Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Peptide-based Nanomaterials: Self-assembly and Applications

Author(s): Lina Tan, Ren Huan, Li Fang Wu, Yanni Bao, Yu Chen Ma, Qian Li Zou* and Jin Yong*

Volume 23, Issue 4, 2023

Published on: 23 September, 2022

Page: [399 - 411] Pages: 13

DOI: 10.2174/1389557522666220819103907

Price: $65

conference banner
Abstract

The self-assembly behavior of polypeptides is common in nature. Compared with monopeptides, polypeptide-based self-assembled nanomaterials with ordered structures have good thermal stability, mechanical stability, semi-conductivity, piezoelectric and optical properties. In recent years, the self-assembly of polypeptides has become a hot topic in the material science and biomedical field. By reasonably adjusting the molecular structure of the polypeptide and changing the external environment of the polypeptide, the polypeptide can be self-assembled or triggered by non-covalent bonding forces such as hydrogen bond, hydrophobicity, and π - π accumulation to form specific polypeptide assemblies such as nanoparticles, hydrogels, nanofibers, and micelles. Due to good biocompatibility and controllable degradability, polypeptide-based self-assembled nanomaterials have been widely used in the fields of nanotechnology, imaging technology, biosensor, and biomedical science. As a new drug delivery system, the polypeptide-drug conjugate has the advantages of low toxicity, high efficiency, enhanced drug stability, and avoiding side effects. This paper reviews the research progress of polypeptide-drug self-assembly nanostructure in recent years. Several structural models of polypeptide self-assembly technology and the mechanism of polypeptide self-assembly are introduced. Then the assembly form of polypeptide-drug self-assembly and the application of selfassembly compound therapy is described.

Keywords: Peptide self-assembly, nano-micelle, nano-fiber, hydrogel, nano-particle, therapeutic application.

Graphical Abstract
[1]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[2]
Najahi-Missaoui, W.; Arnold, R.D.; Cummings, B.S. Safe nanoparticles: Are we there yet? Int. J. Mol. Sci., 2020, 22(1), 385.
[http://dx.doi.org/10.3390/ijms22010385] [PMID: 33396561]
[3]
Yadav, S.; Sharma, A.K.; Kumar, P. Nanoscale self-assembly for therapeutic delivery. Front. Bioeng. Biotechnol., 2020, 8, 127.
[http://dx.doi.org/10.3389/fbioe.2020.00127] [PMID: 32158749]
[4]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[5]
Galloway, J.M.; Bray, H.E.V.; Shoemark, D.K.; Hodgson, L.R.; Coombs, J.; Mantell, J.M.; Rose, R.S.; Ross, J.F.; Morris, C.; Harniman, R.L.; Wood, C.W.; Arthur, C.; Verkade, P.; Woolfson, D.N. De novo designed peptide and protein hairpins self‐assemble into sheets and nanoparticles. Small, 2021, 17(10), 2100472.
[http://dx.doi.org/10.1002/smll.202100472] [PMID: 33590708]
[6]
Long, K.; Liu, Y.; Li, Y.; Wang, W. Self-assembly of trigonal building blocks into nanostructures: Molecular design and biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(31), 6739-6752.
[http://dx.doi.org/10.1039/D0TB01128B] [PMID: 32686806]
[7]
Ariga, K.; Nishikawa, M.; Mori, T.; Takeya, J.; Shrestha, L.K.; Hill, J.P. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater., 2019, 20(1), 51-95.
[http://dx.doi.org/10.1080/14686996.2018.1553108] [PMID: 30787960]
[8]
Gao, J.; Zhan, J.; Yang, Z. Enzyme‐Instructed Self‐Assembly (EISA) and hydrogelation of peptides. Adv. Mater., 2020, 32(3), 1805798.
[http://dx.doi.org/10.1002/adma.201805798] [PMID: 31018025]
[9]
Chen, J.; Zhang, S.; Wang, Y.; Xie, R.; Liu, L.; Deng, Y. In vivo self-assembly based cancer therapy strategy. J. Biomed. Nanotechnol., 2020, 16(7), 997-1017.
[http://dx.doi.org/10.1166/jbn.2020.2962] [PMID: 33308372]
[10]
Zhan, J.; Cai, Y.; He, S.; Wang, L.; Yang, Z. Tandem molecular self-assembly in liver cancer cells. Angew. Chem. Int. Ed., 2018, 57(7), 1813-1816.
[http://dx.doi.org/10.1002/anie.201710237] [PMID: 29276818]
[11]
Song, Z.; Chen, X.; You, X.; Huang, K.; Dhinakar, A.; Gu, Z.; Wu, J. Self-assembly of peptide amphiphiles for drug delivery: The role of peptide primary and secondary structures. Biomater. Sci., 2017, 5(12), 2369-2380.
[http://dx.doi.org/10.1039/C7BM00730B] [PMID: 29051950]
[12]
Deng, Y.; Zhan, W.; Liang, G. Intracellular self‐assembly of peptide conjugates for tumor imaging and therapy. Adv. Healthc. Mater., 2021, 10(1), 2001211.
[http://dx.doi.org/10.1002/adhm.202001211] [PMID: 32902191]
[13]
Li, J.; Shi, J.; Medina, J.E.; Zhou, J.; Du, X.; Wang, H.; Yang, C.; Liu, J.; Yang, Z.; Dinulescu, D.M.; Xu, B. Selectively inducing cancer cell death by intracellular Enzyme-Instructed Self-Assembly (EISA) of dipeptide derivatives. Adv. Healthc. Mater., 2017, 6(15), 1601400.
[http://dx.doi.org/10.1002/adhm.201601400] [PMID: 28233466]
[14]
Liu, Z.; Wang, D.; Li, J.; Jiang, Y. Self-assembled peptido-nanomicelles as an engineered formulation for synergy-enhanced combinational SDT, PDT and chemotherapy to nasopharyngeal carcinoma. Chem. Commun. (Camb.), 2019, 55(69), 10226-10229.
[http://dx.doi.org/10.1039/C9CC05463D] [PMID: 31380870]
[15]
Du, Z.; Li, Q.; Li, J.; Su, E.; Liu, X.; Wan, Z.; Yang, X. Self-assembled egg yolk peptide micellar nanoparticles as a versatile emulsifier for food-grade oil-in-water pickering nanoemulsions. J. Agric. Food Chem., 2019, 67(42), 11728-11740.
[http://dx.doi.org/10.1021/acs.jafc.9b04595] [PMID: 31525998]
[16]
Wang, X.; Wu, F.; Li, G.; Zhang, N.; Song, X.; Zheng, Y.; Gong, C.; Han, B.; He, G. Lipid-modified cell-penetrating peptide-based self-assembly micelles for co-delivery of narciclasine and siULK1 in hepatocellular carcinoma therapy. Acta Biomater., 2018, 74, 414-429.
[http://dx.doi.org/10.1016/j.actbio.2018.05.030] [PMID: 29787814]
[17]
Hu, Y.; Xu, W.; Li, G.; Xu, L.; Song, A.; Hao, J. Self-assembled peptide nanofibers encapsulated with superfine silver nanoparticles via Ag + coordination. Langmuir, 2015, 31(31), 8599-8605.
[http://dx.doi.org/10.1021/acs.langmuir.5b02036] [PMID: 26177269]
[18]
Zhou, J.; O’Keeffe, M.; Liao, G.; Zhao, F.; Terhorst, C.; Xu, B. Design and synthesis of nanofibers of self-assembled de novo glycoconjugates towards mucosal lining restoration and anti-inflammatory drug delivery. Tetrahedron, 2016, 72(40), 6078-6083.
[http://dx.doi.org/10.1016/j.tet.2016.07.057] [PMID: 28216796]
[19]
Kulkarni, K.; Kelderman, J.; Coleman, H.; Aguilar, M.I.; Parkington, H.; Del Borgo, M. Self-assembly of trifunctional tripeptides to form neural scaffolds. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(22), 4475-4479.
[http://dx.doi.org/10.1039/D0TB02959A] [PMID: 34036977]
[20]
Guan, S.; Munder, A.; Hedtfeld, S.; Braubach, P.; Glage, S.; Zhang, L.; Lienenklaus, S.; Schultze, A.; Hasenpusch, G.; Garrels, W.; Stanke, F.; Miskey, C.; Johler, S.M.; Kumar, Y.; Tümmler, B.; Rudolph, C.; Ivics, Z.; Rosenecker, J. Self-assembled peptide-poloxamine nanoparticles enable in vitro and in vivo genome restoration for cystic fibrosis. Nat. Nanotechnol., 2019, 14(3), 287-297.
[http://dx.doi.org/10.1038/s41565-018-0358-x] [PMID: 30692673]
[21]
He, B.; Ma, S.; Peng, G.; He, D. TAT-modified self-assembled cationic peptide nanoparticles as an efficient antibacterial agent. Nanomedicine, 2018, 14(2), 365-372.
[http://dx.doi.org/10.1016/j.nano.2017.11.002] [PMID: 29170111]
[22]
Lai, Z.; Jian, Q.; Li, G.; Shao, C.; Zhu, Y.; Yuan, X.; Chen, H.; Shan, A. Self-assembling peptide dendron nanoparticles with high stability and a multimodal antimicrobial mechanism of action. ACS Nano, 2021, 15(10), 15824-15840.
[http://dx.doi.org/10.1021/acsnano.1c03301] [PMID: 34549935]
[23]
Sheikholeslam, M.; Pritzker, M.; Chen, P. Dispersion of multiwalled carbon nanotubes in water using ionic-complementary peptides. Langmuir, 2012, 28(34), 12550-12556.
[http://dx.doi.org/10.1021/la301628q] [PMID: 22860710]
[24]
Yemini, M.; Reches, M.; Rishpon, J.; Gazit, E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett., 2005, 5(1), 183-186.
[http://dx.doi.org/10.1021/nl0484189] [PMID: 15792436]
[25]
Clarke, D.E.; Pashuck, E.T.; Bertazzo, S.; Weaver, J.V.M.; Stevens, M.M. Self-healing, self-assembled β-sheet peptide-poly(γ-glutamic acid) hybrid hydrogels. J. Am. Chem. Soc., 2017, 139(21), 7250-7255.
[http://dx.doi.org/10.1021/jacs.7b00528] [PMID: 28525280]
[26]
Pugliese, R.; Fontana, F.; Marchini, A.; Gelain, F. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels. Acta Biomater., 2018, 66, 258-271.
[http://dx.doi.org/10.1016/j.actbio.2017.11.026] [PMID: 29128535]
[27]
Branco, M.C.; Pochan, D.J.; Wagner, N.J.; Schneider, J.P. Macromolecular diffusion and release from self-assembled β-hairpin peptide hydrogels. Biomaterials, 2009, 30(7), 1339-1347.
[http://dx.doi.org/10.1016/j.biomaterials.2008.11.019] [PMID: 19100615]
[28]
Zhou, M.; Smith, A.M.; Das, A.K.; Hodson, N.W.; Collins, R.F.; Ulijn, R.V.; Gough, J.E. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials, 2009, 30(13), 2523-2530.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.010] [PMID: 19201459]
[29]
Sakamoto, K.; Furukawa, H.; Arafiles, J.V.V.; Imanishi, M.; Matsuura, K.; Futaki, S. Artificial nanocage formed via self-assembly of β-annulus peptide for delivering biofunctional proteins into cell interiors. Bioconjug. Chem., 2022, 33(2), 311-320.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00534] [PMID: 35049280]
[30]
Halder, M.; Bhatia, Y.; Singh, Y. Self-assembled di- and tripeptide gels for the passive entrapment and pH-responsive, sustained release of an antidiabetic drug, glimepiride. Biomater. Sci., 2022, 10(9), 2248-2262.
[http://dx.doi.org/10.1039/D2BM00344A] [PMID: 35356961]
[31]
Hu, Y.; Wang, Y.; Deng, J.; Ding, X.; Lin, D.; Shi, H.; Chen, L.; Lin, D.; Wang, Y.; Vakal, S.; Wang, J.; Li, X. Enzyme-instructed self-assembly of peptide-drug conjugates in tear fluids for ocular drug delivery. J. Control. Release, 2022, 344, 261-271.
[http://dx.doi.org/10.1016/j.jconrel.2022.03.011] [PMID: 35278493]
[32]
Liu, Z.; Tang, X.; Feng, F.; Xu, J.; Wu, C.; Dai, G.; Yue, W.; Zhong, W.; Xu, K. Molecular design of peptide amphiphiles for controlled self-assembly and drug release. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(15), 3326-3334.
[http://dx.doi.org/10.1039/D1TB00173F] [PMID: 33881438]
[33]
Zhang, L.; Jin, T.; Sun, J.; Chen, X. Self-assembly supramolecular drug delivery system for combination of photodynamic therapy and chemotherapy. J. Microencapsul., 2021, 38(2), 81-88.
[http://dx.doi.org/10.1080/02652048.2020.1826591] [PMID: 32964772]
[34]
Hildebrandt, H.; Paloheimo, O.; Mäntylä, E.; Willman, S.; Hakanen, S.; Albrecht, K.; Groll, J.; Möller, M.; Vihinen-Ranta, M. Reactive self-assembly and specific cellular delivery of NCO-sP(EO-stat-PO)-derived nanogels. Macromol. Biosci., 2018, 18(10), 1800094.
[http://dx.doi.org/10.1002/mabi.201800094] [PMID: 29974620]
[35]
Umerska, A.; Paluch, K.J.; Martinez, M.J.S.; Corrigan, O.I.; Medina, C.; Tajber, L. Self-assembled hyaluronate/protamine polyelectrolyte nanoplexes: Synthesis, stability, biocompatibility and potential use as peptide carriers. J. Biomed. Nanotechnol., 2014, 10(12), 3658-3673.
[http://dx.doi.org/10.1166/jbn.2014.1878] [PMID: 26000379]
[36]
Panda, J.J.; Varshney, A.; Chauhan, V.S. Self-assembled nanoparticles based on modified cationic dipeptides and DNA: Novel systems for gene delivery. J. Nanobiotechnol, 2013, 11(1), 18.
[http://dx.doi.org/10.1186/1477-3155-11-18] [PMID: 23800286]
[37]
Li, S.; Zou, Q.; Xing, R.; Govindaraju, T.; Fakhrullin, R.; Yan, X. Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics, 2019, 9(11), 3249-3261.
[http://dx.doi.org/10.7150/thno.31814] [PMID: 31244952]
[38]
Wang, H.; Wang, Z.; Chen, W.; Wang, W.; Shi, W.; Chen, J.; Hang, Y.; Song, J.; Xiao, X.; Dai, Z. Self-assembly of photosensitive and radiotherapeutic peptide for combined photodynamic-radio cancer therapy with intracellular delivery of miRNA-139-5p. Bioorg. Med. Chem., 2021, 44, 116305.
[http://dx.doi.org/10.1016/j.bmc.2021.116305] [PMID: 34273735]
[39]
Cheng, H.; Fan, G.L.; Fan, J.H.; Zheng, R.R.; Zhao, L.P.; Yuan, P.; Zhao, X.Y.; Yu, X.Y.; Li, S.Y. A self‐delivery chimeric peptide for photodynamic therapy amplified immunotherapy. Macromol. Biosci., 2019, 19(4), 1800410.
[http://dx.doi.org/10.1002/mabi.201800410] [PMID: 30576082]
[40]
Li, J.; Wang, A.; Zhao, L.; Dong, Q.; Wang, M.; Xu, H.; Yan, X.; Bai, S. Self-assembly of monomeric hydrophobic photosensitizers with short peptides forming photodynamic nanoparticles with real-time tracking property and without the need of release in vivo. ACS Appl. Mater. Interfaces, 2018, 10(34), 28420-28427.
[http://dx.doi.org/10.1021/acsami.8b09933] [PMID: 30067331]
[41]
Lee, S.; Trinh, T.H.T.; Yoo, M.; Shin, J.; Lee, H.; Kim, J.; Hwang, E.; Lim, Y.B.; Ryou, C. Self-assembling peptides and their application in the treatment of diseases. Int. J. Mol. Sci., 2019, 20(23), 5850.
[http://dx.doi.org/10.3390/ijms20235850] [PMID: 31766475]
[42]
Edwards-Gayle, C.J.C.; Hamley, I.W. Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Org. Biomol. Chem., 2017, 15(28), 5867-5876.
[http://dx.doi.org/10.1039/C7OB01092C] [PMID: 28661532]
[43]
Li, T.; Lu, X.M.; Zhang, M.R.; Hu, K.; Li, Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact. Mater., 2022, 11, 268-282.
[http://dx.doi.org/10.1016/j.bioactmat.2021.09.029] [PMID: 34977431]
[44]
Pabo, C.O.; Peisach, E.; Grant, R.A. Design and selection of novel CYS 2 his 2 Zinc finger proteins. Annu. Rev. Biochem., 2001, 70, 313-340.
[45]
Koch, I.; Schäfer, T. Protein super-secondary structure and quaternary structure topology: Theoretical description and application. Curr. Opin. Struct. Biol., 2018, 50, 134-143.
[http://dx.doi.org/10.1016/j.sbi.2018.02.005] [PMID: 29558676]
[46]
Popescu, C. The thermodynamics of trichocyte keratins. Adv. Exp. Med. Biol., 2018, 1054, 185-203.
[http://dx.doi.org/10.1007/978-981-10-8195-8_13] [PMID: 29797275]
[47]
Caporale, A.; Adorinni, S.; Lamba, D.; Saviano, M. Peptide-protein interactions: From drug design to supramolecular biomaterials. Molecules, 2021, 26(5), 1219.
[http://dx.doi.org/10.3390/molecules26051219] [PMID: 33668767]
[48]
Liu, J.; Wang, D.; Zheng, Q.; Lu, M.; Arora, P.S. Atomic structure of a short α-helix stabilized by a main chain hydrogen-bond surrogate. J. Am. Chem. Soc., 2008, 130(13), 4334-4337.
[http://dx.doi.org/10.1021/ja077704u] [PMID: 18331030]
[49]
Skowron, K.J.; Speltz, T.E.; Moore, T.W. Recent structural advances in constrained helical peptides. Med. Res. Rev., 2019, 39(2), 749-770.
[http://dx.doi.org/10.1002/med.21540] [PMID: 30307621]
[50]
Sawyer, N.; Watkins, A.M.; Arora, P.S. Protein domain mimics as modulators of protein-protein interactions. Acc. Chem. Res., 2017, 50(6), 1313-1322.
[http://dx.doi.org/10.1021/acs.accounts.7b00130] [PMID: 28561588]
[51]
Kojima, S.; Kuriki, Y.; Yazaki, K.; Miura, K. Stabilization of the fibrous structure of an α-helix-forming peptide by sequence reversal. Biochem. Biophys. Res. Commun., 2005, 331(2), 577-582.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.219] [PMID: 15850799]
[52]
Lim, Y.; Moon, K.S.; Lee, M. Stabilization of an α helix by β-sheet-mediated self-assembly of a macrocyclic peptide. Angew. Chem. Int. Ed., 2009, 48(9), 1601-1605.
[http://dx.doi.org/10.1002/anie.200804665] [PMID: 19165846]
[53]
Otzen, D.; Riek, R. Functional amyloids. Cold Spring Harb. Perspect. Biol., 2019, 11(12), a033860.
[http://dx.doi.org/10.1101/cshperspect.a033860] [PMID: 31088827]
[54]
Lempart, J.; Jakob, U. Role of polyphosphate in amyloidogenic processes. Cold Spring Harb. Perspect. Biol., 2019, 11(5), a034041.
[http://dx.doi.org/10.1101/cshperspect.a034041] [PMID: 30617049]
[55]
Raymond, D.M.; Nilsson, B.L. Multicomponent peptide assemblies. Chem. Soc. Rev., 2018, 47(10), 3659-3720.
[http://dx.doi.org/10.1039/C8CS00115D] [PMID: 29697126]
[56]
Schneider, J.P.; Pochan, D.J.; Ozbas, B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc., 2002, 124(50), 15030-15037.
[http://dx.doi.org/10.1021/ja027993g] [PMID: 12475347]
[57]
Lamm, M.S.; Rajagopal, K.; Schneider, J.P.; Pochan, D.J. Laminated morphology of nontwisting β-sheet fibrils constructed via peptide self-assembly. J. Am. Chem. Soc., 2005, 127(47), 16692-16700.
[http://dx.doi.org/10.1021/ja054721f] [PMID: 16305260]
[58]
Chen, C.; Gu, Y.; Deng, L.; Han, S.; Sun, X.; Chen, Y.; Lu, J.R.; Xu, H. Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions. ACS Appl. Mater. Interfaces, 2014, 6(16), 14360-14368.
[http://dx.doi.org/10.1021/am5036303] [PMID: 25087842]
[59]
Perrett, S.; Buell, A.K. Knowles Editors, T.P.J. Biological and Bio-Inspired Nanomaterials: Properties and Assembly Mechanisms. Springer: Singapore, 2019, p. 1174.
[60]
Palermo, V.; Samorì, P. Molecular self-assembly across multiple length scales. Angew. Chem. Int. Ed., 2007, 46(24), 4428-4432.
[http://dx.doi.org/10.1002/anie.200700416] [PMID: 17497615]
[61]
Wang, J.; Liu, K.; Xing, R.; Yan, X. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev., 2016, 45(20), 5589-5604.
[http://dx.doi.org/10.1039/C6CS00176A] [PMID: 27487936]
[62]
Yoo, S.H.; Lee, H.S. Foldectures: 3D molecular architectures from self-assembly of peptide foldamers. Acc. Chem. Res., 2017, 50(4), 832-841.
[http://dx.doi.org/10.1021/acs.accounts.6b00545] [PMID: 28191927]
[63]
Knowles, T.P.; Fitzpatrick, A.W.; Meehan, S.; Mott, H.R.; Vendruscolo, M.; Dobson, C.M. Role of intermolecular forces in defining material properties of protein nanofibrils. Science, 2007, 318(5858), 1900-1903.
[http://dx.doi.org/10.1126/science.1150057]
[64]
Rahsepar, F.R.; Moghimi, N.; Leung, K.T. Surface-mediated hydrogen bonding of proteinogenic α-amino acids on silicon. Acc. Chem. Res., 2016, 49(5), 942-951.
[http://dx.doi.org/10.1021/acs.accounts.5b00534] [PMID: 27014956]
[65]
Tao, K.; Makam, P.; Aizen, R.; Gazit, E. Self-assembling peptide semiconductors. Science, 2017, 358(6365), eaam9756.
[http://dx.doi.org/10.1126/science.aam9756] [PMID: 29146781]
[66]
Versluis, F.; Marsden, H.R.; Kros, A. Power struggles in peptide-amphiphile nanostructures. Chem. Soc. Rev., 2010, 39(9), 3434-3444.
[http://dx.doi.org/10.1039/b919446k] [PMID: 20644886]
[67]
Rehm, T.H.; Schmuck, C. Ion-pair induced self-assembly in aqueous solvents. Chem. Soc. Rev., 2010, 39(10), 3597-3611.
[http://dx.doi.org/10.1039/b926223g] [PMID: 20552123]
[68]
Goyal, R.; Ramakrishnan, V. Peptide-based drug delivery systems. In: Mohapatra, S.S.; Ranjan, S.; Dasgupta, N.; Mishra, R.K.; Thomas, S.; Eds. Micro and Nano Technologies, Characterization and Biology of Nanomaterials for Drug Delivery; Elsevier: Amsterdam, Netherlands, , 2018; pp. 25-45.
[http://dx.doi.org/10.1016/B978-0-12-814031-4.00002-7]
[69]
Berezhnoy, N.V.; Korolev, N.; Nordenskiöld, L. Principles of electrostatic interactions and self-assembly in lipid/peptide/DNA systems: Applications to gene delivery. Adv. Colloid Interface Sci., 2014, 205, 221-229.
[http://dx.doi.org/10.1016/j.cis.2013.08.008] [PMID: 24055029]
[70]
Wang, M.D.; Hou, D.Y.; Lv, G.T.; Li, R.X.; Hu, X.J.; Wang, Z.J.; Zhang, N.Y.; Yi, L.; Xu, W.H.; Wang, H. Targeted in situ self-assembly augments peptide drug conjugate cell-entry efficiency. Biomaterials, 2021, 278, 121139.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121139] [PMID: 34624753]
[71]
Guo, R.C.; Zhang, X.H.; Fan, P.S.; Song, B.L.; Li, Z.X.; Duan, Z.Y.; Qiao, Z.Y.; Wang, H. In vivo self‐assembly induced cell membrane phase separation for improved peptide drug internalization. Angew. Chem. Int. Ed., 2021, 60(47), 25128-25134.
[http://dx.doi.org/10.1002/anie.202111839] [PMID: 34549872]
[72]
Luo, R.; Wan, Y.; Luo, X.; Liu, G.; Li, Z.; Chen, J.; Su, D.; Lu, N.; Luo, Z. A rapid self-assembly peptide hydrogel for recruitment and activation of immune cells. Molecules, 2022, 27(2), 419.
[http://dx.doi.org/10.3390/molecules27020419] [PMID: 35056735]
[73]
Wei, S.; Chen, F.; Geng, Z.; Cui, R.; Zhao, Y.; Liu, C. Self-assembling RATEA16 peptide nanofiber designed for rapid hemostasis. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(9), 1897-1905.
[http://dx.doi.org/10.1039/C9TB02590A] [PMID: 32037407]
[74]
Zhou, X.R.; Cao, Y.; Zhang, Q.; Tian, X.B.; Dong, H.; Chen, L.; Luo, S.Z. Self-assembly nanostructure controlled sustained release, activity and stability of peptide drugs. Int. J. Pharm., 2017, 528(1-2), 723-731.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.051] [PMID: 28629983]
[75]
Kim, J.; Narayana, A.; Patel, S.; Sahay, G. Advances in intracellular delivery through supramolecular self-assembly of oligonucleotides and peptides. Theranostics, 2019, 9(11), 3191-3212.
[http://dx.doi.org/10.7150/thno.33921] [PMID: 31244949]
[76]
Sun, Y.; Li, X.; Zhao, M.; Chen, Y.; Xu, Y.; Wang, K.; Bian, S.; Jiang, Q.; Fan, Y.; Zhang, X. Bioinspired supramolecular nanofiber hydrogel through self-assembly of biphenyl-tripeptide for tissue engineering. Bioact. Mater., 2022, 8, 396-408.
[http://dx.doi.org/10.1016/j.bioactmat.2021.05.054] [PMID: 34541409]
[77]
Noblett, A.D.; Baek, K.; Suggs, L.J. Controlling nucleopeptide hydrogel self-assembly and formation for cell-culture scaffold applications. ACS Biomater. Sci. Eng., 2021, 7(6), 2605-2614.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01658] [PMID: 33949850]
[78]
Pigliacelli, C.; Sánchez-Fernández, R.; García, M.D.; Peinador, C.; Pazos, E. Self-assembled peptide-inorganic nanoparticle superstructures: From component design to applications. Chem. Commun. (Camb.), 2020, 56(58), 8000-8014.
[http://dx.doi.org/10.1039/D0CC02914A] [PMID: 32495761]
[79]
Guo, Y.; Hu, Y.; Zheng, X.; Cao, X.; Li, Q.; Wei, Z.; Zhu, Z.; Zhang, S. Self-assembled peptide nanoparticles with endosome escaping permits for co-drug delivery. Talanta, 2021, 221, 121572.
[http://dx.doi.org/10.1016/j.talanta.2020.121572] [PMID: 33076119]
[80]
Dehghani, S.; Alibolandi, M.; Tehranizadeh, Z.A.; Oskuee, R.K.; Nosrati, R.; Soltani, F.; Ramezani, M. Self-assembly of an aptamer-decorated chimeric peptide nanocarrier for targeted cancer gene delivery. Colloids Surf. B Biointerfaces, 2021, 208, 112047.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112047] [PMID: 34418722]
[81]
Liu, S.; Wang, B.; Sheng, Y.; Dong, S.; Liu, G. Rational design of self‐assembled mitochondria‐targeting lytic peptide conjugates with enhanced tumor selectivity. Chemistry, 2022, 28(3), e202103517.
[http://dx.doi.org/10.1002/chem.202103517] [PMID: 34791722]
[82]
Grozdanovic, M.; Laffey, K.G.; Abdelkarim, H.; Hitchinson, B.; Harijith, A.; Moon, H.G.; Park, G.Y.; Rousslang, L.K.; Masterson, J.C.; Furuta, G.T.; Tarasova, N.I.; Gaponenko, V.; Ackerman, S.J. Novel peptide nanoparticle–biased antagonist of CCR3 blocks eosinophil recruitment and airway hyperresponsiveness. J. Allergy Clin. Immunol., 2019, 143(2), 669-680.e12.
[http://dx.doi.org/10.1016/j.jaci.2018.05.003] [PMID: 29778505]
[83]
Wang, H.; Feng, Z.; Xu, B. Supramolecular assemblies of peptides or nucleopeptides for gene delivery. Theranostics, 2019, 9(11), 3213-3222.
[http://dx.doi.org/10.7150/thno.31854] [PMID: 31244950]
[84]
Jiang, X.; Fan, X.; Xu, W.; Zhao, C.; Wu, H.; Zhang, R.; Wu, G. Self-assembled peptide nanoparticles responsive to multiple tumor microenvironment triggers provide highly efficient targeted delivery and release of antitumor drug. J. Control. Release, 2019, 316, 196-207.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.031] [PMID: 31682910]
[85]
Cong, Z.; Zhang, L.; Ma, S.Q.; Lam, K.S.; Yang, F.F.; Liao, Y.H. Size-transformable hyaluronan stacked self-assembling peptide nanoparticles for improved transcellular tumor penetration and photo-chemo combination therapy. ACS Nano, 2020, 14(2), 1958-1970.
[http://dx.doi.org/10.1021/acsnano.9b08434] [PMID: 32023048]
[86]
Balogh, B.; Ivánczi, M.; Nizami, B.; Beke-Somfai, T.; Mándity, I.M. ConjuPepDB: A database of peptid-drug conjugates. Nucleic Acids Res., 2021, 49(D1), D1102-D1112.
[http://dx.doi.org/10.1093/nar/gkaa950] [PMID: 33125057]
[87]
Gupta, S.; Singh, I.; Sharma, A.K.; Kumar, P. Ultrashort peptide self-assembly: Front-runners to transport drug and gene cargos. Front. Bioeng. Biotechnol., 2020, 8, 504.
[http://dx.doi.org/10.3389/fbioe.2020.00504] [PMID: 32548101]
[88]
Guo, R.C.; Zhang, X.H.; Ji, L.; Wei, Z.J.; Duan, Z.Y.; Qiao, Z.Y.; Wang, H. Recent progress of therapeutic peptide based nanomaterials: From synthesis and self-assembly to cancer treatment. Biomater. Sci., 2020, 8(22), 6175-6189.
[http://dx.doi.org/10.1039/D0BM01358G] [PMID: 33026364]
[89]
Chen, J.; Zou, X. Self-assemble peptide biomaterials and their biomedical applications. Bioact. Mater., 2019, 4, 120-131.
[http://dx.doi.org/10.1016/j.bioactmat.2019.01.002] [PMID: 31667440]
[90]
Moore, A.N.; Hartgerink, J.D. Self-assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration. Acc. Chem. Res., 2017, 50(4), 714-722.
[http://dx.doi.org/10.1021/acs.accounts.6b00553] [PMID: 28191928]
[91]
Haines-Butterick, L.; Rajagopal, K.; Branco, M.; Salick, D.; Rughani, R.; Pilarz, M. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl. Acad. Sci. USA, 2007, 104(19), 7791-7796.
[http://dx.doi.org/10.1073/pnas.0701980104]
[92]
Kumar, S.; Bajaj, A. Advances in self-assembled injectable hydrogels for cancer therapy. Biomater. Sci., 2020, 8(8), 2055-2073.
[http://dx.doi.org/10.1039/D0BM00146E] [PMID: 32129390]
[93]
Tang, J.D.; Mura, C.; Lampe, K.J. Stimuli-responsive, pentapeptide, nanofiber hydrogel for tissue engineering. J. Am. Chem. Soc., 2019, 141(12), 4886-4899.
[http://dx.doi.org/10.1021/jacs.8b13363] [PMID: 30830776]
[94]
Wang, Q.; Li, X.; Wang, P.; Yao, Y.; Xu, Y.; Chen, Y.; Sun, Y.; Jiang, Q.; Fan, Y.; Zhang, X. Bionic composite hydrogel with a hybrid covalent/noncovalent network promoting phenotypic maintenance of hyaline cartilage. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(20), 4402-4411.
[http://dx.doi.org/10.1039/D0TB00253D] [PMID: 32242608]
[95]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[96]
Goktas, M.; Cinar, G.; Orujalipoor, I.; Ide, S.; Tekinay, A.B.; Guler, M.O. Self-assembled peptide amphiphile nanofibers and peg composite hydrogels as tunable ECM mimetic microenvironment. Biomacromolecules, 2015, 16(4), 1247-1258.
[http://dx.doi.org/10.1021/acs.biomac.5b00041] [PMID: 25751623]
[97]
Llorens-Gámez, M.; Salesa, B.; Serrano-Aroca, Á. Physical and biological properties of alginate/carbon nanofibers hydrogel films. Int. J. Biol. Macromol., 2020, 151, 499-507.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.213] [PMID: 32088232]
[98]
Barco, A.; Ingham, E.; Fisher, J.; Fermor, H.; Davies, R.P.W. On the design and efficacy assessment of self-assembling peptide-based hydrogel-glycosaminoglycan mixtures for potential repair of early stage cartilage degeneration. J. Pept. Sci., 2018, 24(8-9), e3114.
[http://dx.doi.org/10.1002/psc.3114] [PMID: 30019359]
[99]
Fichman, G.; Gazit, E. Self-assembly of short peptides to form hydrogels: Design of building blocks, physical properties and technological applications. Acta Biomater., 2014, 10(4), 1671-1682.
[http://dx.doi.org/10.1016/j.actbio.2013.08.013] [PMID: 23958781]
[100]
Liu, Y.; Zhang, L.; Chang, R.; Yan, X. Supramolecular cancer photoimmunotherapy based on precise peptide self-assembly design. Chem. Commun. (Camb.), 2022, 58(14), 2247-2258.
[http://dx.doi.org/10.1039/D1CC06355C] [PMID: 35083992]
[101]
Li, S.; Zou, Q.; Li, Y.; Yuan, C.; Xing, R.; Yan, X. Smart peptide-based supramolecular photodynamic metallo-nanodrugs designed by multicomponent coordination self-assembly. J. Am. Chem. Soc., 2018, 140(34), 10794-10802.
[http://dx.doi.org/10.1021/jacs.8b04912] [PMID: 30102029]
[102]
Garg, A.D.; Agostinis, P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol. Rev., 2017, 280(1), 126-148.
[http://dx.doi.org/10.1111/imr.12574] [PMID: 29027218]
[103]
Liu, K.; Xing, R.; Zou, Q.; Ma, G.; Möhwald, H.; Yan, X. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew. Chem. Int. Ed., 2016, 55(9), 3036-3039.
[http://dx.doi.org/10.1002/anie.201509810] [PMID: 26804551]
[104]
Zou, Q.; Abbas, M.; Zhao, L.; Li, S.; Shen, G.; Yan, X. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc., 2017, 139(5), 1921-1927.
[http://dx.doi.org/10.1021/jacs.6b11382] [PMID: 28103663]
[105]
Zhang, C.; Zeng, Z.; Cui, D.; He, S.; Jiang, Y.; Li, J.; Huang, J.; Pu, K. Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nat. Commun., 2021, 12(1), 2934.
[http://dx.doi.org/10.1038/s41467-021-23194-w] [PMID: 34006860]
[106]
Yan, S.; Yan, J.; Liu, D.; Li, X.; Kang, Q.; You, W.; Zhang, J.; Wang, L.; Tian, Z.; Lu, W.; Liu, W.; He, W. A nano-predator of pathological MDMX construct by clearable supramolecular gold(I)-thiol-peptide complexes achieves safe and potent anti-tumor activity. Theranostics, 2021, 11(14), 6833-6846.
[http://dx.doi.org/10.7150/thno.59020] [PMID: 34093856]
[107]
Guo, F.; Ke, J.; Fu, Z.; Han, W.; Wang, L. Cell penetrating peptide-based self-assembly for PD-L1 targeted tumor regression. Int. J. Mol. Sci., 2021, 22(24), 13314.
[http://dx.doi.org/10.3390/ijms222413314] [PMID: 34948105]
[108]
Fu, M.; Zhang, C.; Dai, Y.; Li, X.; Pan, M.; Huang, W.; Qian, H.; Ge, L. Injectable self-assembled peptide hydrogels for glucose-mediated insulin delivery. Biomater. Sci., 2018, 6(6), 1480-1491.
[http://dx.doi.org/10.1039/C8BM00006A] [PMID: 29623975]
[109]
Zhang, F.; Hu, C.; Kong, Q.; Luo, R.; Wang, Y. Peptide-/Drug-directed self-assembly of hybrid polyurethane hydrogels for wound healing. ACS Appl. Mater. Interfaces, 2019, 11(40), 37147-37155.
[http://dx.doi.org/10.1021/acsami.9b13708] [PMID: 31513742]
[110]
He, B.; Ou, Y.; Chen, S.; Zhao, W.; Zhou, A.; Zhao, J.; Li, H.; Jiang, D.; Zhu, Y. Designer bFGF-incorporated d -form self-assembly peptide nanofiber scaffolds to promote bone repair. Mater. Sci. Eng. C, 2017, 74, 451-458.
[http://dx.doi.org/10.1016/j.msec.2016.12.042] [PMID: 28254316]
[111]
Liu, J.; Wu, C.; Dai, G.; Feng, F.; Chi, Y.; Xu, K.; Zhong, W. Molecular self-assembly of a tyroservatide-derived octapeptide and hydroxycamptothecin for enhanced therapeutic efficacy. Nanoscale, 2021, 13(9), 5094-5102.
[http://dx.doi.org/10.1039/D0NR08741F] [PMID: 33650607]
[112]
Jiao, J.B.; Wang, G.Z.; Hu, X.L.; Zang, Y.; Maisonneuve, S.; Sedgwick, A.C.; Sessler, J.L.; Xie, J.; Li, J.; He, X.P.; Tian, H. Cyclodextrin-based peptide self-assemblies (Spds) that enhance peptide-based fluorescence imaging and antimicrobial efficacy. J. Am. Chem. Soc., 2020, 142(4), 1925-1932.
[http://dx.doi.org/10.1021/jacs.9b11207] [PMID: 31884796]
[113]
Roy, S.R.; Li, G.; Hu, X.; Zhang, S.; Yukawa, S.; Du, E.; Zhang, Y. Integrin and heparan sulfate dual-targeting peptide assembly suppresses cancer metastasis. ACS Appl. Mater. Interfaces, 2020, 12(17), 19277-19284.
[http://dx.doi.org/10.1021/acsami.0c02235] [PMID: 32266811]
[114]
Yu, X.; Zhang, Z.; Yu, J.; Chen, H.; Li, X. Self-assembly of a ibuprofen-peptide conjugate to suppress ocular inflammation. Nanomedicine, 2018, 14(1), 185-193.
[http://dx.doi.org/10.1016/j.nano.2017.09.010] [PMID: 28970131]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy