Morais BA. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 2013; 11(1): 233-52.
[http://dx.doi.org/10.3390/md11010233] [PMID: 23344113]
[30]
Hernándezcorona A, Nieves I, Meckes M, Chamorro G, Barron B. Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antiviral Res 2002; 56(3): 279-85.
[http://dx.doi.org/10.1016/S0166-3542(02)00132-8] [PMID: 12406511]
[31]
Shen S, Jia S, Wu Y, et al. Effect of culture conditions on the physicochemical properties and antioxidant activities of polysaccharides from Nostoc flagelliforme. Carbohydr Polym 2018; 198: 426-33.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.111] [PMID: 30093019]
[32]
Quan Y, Yang S, Wan J, Su T, Zhang J, Wang Z. Optimization for the extraction of polysaccharides from Nostoc commune and its antioxidant and antibacterial activities. J Taiwan Inst Chem Eng 2015; 52: 14-21.
[http://dx.doi.org/10.1016/j.jtice.2015.02.004]
[33]
Yim JH, Kim SJ, Ahn SH, Lee CK, Rhie KT, Lee HK. Antiviral effects of sulfated exopolysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Mar Biotechnol 2004; 6(1): 17-25.
[http://dx.doi.org/10.1007/s10126-003-0002-z] [PMID: 14508657]
[34]
Kang Y, Wang ZJ, Xie D, et al. Characterization and potential antitumor activity of polysaccharide from Gracilariopsis lemaneiformis. Mar Drugs 2017; 15(4): 100.
[http://dx.doi.org/10.3390/md15040100] [PMID: 28353631]
[35]
Ginzberg A, Korin E, Arad SM. Effect of drying on the biological activities of a red microalgal polysaccharide. Biotechnol Bioeng 2008; 99(2): 411-20.
[http://dx.doi.org/10.1002/bit.21573] [PMID: 17625787]
[36]
Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol Adv 2013; 31(8): 1532-42.
[http://dx.doi.org/10.1016/j.biotechadv.2013.07.011] [PMID: 23928208]
[37]
Udayan A, Sirohi R, Sreekumar N, Sang BI, Sim SJ. Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. Bioresour Technol 2022; 344(Pt B): 126406.
[http://dx.doi.org/10.1016/j.biortech.2021.126406] [PMID: 34826565]
[38]
Larroche C, Sanromán MA, Du G, Pandey A. Current Developments in Biotechnology and Bioengineering: Bioprocesses, Bioreactors and Controls. 3rd ed. Atlanta: Elsevier: Amsterdam 2017; p. 785-821.
[39]
Dragone G. Challenges and opportunities to increase economic feasibility and sustainability of mixotrophic cultivation of green microalgae of the genus Chlorella. Renew Sustain Energy Rev 2022; 160: 112284.
[http://dx.doi.org/10.1016/j.rser.2022.112284]
[40]
Jacob-Lopes E, Zepka LQ, Queiroz MI. Energy from Microalgae. (1st ed.), Switzerland: Springer 2018.
[http://dx.doi.org/10.1007/978-3-319-69093-3]
[41]
Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007; 25(3): 294-306.
[http://dx.doi.org/10.1016/j.biotechadv.2007.02.001] [PMID: 17350212]
[42]
Norsker NH, Barbosa MJ, Vermuë MH, Wijffels RH. Microalgal production — A close look at the economics. Biotechnol Adv 2011; 29(1): 24-7.
[http://dx.doi.org/10.1016/j.biotechadv.2010.08.005] [PMID: 20728528]
[43]
Chisti Y. Raceways-based production of algal crude oil. Green 2013; 3(3-4): 195-216.
[44]
Zheng H, Wang Y, Li S, et al. Recent advances in lutein production from microalgae. Renew Sustain Energy Rev 2022; 153: 111795.
[http://dx.doi.org/10.1016/j.rser.2021.111795]
[45]
Francisco ÉC, Teixeira Franco T, Queiroz Zepka L, Jacob-Lopes E. From waste-to-energy: The process integration and intensification for bulk oil and biodiesel production by microalgae. J Environ Chem Eng 2015; 3(1): 482-7.
[http://dx.doi.org/10.1016/j.jece.2014.12.017]
[46]
Maurya R, Zhu X, Valverde-Pérez B, et al. Advances in microalgal research for valorization of industrial wastewater. Bioresour Technol 2022; 343: 126128.
[http://dx.doi.org/10.1016/j.biortech.2021.126128] [PMID: 34655786]
[47]
Tabernero A, Del Valle MEM, Galán MA. Evaluating the industrial potential of biodiesel from a microalgae hetero-trophic culture: Scale-up and economics. Biochem Eng J 2012; 63: 104-15.
[http://dx.doi.org/10.1016/j.bej.2011.11.006]
[48]
Hu D, Cheong K, Zhao J, Li S. Chromatography in characterization of polysaccharides from medicinal plants and fungi. J Sep Sci 2013; 36(1): 1-19.
[http://dx.doi.org/10.1002/jssc.201200874] [PMID: 23225747]
[49]
Patel AK, Vadrale AP, Singhania RR, et al. Algal polysaccharides: Current status and future prospects. Phytochem Rev 2022; 1-30.
[http://dx.doi.org/10.1007/s11101-021-09799-5]
[50]
Damonte E, Matulewicz M, Cerezo A. Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 2004; 11(18): 2399-419.
[http://dx.doi.org/10.2174/0929867043364504] [PMID: 15379705]
[51]
Montanha JA, Bourgougnon N, Boustie J, Amoros M. Antiviral activity of carrageenans from marine red algae. Lat Am J Pharm 2009; 28(3): 443-8.
[52]
Trinchero J, Ponce NMA, Córdoba OL, et al. Antiretroviral activity of fucoidans extracted from the brown seaweed Adenocystis utricularis. Phytother Res 2009; 23(5): 707-12.
[http://dx.doi.org/10.1002/ptr.2723] [PMID: 19107862]
[53]
Pérez RM, Carlucci MJ, Noseda MD, Matulewicz MC. Chemical modifications of algal mannans and xylomannans: Effects on antiviral activity. Phytochemistry 2012; 73(1): 57-64.
[http://dx.doi.org/10.1016/j.phytochem.2011.10.002] [PMID: 22071136]
[54]
Morais A M, Alves A, Kumla D, Morais R M. Pharmaceutical and biomedical potential of sulphated polysaccharides from algae. In: Polysaccharides of Microbial Origin. New York: Springer, 2022; pp. 1-28.
[55]
Pierre G, Sopena V, Juin C, Mastouri A, Graber M, Maugard T. Antibacterial activity of a sulfated galactan extracted from the marine alga Chaetomorpha aerea against Staphylococcus aureus. Biotechnol Bioprocess Eng; BBE 2011; 16(5): 937-45.
[http://dx.doi.org/10.1007/s12257-011-0224-2]
[56]
Shannon E, Abu-Ghannam N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar Drugs 2016; 14(4): 81.
[http://dx.doi.org/10.3390/md14040081] [PMID: 27110798]
[57]
Abad M, Bedoya L, Bermejo P. Natural marine anti-inflammatory products. Mini Rev Med Chem 2008; 8(8): 740-54.
[http://dx.doi.org/10.2174/138955708784912148] [PMID: 18673130]
[58]
Naqvi SAR, Sherazi TA, Hassan SU, Shahzad SA, Faheem Z. Anti-inflammatory, anti-infectious and anti-cancer potential of marine algae and sponge: A review. Eur J Inflamm 2022; 20.
[http://dx.doi.org/10.1177/20587392221075514]
[59]
Hamias R, Wolak T, Huleihel M, Paran E, Levy OO. Red alga polysaccharides attenuate angiotensin II-induced inflammation in coronary endothelial cells. Biochem Biophys Res Commun 2018; 500(4): 944-51.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.206] [PMID: 29705698]
[60]
Cameron AC, Lang NN, Touyz RM. Drug treatment of hypertension: Focus on vascular health. Drugs 2016; 76(16): 1529-50.
[http://dx.doi.org/10.1007/s40265-016-0642-8] [PMID: 27667708]
[61]
Hwang J, Yadav D, Lee PCW, Jin JO. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother Res 2022; 36(2): 761-77.
[http://dx.doi.org/10.1002/ptr.7348] [PMID: 34962325]
[62]
Levy OO, Huleihel M, Hamias R, Wolak T, Paran E. An anti-inflammatory effect of red microalga polysaccharides in coronary artery endothelial cells. Atherosclerosis 2017; 264: 11-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.07.017] [PMID: 28738269]
[63]
Gupta PK, Rajan MGR, Kulkarni S. Activation of murine macrophages by G1-4A, a polysaccharide from Tinospora cordifolia, in TLR4/MyD88 dependent manner. Int Immunopharmacol 2017; 50: 168-77.
[http://dx.doi.org/10.1016/j.intimp.2017.06.025] [PMID: 28667885]
[64]
Azevedo MLV, Bonan NB, Dias G, et al. p-Cresyl sulfate affects the oxidative burst, phagocytosis process, and antigen presentation of monocyte-derived macrophages. Toxicol Lett 2016; 263: 1-5.
[http://dx.doi.org/10.1016/j.toxlet.2016.10.006] [PMID: 27760375]
[65]
Wang J, Bao A, Wang Q, et al. Sulfation can enhance antitumor activities of Artemisia sphaerocephala polysaccharide in vitro and vivo. Int J Biol Macromol 2018; 107(Pt A): 502-11.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.018] [PMID: 28893683]
[66]
Ye H, Wang K, Zhou C, Liu J, Zeng X. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem 2008; 111(2): 428-32.
[http://dx.doi.org/10.1016/j.foodchem.2008.04.012] [PMID: 26047446]
[67]
Vishchuk OS, Ermakova SP, Zvyagintseva TN. Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: Isolation, structural characteristics, and antitumor activity. Carbohydr Res 2011; 346(17): 2769-76.
[http://dx.doi.org/10.1016/j.carres.2011.09.034] [PMID: 22024567]
[68]
Perrotta PL, Perrotta CL, Snyder EL. Apoptotic activity in stored human platelets. Transfusion 2003; 43(4): 526-35.
[http://dx.doi.org/10.1046/j.1537-2995.2003.00349.x] [PMID: 12662287]
[69]
Queiroz KCS, Assis CF, Medeiros VP, et al. Cytotoxicity effect of algal polysaccharides on HL60 cells. Biochemistry 2006; 71(12): 1312-5.
[http://dx.doi.org/10.1134/S0006297906120042] [PMID: 17223782]
[70]
Jiao G, Yu G, Zhang J, Ewart H. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011; 9(2): 196-223.
[http://dx.doi.org/10.3390/md9020196] [PMID: 21566795]
[71]
Li P, Wen S, Sun K, Zhao Y, Chen Y. Structure and bioactivity screening of a low molecular weight ulvan from the green alga Ulothrix flacca. Mar Drugs 2018; 16(8): 281.
[http://dx.doi.org/10.3390/md16080281] [PMID: 30111709]
[72]
Wang L, Wang X, Wu H, Liu R. Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Mar Drugs 2014; 12(9): 4984-5020.
[http://dx.doi.org/10.3390/md12094984] [PMID: 25257786]
[73]
Sun Z, Dai Z, Zhang W, et al. Antiobesity, antidiabetic, antioxidative, and antihyperlipidemic activities of bioactive seaweed substances. In: Bioactive seaweeds for food applications. USA: Academic Press 2018; pp. 239-53.
[http://dx.doi.org/10.1016/B978-0-12-813312-5.00012-1]
[74]
Wang J, Jin W, Zhang W, Hou Y, Zhang H, Zhang Q. Hypoglycemic property of acidic polysaccharide extracted from Saccharina japonica and its potential mechanism. Carbohydr Polym 2013; 95(1): 143-7.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.076] [PMID: 23618250]
[75]
Patias LD, Fernandes AS, Petry FC, Mercadante AZ, Jacob-Lopes E, Zepka LQ. Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food Res Int 2017; 100(Pt 1): 260-6.
[http://dx.doi.org/10.1016/j.foodres.2017.06.069] [PMID: 28873686]
[76]
Imjongjairak S, Ratanakhanokchai K, Laohakunjit N, Tachaapaikoon C, Pason P, Waeonukul R. Biochemical characteristics and antioxidant activity of crude and purified sulfated polysaccharides from Gracilaria fisheri. Biosci Biotechnol Biochem 2016; 80(3): 524-32.
[http://dx.doi.org/10.1080/09168451.2015.1101334] [PMID: 26507584]
[77]
Sun Y, Wang H, Guo G, Pu Y, Yan B. The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana. Carbohydr Polym 2014; 113: 22-31.
[http://dx.doi.org/10.1016/j.carbpol.2014.06.058] [PMID: 25256454]
[78]
Liu X, Zhang M, Liu H, Zhou A, Cao Y, Liu X. Preliminary characterization of the structure and immunostimulatory and anti-aging properties of the polysaccharide fraction of Haematococcus pluvialis. RSC Advances 2018; 8(17): 9243-52.
[http://dx.doi.org/10.1039/C7RA11153C] [PMID: 35541856]
[79]
Morais MG, Rosa GM, Moraes L, Alvarenga AGP, Da Silva JLV, Costa JAV. Microalgae polysaccharides with potential biomedical application. In: Oliveira JM, Radhouani H, Reis RL, Eds. Polysaccharides of Microbial Origin. New York: Springer 2022; pp. 363-80.
[http://dx.doi.org/10.1007/978-3-030-42215-8_20]
[80]
Symonette CJ, Kaur Mann A, Tan XC, et al. Hyaluronan-phosphatidylethanolamine polymers form pericellular coats on keratinocytes and promote basal keratinocyte proliferation. BioMed Res Int 2014; 2014: 1-14.
[http://dx.doi.org/10.1155/2014/727459] [PMID: 25276814]
[81]
Jensen G, Morrill C, Huang Y. 3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharm Sin B 2018; 8(5): 756-66.
[http://dx.doi.org/10.1016/j.apsb.2018.03.006] [PMID: 30258764]
[82]
Colliec-Jouault S. Skin tissue engineering using functional marine biomaterials. In: Kim SK, Ed. Functional Marine Biomaterials: Properties and Applications. USA: Elsevier 2015; pp. 69-86.
[http://dx.doi.org/10.1016/B978-1-78242-086-6.00005-4]
[83]
Roussel M, Villay A, Delbac F, et al. Antimicrosporidian activity of sulphated polysaccharides from algae and their potential to control honeybee nosemosis. Carbohydr Polym 2015; 133: 213-20.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.022] [PMID: 26344274]
[84]
Mohamed ZA. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology 2008; 17(6): 504-16.
[http://dx.doi.org/10.1007/s10646-008-0204-2] [PMID: 18389369]
[85]
Silva TH, Alves A, Popa EG, et al. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2012; 2(4): 278-89.
[http://dx.doi.org/10.4161/biom.22947] [PMID: 23507892]
[86]
Senni K, Pereira J, Gueniche F, et al. Marine polysaccharides: A source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 2011; 9(9): 1664-81.
[http://dx.doi.org/10.3390/md9091664] [PMID: 22131964]
[87]
Raposo MFJ, De Morais AMMB, De Morais RMSC. Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 2014; 101(1-2): 56-63.
[http://dx.doi.org/10.1016/j.lfs.2014.02.013] [PMID: 24582595]
[88]
Furmaniak MA, Misztak AE, Franczuk MD, Wilmotte A, Waleron M, Waleron KF. Edible cyanobacterial genus Arthrospira: Actual state of the art in cultivation methods, genetics, and application in medicine. Front Microbiol 2017; 8: 2541.
[http://dx.doi.org/10.3389/fmicb.2017.02541] [PMID: 29326676]
[89]
Bellini E, Ciocci M, Savio S, et al. Trichormus variabilis (Cyanobacteria) biomass: From the nutraceutical products to novel EPS-cell/protein carrier systems. Mar Drugs 2018; 16(9): 298.
[http://dx.doi.org/10.3390/md16090298] [PMID: 30150548]
[90]
Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT. The cell walls of green algae: A journey through evolution and diversity. Front Plant Sci 2012; 3: 82.
[http://dx.doi.org/10.3389/fpls.2012.00082] [PMID: 22639667]
[91]
Silva AS, De Magalhães WT, Moreira LM, Rocha MVP, Bastos AKP. Microwave-assisted extraction of polysaccharides from Arthrospira (Spirulina) platensis using the concept of green chemistry. Algal Res 2018; 35: 178-84.
[http://dx.doi.org/10.1016/j.algal.2018.08.015]
[92]
Yang F, Shi Y, Sheng J, Hu Q. In vivo immunomodulatory activity of polysaccharides derived from Chlorella pyrenoidosa. Eur Food Res Technol 2006; 224(2): 225-8.
[http://dx.doi.org/10.1007/s00217-006-0315-z]
[93]
Chaiklahan R, Chirasuwan N, Triratana P, Loha V, Tia S, Bunnag B. Polysaccharide extraction from Spirulina sp. and its antioxidant capacity. Int J Biol Macromol 2013; 58: 73-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.046] [PMID: 23541559]
[94]
Zhao C, Yang C, Liu B, et al. Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends Food Sci Technol 2018; 72: 1-12.
[http://dx.doi.org/10.1016/j.tifs.2017.12.001]
[95]
Xu SY, Huang X, Cheong KL. Recent advances in marine algae polysaccharides: Isolation, structure, and activities. Mar Drugs 2017; 15(12): 388.
[http://dx.doi.org/10.3390/md15120388] [PMID: 29236064]
[96]
Bernaerts TMM, Kyomugasho C, Van Looveren N, et al. Molecular and rheological characterization of different cell wall fractions of Porphyridium cruentum. Carbohydr Polym 2018; 195: 542-50.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.001] [PMID: 29805010]
[97]
Patel AK, Laroche C, Marcati A, et al. Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresour Technol 2013; 145: 345-50.
[http://dx.doi.org/10.1016/j.biortech.2012.12.038] [PMID: 23313179]
[98]
Marcati A, Ursu AV, Laroche C, et al. Extraction and fractionation of polysaccharides and B-phycoerythrin from the microalga Porphyridium cruentum by membrane technology. Algal Res 2014; 5: 258-63.
[http://dx.doi.org/10.1016/j.algal.2014.03.006]
[99]
Li H, Li Z, Xiong S, et al. Pilot-scale isolation of bioactive extracellular polymeric substances from cell-free media of mass microalgal cultures using tangential-flow ultrafiltration. Process Biochem 2011; 46(5): 1104-9.
[http://dx.doi.org/10.1016/j.procbio.2011.01.028]
[100]
Knorr D, Zenker M, Heinz V, Lee DU. Applications and potential of ultrasonics in food processing. Trends Food Sci Technol 2004; 15(5): 261-6.
[http://dx.doi.org/10.1016/j.tifs.2003.12.001]
[101]
Kurd F, Samavati V. Water soluble polysaccharides from Spirulina platensis: Extraction and in vitro anti-cancer activity. Int J Biol Macromol 2015; 74: 498-506.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.005] [PMID: 25583023]
[102]
Mishra A, Jha B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour Technol 2009; 100(13): 3382-6.
[http://dx.doi.org/10.1016/j.biortech.2009.02.006] [PMID: 19272770]
[103]
Sheng J, Yu F, Xin Z, Zhao L, Zhu X, Hu Q. Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chem 2007; 105(2): 533-9.
[http://dx.doi.org/10.1016/j.foodchem.2007.04.018]
[104]
Tang W, Lin L, Xie J, et al. Effect of ultrasonic treatment on the physicochemical properties and antioxidant activities of polysaccharide from Cyclocarya paliurus. Carbohydr Polym 2016; 151: 305-12.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.078] [PMID: 27474571]
[105]
Thirugnanasambandham K, Sivakumar V, Maran JP. Microwave-assisted extraction of polysaccharides from mulberry leaves. Int J Biol Macromol 2015; 72: 1-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.031] [PMID: 25064558]
[106]
Carullo D, Abera BD, Casazza AA, et al. Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Res 2018; 31: 60-9.
[http://dx.doi.org/10.1016/j.algal.2018.01.017]
[107]
Yap BHJ, Dumsday GJ, Scales PJ, Martin GJO. Energy evaluation of algal cell disruption by high pressure homogenisation. Bioresour Technol 2015; 184: 280-5.
[http://dx.doi.org/10.1016/j.biortech.2014.11.049] [PMID: 25435068]
[108]
Floury J, Legrand J, Desrumaux A. Analysis of a new type of high pressure homogeniser. Part B. study of droplet break-up and recoalescence phenomena. Chem Eng Sci 2004; 59(6): 1285-94.
[http://dx.doi.org/10.1016/j.ces.2003.11.025]
[109]
Zhao W, Duan M, Zhang X, Tan T. A mild extraction and separation procedure of polysaccharide, lipid, chlorophyll and protein from Chlorella sp. Renew Energy 2018; 118: 701-8.
[http://dx.doi.org/10.1016/j.renene.2017.11.046]
[110]
Jin M, Huang Q, Zhao K, Shang P. Biological activities and potential health benefit effects of polysaccharides isolated from Lycium barbarum L. Int J Biol Macromol 2013; 54: 16-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.11.023] [PMID: 23200976]
[111]
Zhang A, Sun H, Wang P, Han Y, Wang X, Wang X. Modern analytical techniques in metabolomics analysis. Analyst 2012; 137(2): 293-300.
[http://dx.doi.org/10.1039/C1AN15605E] [PMID: 22102985]
[112]
Sadovskaya I, Souissi A, Souissi S, et al. Chemical structure and biological activity of a highly branched (1→3,1→6)-β-d-glucan from Isochrysis galbana. Carbohydr Polym 2014; 111: 139-48.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.077] [PMID: 25037339]
[113]
Yang L, Zhang LM. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr Polym 2009; 76(3): 349-61.
[http://dx.doi.org/10.1016/j.carbpol.2008.12.015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy