Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Nanomaterial-based Electrochemical Biosensors

Author(s): Kübra Gençdağ Şensoy, Fatma Akpınar and Mihrican Muti*

Volume 20, Issue 1, 2024

Published on: 06 September, 2022

Page: [18 - 30] Pages: 13

DOI: 10.2174/1573413718666220819143711

Price: $65

Abstract

Nanomaterials often show very different sizes, shapes, and stability properties. They also facilitate electron transfer and can be easily modified with chemical ligands and biomolecules. These properties, combined with the ease of miniaturizing nanoscales and their application to sensing devices, make nanomaterials well suited for essential chemical/biochemical sensing applications.

Nanomaterials are superior materials not only due to their structural properties but also their functional properties. Using various methods makes it possible to change the available and stack properties.

Nano-sized materials are preferred in modern technological systems because they have a large surface area and different optical and electronic properties.

In this study, electrochemical biosensor applications based on sensors modified with various nanomaterials were evaluated in terms of analytical parameters, such as detection limit, linear range, and features, such as easy fabrication, storage stability, and reproducibility. Besides, the advantages of using nanomaterials were examined under 6 different headings as enzyme biosensors, immunosensors, nucleic acid sensors, cell, phage, and aptasensors.

Keywords: Electrochemistry, nanomaterial, biosensor, aptamer, immunosensor, cell, phage.

Graphical Abstract
[1]
Rawat, P.S.; Srivastava, R.C.; Dixit, G.; Asokan, K. Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation. Vacuum, 2020, 182, 109700.
[http://dx.doi.org/10.1016/j.vacuum.2020.109700]
[2]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[3]
Portela, C.M.; Vidyasagar, A.; Krödel, S.; Weissenbach, T.; Yee, D.W.; Greer, J.R.; Kochmann, D.M. Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proc. Natl. Acad. Sci. USA, 2020, 117(11), 5686-5693.
[http://dx.doi.org/10.1073/pnas.1916817117] [PMID: 32132212]
[4]
Sadri, R.; Hosseini, M.; Kazi, S.N.; Bagheri, S.; Abdelrazek, A.H.; Ahmadi, G.; Zubir, N.; Ahmad, R.; Abidin, N.I.Z. A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties. J. Colloid Interface Sci., 2018, 509, 140-152.
[http://dx.doi.org/10.1016/j.jcis.2017.07.052] [PMID: 28898734]
[5]
Kokab, T.; Afzal, S.; Khan, M.K.; Arshad, M.; Nisar, J.; Ashiq, M.N.; Zia, M.A. Simultaneous femtomolar detection of paracetamol, diclofenac, and orphenadrine using a carbon nanotube/zinc oxide nanoparticle-based electrochemical sensor. ACS Appl. Nano Mater., 2021, 4(5), 4699-4712.
[http://dx.doi.org/10.1021/acsanm.1c00310]
[6]
Ma, F.; Zhang, Q.; Zhang, C.Y. Catalytic self-assembly of quantum-dot-based microrna nanosensor directed by toehold-mediated strand displacement cascade. Nano Lett., 2019, 19(9), 6370-6376.
[http://dx.doi.org/10.1021/acs.nanolett.9b02544] [PMID: 31460766]
[7]
Li, D.; Wang, C.; Sun, G.; Senapati, S.; Chang, H.C. A shear-enhanced CNT-assembly nanosensor platform for ultra-sensitive and selective protein detection. Biosens. Bioelectron., 2017, 97, 143-149.
[http://dx.doi.org/10.1016/j.bios.2017.05.053] [PMID: 28587929]
[8]
Lijima, S. Carbon nanotubes: Past, present, and future. Phys. B Conden. Mater., 1991, 323, 1-5.
[9]
Laborde-Lahoz, P.; Maser, W.; Martinez, T.; Benito, A.; Seeger, T.; Cano, P.; Guzman de Villoria, R.; Miravete, A. Mechanical characterization of carbon nanotube composite materials. Mech. Adv. Mater. Structures, 2005, 12(1), 13-19.
[http://dx.doi.org/10.1080/15376490590491792]
[10]
Pumera, M.; Sanchez, S.; Ichinose, I.; Tang, J. Electrochemical nanobiosensors. Sens. Actuators B Chem., 2007, 123(2), 1195-1205.
[http://dx.doi.org/10.1016/j.snb.2006.11.016]
[11]
Willner, I.; Willner, B. Biomolecule-based nanomaterials and nanostructures. Nano Lett., 2010, 10(10), 3805-3815.
[http://dx.doi.org/10.1021/nl102083j] [PMID: 20843088]
[12]
Jianrong, C.; Yuqing, M.; Nongyue, H.; Xiaohua, W.; Sijiao, L. Nanotechnology and biosensors. Biotechnol. Adv., 2004, 22(7), 505-518.
[http://dx.doi.org/10.1016/j.biotechadv.2004.03.004] [PMID: 15262314]
[13]
Vaseashta, A.; Dimova-Malinovska, D. Nanostructured and nanoscale devices, sensors and detectors. Sci. Technol. Adv. Mater., 2005, 6(3-4), 312-318.
[http://dx.doi.org/10.1016/j.stam.2005.02.018]
[14]
Wang, J. Nanomaterial-based electrochemical biosensors. Analyst (Lond.), 2005, 130(4), 421-426.
[http://dx.doi.org/10.1039/b414248a] [PMID: 15846872]
[15]
Mc Farland, A.D.; Van Duyne, R.P. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Lett., 2003, 3(8), 1057-1062.
[http://dx.doi.org/10.1021/nl034372s]
[16]
Muti, M.; Erdem, A.; Caliskan, A. Sınag, A.; Yumak, T. Electrochemical behaviour of carbon paste electrodes enriched with tin oxide nanoparticles using voltammetry and electrochemical impedance spectroscopy. Colloids Surf. B Biointerfaces, 2011, 86(1), 154-157.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.034] [PMID: 21530186]
[17]
Ravindran, S.; Chaudhary, S.; Colburn, B.; Ozkan, M.; Ozkan, C.S. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications. Nano Lett., 2003, 3(4), 447-453.
[http://dx.doi.org/10.1021/nl0259683]
[18]
Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis, 2006, 18(4), 319-326.
[http://dx.doi.org/10.1002/elan.200503415]
[19]
Merkoçi, A.; Pumera, M.; Llopis, X.; Perez, B.; Vale, M.; Alegret, S. New materials for electrochemical sensing VI: Carbon nanotubes. Trends Analyt. Chem., 2005, 24(9), 826-838.
[http://dx.doi.org/10.1016/j.trac.2005.03.019]
[20]
Muti, M.; Muti, M.; Erdem, A. Impedimetric Nanobiosensor for the Detection of Sequence-Selective DNA Hybridization. Hacettepe J. Biol. & Chem., 2018, 46(4), 495-503.
[http://dx.doi.org/10.15671/HJBC.2018.257]
[21]
Wildgoose, G.G.; Banks, C.E.; Leventis, H.C.; Compton, R.G. Chemically modified carbon nanotubes for use in electroanalysis. Mikrochim. Acta, 2006, 152(3-4), 187-193.
[http://dx.doi.org/10.1007/s00604-005-0449-x]
[22]
Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V.; Manetti, R.; Serra, P.A. Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids. Sensors (Basel), 2016, 16(6), 780.
[http://dx.doi.org/10.3390/s16060780] [PMID: 27249001]
[23]
Kurbanoglu, S.; Erkmen, C.; Uslu, B. Frontiers in electrochemical enzyme based biosensors for food and drug analysis. Trends Analyt. Chem., 2020, 124, 115809.
[http://dx.doi.org/10.1016/j.trac.2020.115809]
[24]
Trivedi, U.B.; Lakshminarayana, D.; Kothari, I.L.; Patel, P.B.; Panchal, C.J. Amperometric fructose biosensor based on fructose dehydrogenase enzyme. Sens. Actuators B Chem., 2009, 136(1), 45-51.
[http://dx.doi.org/10.1016/j.snb.2008.10.020]
[25]
Kumar, H.; Neelam, R. Enzyme-based electrochemical biosensors for food safety: A review. Nanobiosensors in Disease Diagnosis, 2016, 5, 29-39.
[http://dx.doi.org/10.2147/NDD.S64847]
[26]
Mehrotra, P. Biosensors and their applications - A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[27]
Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev., 2010, 39(5), 1747-1763.
[http://dx.doi.org/10.1039/b714449k] [PMID: 20419217]
[28]
Zhao, F.; Yao, Y.; Jiang, C.; Shao, Y.; Barceló, D.; Ying, Y.; Ping, J. Self-reduction bimetallic nanoparticles on ultrathin MXene nanosheets as functional platform for pesticide sensing. J. Hazard. Mater., 2020, 384, 121358.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121358] [PMID: 31600694]
[29]
Zhang, Y.; Li, X.; Li, D.; Wei, Q. A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection. Colloids Surf. B Biointerfaces, 2020, 186, 110683.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110683] [PMID: 31816461]
[30]
Wu, L.; Gao, J.; Lu, X.; Huang, C.; Chen, J. Graphdiyne: A new promising member of 2D all-carbon nanomaterial as robust electrochemical enzyme biosensor platform. Carbon, 2020, 156, 568-575.
[http://dx.doi.org/10.1016/j.carbon.2019.09.086]
[31]
Gajjala, R.K.; Gade, P.S.; Bhatt, P.; Vishwakarma, N.; Singh, S. Enzyme decorated dendritic bimetallic nanocomposite biosensor for detection of HCHO. Talanta, 2022, 238(Pt 2), 123054.
[http://dx.doi.org/10.1016/j.talanta.2021.123054] [PMID: 34801910]
[32]
Stasyuk, N.Y.; Gayda, G.Z.; Zakalskiy, A.E.; Fayura, L.R.; Zakalska, O.M. Sibirny, А.А; Nisnevitch, M.; Gonchar, M.V. Amperometric biosensors for L-arginine and creatinine assay based on recombinant deiminases and ammonium-sensitive Cu/Zn(Hg)S nanoparticles. Talanta, 2022, 238(Pt 1), 122996.
[http://dx.doi.org/10.1016/j.talanta.2021.122996] [PMID: 34857329]
[33]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[34]
Medley, C.D.; Smith, J.E.; Tang, Z.; Wu, Y.; Bamrungsap, S.; Tan, W. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem., 2008, 80(4), 1067-1072.
[http://dx.doi.org/10.1021/ac702037y] [PMID: 18198894]
[35]
Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem, 2017, 1, 0076.
[http://dx.doi.org/10.1038/s41570-017-0076]
[36]
Zou, X.; Wu, J.; Gu, J.; Shen, L.; Mao, L. Application of aptamers in virus detection and antiviral therapy. Front. Microbiol., 2019, 10, 1462.
[http://dx.doi.org/10.3389/fmicb.2019.01462] [PMID: 31333603]
[37]
Beiranvand, S.; Abbasi, A.R.; Roushani, M.; Derikvanda, Z.; Azadbakht, A. A simple and label-free aptasensor based on amino group-functionalized gold nanocomposites-Prussian blue/carbon nanotubes as labels for signal amplification. J. Electroanal. Chem. (Lausanne), 2016, 776, 170-179.
[http://dx.doi.org/10.1016/j.jelechem.2016.07.006]
[38]
Mat Zaid, M.H.; Abdullah, J.; Rozi, N.; Mohamad Rozlan, A.A.; Abu Hanifah, S. A sensitive impedimetric aptasensor based on carbon nanodots modified electrode for detection of 17ß-estradiol. Nanomaterials (Basel), 2020, 10(7), 1346.
[http://dx.doi.org/10.3390/nano10071346] [PMID: 32664193]
[39]
Tao, D.; Xie, C.; Fu, S.; Rong, S.; Song, S.; Ye, H.; Jaffrezic-Renault, N.; Guo, Z. Thionine-functionalized three-dimensional carbon nanomaterial-based aptasensor for analysis of Aβ oligomers in serum. Anal. Chim. Acta, 2021, 1183, 338990.
[http://dx.doi.org/10.1016/j.aca.2021.338990] [PMID: 34627525]
[40]
Bendivi, A.; Tezerjani, M.D.; Moshtaghiun, S.M.; Ardakani, M.M. An aptasensor for tetracycline using a glassy carbon modified with nanosheets of graphene oxide. Mikrochim. Acta, 2016, 183(5), 1797-1804.
[http://dx.doi.org/10.1007/s00604-016-1810-y]
[41]
Lin, Z.; Liu, X.; Li, Y.; Li, C.; Yang, L.; Ma, K.; Zhang, Z.; Huang, H. Electrochemical aptasensor based on Mo2C/Mo2N and gold nanoparticles for determination of chlorpyrifos. Mikrochim. Acta, 2021, 188, 170.
[42]
Rhoades, C.J.; Williams, M.A.; Kelsey, S.M.; Newland, A.C. Monocyte-macrophage system as targets for immunomodulation by intravenous immunoglobulin. Blood Rev., 2000, 14(1), 14-30.
[http://dx.doi.org/10.1054/blre.1999.0121] [PMID: 10805258]
[43]
Luppa, P.B.; Sokoll, L.J.; Chan, D.W. Immunosensors-principles and applications to clinical chemistry. Clin. Chim. Acta, 2001, 314(1-2), 1-26.
[http://dx.doi.org/10.1016/S0009-8981(01)00629-5] [PMID: 11718675]
[44]
D’Orazio, P. Biosensors in clinical chemistry. Clin. Chim. Acta, 2003, 334(1-2), 41-69.
[http://dx.doi.org/10.1016/S0009-8981(03)00241-9] [PMID: 12867275]
[45]
Prodromidis, M.I. Impedimetric immunosensors—A review. Electrochim. Acta, 2010, 55(14), 4227-4233.
[http://dx.doi.org/10.1016/j.electacta.2009.01.081]
[46]
Mohammed, M.I.; Desmulliez, M.P. Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: A review. Lab Chip, 2011, 11(4), 569-595.
[http://dx.doi.org/10.1039/C0LC00204F] [PMID: 21180774]
[47]
Abbas, A.K.; Andrew, L.; Shiv, P. Antibodies and Antigens”. Cellular and molecular immunology, 9th ed; Elsevier: Philadelphia, 2018.
[48]
Pothipor, C.; Bamrungsap, S.; Jakmunee, J.; Ounnunkad, K. A gold nanoparticle-dye/poly(3-aminobenzylamine)/two dimensional MoSe2/graphene oxide electrode towards label-free electrochemical biosensor for simultaneous dual-mode detection of cancer antigen 15-3 and microRNA-21. Colloids Surf. B Biointerfaces, 2022, 210, 112260.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112260] [PMID: 34894598]
[49]
Anusha, T.; Bhavani, K.S.; Shanmukha Kumar, J.V.; Brahman, P.K.; Hassan, R.Y.A. Fabrication of electrochemical immunosensor based on GCN-β-CD/Au nanocomposite for the monitoring of vitamin D deficiency. Bioelectrochemistry, 2022, 143, 107935.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107935] [PMID: 34637962]
[50]
Huang, J.; Cheng, W.; Li, Y. 3D carbonized wood-based integrated electrochemical immunosensor for ultrasensitive detection of procalcitonin antigen. Talanta, 2022, 238(Pt 1), 122991.
[http://dx.doi.org/10.1016/j.talanta.2021.122991] [PMID: 34857324]
[51]
Zhang, C.; Liu, L.; Li, H.; Hu, J.; Zhang, J.; Zhou, H.; Du, X. An oriented antibody immobilization based electrochemical platform for detection of leptin in human with different body mass index. Sens. Actuators B Chem., 2022, 353, 131074.
[http://dx.doi.org/10.1016/j.snb.2021.131074]
[52]
Yan, H.; He, B.; Ren, W.; Suo, Z.; Xu, Y.; Xie, L.; Li, L.; Yang, J.; Liu, R. A label-free electrochemical immunosensing platform based on PEI-rGO/Pt@Au NRs for rapid and sensitive detection of zearalenone. Bioelectrochemistry, 2022, 143, 107955.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107955] [PMID: 34607261]
[53]
Osman, M.H.; Shah, A.A.; Walsh, F.C. Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells. Biosens. Bioelectron., 2011, 26(7), 3087-3102.
[http://dx.doi.org/10.1016/j.bios.2011.01.004] [PMID: 21295964]
[54]
Bullen, R.A.; Arnot, T.C.; Lakeman, J.B.; Walsh, F.C. Biofuel cells and their development. Biosens. Bioelectron., 2006, 21(11), 2015-2045.
[http://dx.doi.org/10.1016/j.bios.2006.01.030] [PMID: 16569499]
[55]
Almunla, M.; Büyüksünetçi, Y.T.; Akpolat, O. Anık, Ü. Development of apple tissue based biocathode and mwcnt-pt-au nanomaterial based bioanode biofuel cell. Electroanalysis, 2021, 33(4), 873-881.
[http://dx.doi.org/10.1002/elan.202060425]
[56]
Yang, Y.; Fu, Y.; Su, H.; Mao, L.; Chen, M. Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor. Biosens. Bioelectron., 2018, 122, 175-182.
[http://dx.doi.org/10.1016/j.bios.2018.09.062] [PMID: 30265967]
[57]
Hajra, K.M.; Chen, D.Y.; Fearon, E.R. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res., 2002, 62(6), 1613-1618.
[PMID: 11912130]
[58]
Zghair, A.N.; Sinha, D.K.; Kassim, A.; Alfaham, M.; Sharma, A.K. Differential gene expression of BRCA1,ERBB2 and TP53 biomarkers between human breast tissue and peripheral blood samples of breast cancer. Anticancer. Agents Med. Chem., 2016, 16(4), 519-525.
[http://dx.doi.org/10.2174/1871520615666150824150913] [PMID: 26299666]
[59]
Lu, J.; Hu, Y.; Wang, P.; Liu, P.; Chen, Z.; Sun, D. Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in situ monitoring of H2O2 released from H9C2 cardiac cells. Sens. Actuators B Chem., 2020, 311, 127909.
[http://dx.doi.org/10.1016/j.snb.2020.127909]
[60]
Pabbi, M.; Kaur, A.; Mittal, S.K.; Jindal, R. A surface expressed alkaline phosphatase biosensor modified with flower-shaped ZnO for the detection of chlorpyrifos. Sens. Actuators B Chem., 2018, 258, 215-227.
[http://dx.doi.org/10.1016/j.snb.2017.11.079]
[61]
Wang, J. Electrochemical nucleic acid biosensors. Anal. Chim. Acta, 2002, 469(1), 63-71.
[http://dx.doi.org/10.1016/S0003-2670(01)01399-X]
[62]
Palchetti, I.; Mascini, M. Nucleic acid biosensors for environmental pollution monitoring. Analyst (Lond.), 2008, 133(7), 846-854.
[http://dx.doi.org/10.1039/b802920m] [PMID: 18575633]
[63]
Bora, U.; Sett, A.; Singh, D. Nucleic acid based biosensors for clinical applications. Biosens J, 2013, 2(1), 1-8.
[http://dx.doi.org/10.4172/2090-4967.1000104]
[64]
Du, Y.; Dong, S. Nucleic acid biosensors: Recent advances and perspectives. Anal. Chem., 2017, 89(1), 189-215.
[http://dx.doi.org/10.1021/acs.analchem.6b04190] [PMID: 28105831]
[65]
Kavita, V. DNA biosensors-a review. J. Bioeng. Biomed. Sci., 2017, 7(2), 222.
[66]
Gutiérrez-Gálvez, L.; Del Caño, R.; Menéndez-Luque, I.; García-Nieto, D.; Rodríguez-Peña, M.; Luna, M.; Pineda, T.; Pariente, F.; García-Mendiola, T.; Lorenzo, E. Electrochemiluminescent nanostructured DNA biosensor for SARS-CoV-2 detection. Talanta, 2022, 240, 123203.
[http://dx.doi.org/10.1016/j.talanta.2021.123203] [PMID: 34998140]
[67]
Torul, H.; Yarali, E.; Eksin, E.; Ganguly, A.; Benson, J.; Tamer, U.; Papakonstantinou, P.; Erdem, A. Paper-based electrochemical biosensors for voltammetric detection of miRNA biomarkers using reduced graphene oxide or MoS2 nanosheets decorated with gold nanoparticle electrodes. Biosensors (Basel), 2021, 11(7), 236.
[http://dx.doi.org/10.3390/bios11070236] [PMID: 34356708]
[68]
Kasturi, S.; Eom, Y.; Torati, S.R.; Kim, C. Highly sensitive electrochemical biosensor based on naturally reduced rGO/Au nanocomposite for the detection of miRNA-122 biomarker. J. Ind. Eng. Chem., 2021, 93, 186-195.
[http://dx.doi.org/10.1016/j.jiec.2020.09.022]
[69]
Chen, M.; Wu, D.; Tu, S.; Yang, C.; Chen, D.; Xu, Y. A novel biosensor for the ultrasensitive detection of the lncRNA biomarker MALAT1 in non-small cell lung cancer. Sci. Rep., 2021, 11(1), 3666.
[http://dx.doi.org/10.1038/s41598-021-83244-7] [PMID: 33574438]
[70]
Mahmoudi-Moghaddam, H.; Tajik, S.; Beitollahi, H. A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan. Microchem. J., 2019, 150, 104085.
[http://dx.doi.org/10.1016/j.microc.2019.104085]
[71]
Sargazi, S.; Mukhtar, M.; Rahdar, A.; Bilal, M.; Barani, M.; Díez-Pascual, A.M.; Behzadmehr, R.; Pandey, S. Opportunities and challenges of using high-sensitivity nanobiosensors to detect long noncoding RNAs: A preliminary review. Int. J. Biol. Macromol., 2022, 205, 304-315.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.082] [PMID: 35182562]
[72]
Arshad, R.; Fatima, I.; Sargazi, S.; Rahdar, A.; Karamzadeh-Jahromi, M.; Pandey, S.; Díez-Pascual, A.M.; Bilal, M. Novel perspectives towards RNA-based nano-theranostic approaches for cancer management. Nanomaterials, 2021, 11(12), 3330.
[http://dx.doi.org/10.3390/nano11123330] [PMID: 34947679]
[73]
Laraib, U.; Sargazi, S.; Rahdar, A.; Khatami, M.; Pandey, S. Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review. Int. J. Biol. Macromol., 2022, 195, 356-383.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.052] [PMID: 34920057]
[74]
Sabir, F.; Zeeshan, M.; Laraib, U.; Barani, M.; Rahdar, A.; Cucchiarini, M.; Pandey, S. DNA based and stimuli-responsive smart nanocarrier for diagnosis and treatment of cancer: Applications and challenges. Cancers (Basel), 2021, 13(14), 3396.
[http://dx.doi.org/10.3390/cancers13143396] [PMID: 34298610]
[75]
Mukhtar, M.; Sargazi, S.; Barani, M.; Madry, H.; Rahdar, A.; Cucchiarini, M. Application of nanotechnology for sensitive detection of low-abundance single-nucleotide variations in genomic DNA: A review. Nanomaterials (Basel), 2021, 11(6), 1384.
[http://dx.doi.org/10.3390/nano11061384] [PMID: 34073904]
[76]
Han, L.; Shao, C.; Liang, B.; Liu, A. Genetically engineered phage-templated MnO2 nanowires: Synthesis and their application in electrochemical glucose biosensor operated at neutral pH condition. ACS Appl. Mater. Interfaces, 2016, 8(22), 13768-13776.
[http://dx.doi.org/10.1021/acsami.6b03266] [PMID: 27228383]
[77]
Yang, Q.; Deng, S.; Xu, J.; Farooq, U.; Yang, T.; Chen, W.; Zhou, L.; Gao, M.; Wang, S. Poly(indole-5-carboxylic acid)/reduced graphene oxide/gold nanoparticles/phage-based electrochemical biosensor for highly specific detection of Yersinia pseudotuberculosis. Mikrochim. Acta, 2021, 188(4), 107.
[http://dx.doi.org/10.1007/s00604-020-04676-y] [PMID: 33660086]
[78]
Li, Y.; Xie, G.; Qiu, J.; Zhou, D.; Gou, D.; Tao, Y.; Li, Y.; Chen, H. A new biosensor based on the recognition of phages and the signal amplification of organic-inorganic hybrid nanoflowers for discriminating and quantitating live pathogenic bacteria in urine. Sens. Actuators B Chem., 2018, 258, 803-812.
[http://dx.doi.org/10.1016/j.snb.2017.11.155]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy