Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Review Article

Recent Trends on Microplastics Pollution and Its Remediation: A Review

Author(s): Sanjeevani Hooda and Prasenjit Mondal*

Volume 15, Issue 3, 2022

Published on: 19 September, 2022

Page: [169 - 188] Pages: 20

DOI: 10.2174/2405520415666220815142148

Price: $65

conference banner
Abstract

Omnipresence of microplastics (<5mm) in our ecosystem has presented a worldwide concern for the future. This review aims to highlight the toxic effect of microplastic on marine organisms, identify the research gaps in the microplastic identification techniques (Fourier transform infrared spectroscopy, Raman spectroscopy, Pyrolysis- gas chromatography/mass spectroscopy, etc.) and remediation processes available (flocculation, membrane bioreactor, bioremediation, etc.) as well as throw light on the prospects to mitigate the microplastic pollution in the environment. The abundance of microplastics in the oceans and its subsequent ingestion causes false satiation leading to starvation, weakened immune system, reduced reproduction rate, and other toxic effects on marine organisms. Recent studies have also found the presence of microplastics in human bodies, without the true knowledge of its effects. Based on the reviewed literature, a combination of different analytical (identification) techniques is proven to be more useful in providing a detailed understanding of the microplastic sample in comparison to any one individual technique. Amongst all the available remediation techniques, bioremediation has shown the potency to be used as a sustainable, environment friendly, in-situ remediation process with engineered microbes/enzymes as the potential future of microplastic remediation.

Keywords: Microplastic, wastewater, sources of microplastics, impact on marine organisms, remediation techniques, bioremediation.

Graphical Abstract
[1]
Plastics Europe - Association of Plastic Manufacturers (Organization). Plastics - the Facts 2020. PlasticEurope. 2020; p. 16.
[2]
Tsakona Maria. Rucevska Ieva Baseline report on plastic waste - Basel Convention. United Nations Bc 2020; pp. 1-68.
[3]
Yang H, Chen G, Wang J. Microplastics in the marine environment: Sources, fates, impacts and microbial degradation. Toxics 2021; 9(2): 1-19.
[http://dx.doi.org/10.3390/toxics9020041] [PMID: 33671786]
[4]
Oßmann BE, Sarau G, Holtmannspötter H, Pischetsrieder M, Christiansen SH, Dicke W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res 2018; 141: 307-16.
[http://dx.doi.org/10.1016/j.watres.2018.05.027] [PMID: 29803096]
[5]
Boyle K, Örmeci B. Microplastics and nanoplastics in the freshwater and terrestrial environment: A review Water (Switzerland) 2020; 12(9).
[http://dx.doi.org/10.3390/w12092633]
[6]
Eerkes-Medrano D, Thompson RC, Aldridge DC. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 2015; 75: 63-82.
[http://dx.doi.org/10.1016/j.watres.2015.02.012] [PMID: 25746963]
[7]
Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: A review. Mar Pollut Bull 2011; 62(12): 2588-97.
[http://dx.doi.org/10.1016/j.marpolbul.2011.09.025] [PMID: 22001295]
[8]
Li J, Liu H, Paul Chen J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res 2018; 137: 362-74.
[http://dx.doi.org/10.1016/j.watres.2017.12.056] [PMID: 29580559]
[9]
Pivokonsky M, Cermakova L, Novotna K, Peer P, Cajthaml T, Janda V. Occurrence of microplastics in raw and treated drinking water. Sci Total Environ 2018; 643: 1644-51.
[http://dx.doi.org/10.1016/j.scitotenv.2018.08.102] [PMID: 30104017]
[10]
Rezania S, Park J, Md Din MF, et al. Microplastics pollution in different aquatic environments and biota: A review of recent studies. Mar Pollut Bull 2018; 133(March): 191-208.
[http://dx.doi.org/10.1016/j.marpolbul.2018.05.022] [PMID: 30041307]
[11]
Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res 2019; 155: 410-22.
[http://dx.doi.org/10.1016/j.watres.2019.02.054] [PMID: 30861380]
[12]
Thiel M, Luna-Jorquera G, Álvarez-Varas R, et al. Impacts of marine plastic pollution from continental coasts to subtropical gyres-fish, seabirds, and other vertebrates in the SE Pacific. Front Mar Sci 2018; 5(July): 1-16.
[http://dx.doi.org/10.3389/fmars.2018.00238]
[13]
Ugwu K, Herrera A, Gómez M. Microplastics in marine biota: A review. Mar Pollut Bull 2021; 169(February): 112540.
[http://dx.doi.org/10.1016/j.marpolbul.2021.112540] [PMID: 34087664]
[14]
Liu W, Zhang J, Liu H, et al. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environ Int 2021; 146: 106277.
[http://dx.doi.org/10.1016/j.envint.2020.106277] [PMID: 33227584]
[15]
Oliveira J, Belchior A, da Silva VD, et al. Marine environmental plastic pollution: Mitigation by microorganism degradation and recycling valorization. Front Mar Sci 2020; •••: 7.
[http://dx.doi.org/10.3389/fmars.2020.567126]
[16]
Habib RZ, Thiemann T, Al Kendi R. Microplastics and wastewater treatment plants-a review. J Water Resource Prot 2020; 12(01): 1-35.
[http://dx.doi.org/10.4236/jwarp.2020.121001]
[17]
Miri S, Saini R, Davoodi SM, Pulicharla R, Brar SK, Magdouli S. Biodegradation of microplastics: Better late than never. Chemosphere 2022; 286(Pt 1): 131670.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131670] [PMID: 34351281]
[18]
Huppertsberg S, Knepper TP. Instrumental analysis of microplastics - benefits and challenges. 2018; pp. 6343-52.
[http://dx.doi.org/10.1007/s00216-018-1210-8]
[19]
Andrady AL. Microplastics in the marine environment. Mar Pollut Bull 2011; 62(8): 1596-605.
[http://dx.doi.org/10.1016/j.marpolbul.2011.05.030] [PMID: 21742351]
[20]
Mani T, Hauk A, Walter U, Burkhardt-Holm P. Microplastics profile along the Rhine River. Sci Rep 2015; 5: 17988.
[http://dx.doi.org/10.1038/srep17988] [PMID: 26644346]
[21]
Wagner S, Hüffer T, Klöckner P, Wehrhahn M, Hofmann T, Reemtsma T. Tire wear particles in the aquatic environment - A review on generation, analysis, occurrence, fate and effects. Water Res 2018; 139: 83-100.
[http://dx.doi.org/10.1016/j.watres.2018.03.051] [PMID: 29631188]
[22]
Conkle JL, Báez Del Valle CD, Turner JW. Are we underestimating microplastic contamination in aquatic environments? Environ Manage 2018; 61(1): 1-8.
[http://dx.doi.org/10.1007/s00267-017-0947-8] [PMID: 29043380]
[23]
Galafassi S, Nizzetto L, Volta P. Plastic sources: A survey across scientific and grey literature for their inventory and relative contribution to microplastics pollution in natural environments, with an emphasis on surface water. Sci Total Environ 2019; 693: 133499.
[http://dx.doi.org/10.1016/j.scitotenv.2019.07.305] [PMID: 31377368]
[24]
World Shipping Council. Containers Lost At Sea – 2020. Update 2020; pp. 4-7.
[25]
UNEP. Our planet is drowning in plastic pollution—it’s time for change!. United Nations Environ. Program 2020; pp. 1-14.
[26]
Peng L, Fu D, Qi H, Lan CQ, Yu H, Ge C. Micro- and nano-plastics in marine environment: Source, distribution and threats - A review. Sci Total Environ 2020; 698: 134254.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134254] [PMID: 31514025]
[27]
Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF. A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health 2020; 17(4): E1212.
[http://dx.doi.org/10.3390/ijerph17041212] [PMID: 32069998]
[28]
Sun J, Dai X, Wang Q, van Loosdrecht MCM, Ni BJ. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Res 2019; 152: 21-37.
[http://dx.doi.org/10.1016/j.watres.2018.12.050] [PMID: 30660095]
[29]
Ziccardi LM, Edgington A, Hentz K, Kulacki KJ, Kane Driscoll S. Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review. Environ Toxicol Chem 2016; 35(7): 1667-76.
[http://dx.doi.org/10.1002/etc.3461] [PMID: 27093569]
[30]
Amobonye A, Bhagwat P, Singh S, Pillai S. Plastic biodegradation: Frontline microbes and their enzymes. Elsevier B.V 2021; 759.
[31]
Gong J, Kong T, Li Y, Li Q, Li Z, Zhang J. Biodegradation of microplastic derived from poly(ethylene terephthalate) with bacterial whole-cell biocatalysts. Polymers (Basel) 2018; 10(12): E1326.
[http://dx.doi.org/10.3390/polym10121326] [PMID: 30961251]
[32]
Shabbir S, Faheem M, Ali N, et al. Periphytic biofilm: An innovative approach for biodegradation of microplastics. Sci Total Environ 2020; 717: 137064.
[http://dx.doi.org/10.1016/j.scitotenv.2020.137064] [PMID: 32070890]
[33]
Orr IG, Hadar Y, Sivan A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 2004; 65(1): 97-104.
[http://dx.doi.org/10.1007/s00253-004-1584-8] [PMID: 15221232]
[34]
Lei L, Wu S, Lu S, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ 2018; 619-620: 1-8.
[http://dx.doi.org/10.1016/j.scitotenv.2017.11.103] [PMID: 29136530]
[35]
Yin L, Chen B, Xia B, Shi X, Qu K. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). J Hazard Mater 2018; 360: 97-105.
[http://dx.doi.org/10.1016/j.jhazmat.2018.07.110] [PMID: 30098534]
[36]
Wang T, Hu M, Xu G, Shi H, Leung JYS, Wang Y. Microplastic accumulation via trophic transfer: Can a predatory crab counter the adverse effects of microplastics by body defence? Sci Total Environ 2021; 754: 142099.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142099] [PMID: 32911152]
[37]
Schwabl P, Köppel S, Königshofer P, et al. Detection of various microplastics in human stool: A prospective case series. Ann Intern Med 2019; 171(7): 453-7.
[http://dx.doi.org/10.7326/M19-0618] [PMID: 31476765]
[38]
Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: First evidence of microplastics in human placenta. Environ Int 2021; 146: 106274.
[http://dx.doi.org/10.1016/j.envint.2020.106274] [PMID: 33395930]
[39]
Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int 2021; 107199.
[http://dx.doi.org/10.1016/j.envint.2022.107199]
[40]
Raddadi N, Fava F. Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and innovation. Sci Total Environ 2019; 679: 148-58.
[http://dx.doi.org/10.1016/j.scitotenv.2019.04.419] [PMID: 31082589]
[41]
Besseling E, Foekema EM, Van Franeker JA, et al. Microplastic in a macro filter feeder: Humpback whale Megaptera novaeangliae. Mar Pollut Bull 2015; 95(1): 248-52.
[http://dx.doi.org/10.1016/j.marpolbul.2015.04.007] [PMID: 25916197]
[42]
Sussarellu R, Suquet M, Thomas Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci USA 2016; 113(9): 2430-5.
[http://dx.doi.org/10.1073/pnas.1519019113] [PMID: 26831072]
[43]
Messinetti S, Mercurio S, Parolini M, Sugni M, Pennati R. Effects of polystyrene microplastics on early stages of two marine invertebrates with different feeding strategies. Environ Pollut 2018; 237: 1080-7.
[http://dx.doi.org/10.1016/j.envpol.2017.11.030] [PMID: 29146202]
[44]
Choi JS, Hong SH, Park JW. Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the marine copepod Tigriopus japonicus. In: Mar Environ Res 2020; 153: p. 104838.
[http://dx.doi.org/10.1016/j.marenvres.2019.104838]
[45]
Wang W, Ndungu AW, Li Z, Wang J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Sci Total Environ 2017; 575: 1369-74.
[http://dx.doi.org/10.1016/j.scitotenv.2016.09.213] [PMID: 27693147]
[46]
Jung MR, Horgen FD, Orski SV, et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar Pollut Bull 2018; 127: 704-16.
[http://dx.doi.org/10.1016/j.marpolbul.2017.12.061] [PMID: 29475714]
[47]
Thomas D, Schütze B, Heinze WM, Steinmetz Z. Sample preparation techniques for the analysis of microplastics in soil-a review. Sustain 2020; 12(21): 1-28.
[http://dx.doi.org/10.3390/su12219074]
[48]
Zhang S, Wang J, Liu X, et al. Microplastics in the environment: A review of analytical methods, distribution, and biological effects. ” TrAC -. Trends Analyt Chem 2019; 111: 62-72.
[http://dx.doi.org/10.1016/j.trac.2018.12.002]
[49]
Zobkov MB, Esiukova EE. Microplastics in a Marine Environment: Review of methods for sampling, processing, and analyzing microplastics in water, bottom sediments, and coastal deposits. Oceanology (Mosc) 2018; 58(1): 137-43.
[http://dx.doi.org/10.1134/S0001437017060169]
[50]
Van Raamsdonk LWD, van der Zande M, Koelmans AA, et al. Current insights into monitoring, bioaccumulation and potential health effects of microplastics present in the food chain. Foods 2020; 9(72)
[51]
Zhao S, Zhu L, Wang T, Li D. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution. Mar Pollut Bull 2014; 86(1-2): 562-8.
[http://dx.doi.org/10.1016/j.marpolbul.2014.06.032] [PMID: 25023438]
[52]
Lares M, Ncibi MC, Sillanpää M, Sillanpää M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res 2018; 133: 236-46.
[http://dx.doi.org/10.1016/j.watres.2018.01.049] [PMID: 29407704]
[53]
Gatidou G, Arvaniti OS, Stasinakis AS. Review on the occurrence and fate of microplastics in Sewage Treatment Plants. J Hazard Mater 2019; 367: 504-12.
[http://dx.doi.org/10.1016/j.jhazmat.2018.12.081]
[54]
Charles J, Ramkumaar GR. Qualitative analysis of high density polyethylene using FTIR spectroscopy. Asian J Chem 2009; 21(6): 4477-84.
[55]
Zhang Z, Chen Y. Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review. Chem Eng J 2020; 382: 122955.
[http://dx.doi.org/10.1016/j.cej.2019.122955]
[56]
A D8333-20, “Standard Practice for Preparation of Water Samples with High, Medium, or Low Suspended Solids for Identification and Quantification of Microplastic Particles and Fibers Using Raman Spectroscopy, IR Spectroscopy, or Pyrolysis-GC/MS. PA, USA: ASTM International West Conshohocken 2020.
[57]
Fischer D, Käppler A, Fischer F, Brandt J, Bittrich L, Eichhorn K-J. Identification of microplastics in environmental samples. GIT Lab J 2019; 23(4): 43-5.
[58]
Picó Y, Barceló D. Analysis and prevention of microplastics pollution in water: Current perspectives and future directions. ACS Omega 2019; 4(4): 6709-19.
[http://dx.doi.org/10.1021/acsomega.9b00222] [PMID: 31459797]
[59]
Su L, Xue Y, Li L, et al. Microplastics in taihu lake, China. Environ Pollut 2016; 216: 711-9.
[http://dx.doi.org/10.1016/j.envpol.2016.06.036] [PMID: 27381875]
[60]
Xiong X, Wu C, Elser JJ, Mei Z, Hao Y. Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River - From inland to the sea. Sci Total Environ 2019; 659: 66-73.
[http://dx.doi.org/10.1016/j.scitotenv.2018.12.313] [PMID: 30597469]
[61]
Blair RM, Waldron S, Phoenix VR, Gauchotte-Lindsay C. Microscopy and elemental analysis characterisation of microplastics in sediment of a freshwater urban river in Scotland, UK. Environ Sci Pollut Res Int 2019; 26(12): 12491-504.
[http://dx.doi.org/10.1007/s11356-019-04678-1] [PMID: 30848429]
[62]
Dikareva N, Simon KS. Microplastic pollution in streams spanning an urbanisation gradient. Environ Pollut 2019; 250: 292-9.
[http://dx.doi.org/10.1016/j.envpol.2019.03.105] [PMID: 31003141]
[63]
Mintenig SM, Löder MGJ, Primpke S, Gerdts G. Low numbers of microplastics detected in drinking water from ground water sources. Sci Total Environ 2019; 648: 631-5.
[http://dx.doi.org/10.1016/j.scitotenv.2018.08.178] [PMID: 30121540]
[64]
Schymanski D, Goldbeck C, Humpf HU, Fürst P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res 2018; 129: 154-62.
[http://dx.doi.org/10.1016/j.watres.2017.11.011] [PMID: 29145085]
[65]
Dowarah K, Devipriya SP. Microplastic prevalence in the beaches of Puducherry, India and its correlation with fishing and tourism/recreational activities. Mar Pollut Bull 2019; 148(July): 123-33.
[http://dx.doi.org/10.1016/j.marpolbul.2019.07.066] [PMID: 31422297]
[66]
Gopinath K, Seshachalam S, Neelavannan K, et al. Quantification of microplastic in red hills lake of chennai city, Tamil Nadu, India. Environ Sci Pollut Res Int 2020; 27(26): 33297-306.
[http://dx.doi.org/10.1007/s11356-020-09622-2] [PMID: 32533483]
[67]
Sruthy S, Ramasamy EV. Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India. Environ Pollut 2017; 222: 315-22.
[http://dx.doi.org/10.1016/j.envpol.2016.12.038] [PMID: 28041839]
[68]
K AS. Varghese GK. Environmental forensic analysis of the microplastic pollution at ‘Nattika’ beach, kerala coast, India. Environ Forensics 2020; 21(1): 21-36.
[http://dx.doi.org/10.1080/15275922.2019.1693442]
[69]
Jeyasanta KI, Sathish N, Patterson J, Edward JKP. Macro-, meso- and microplastic debris in the beaches of Tuticorin district, Southeast coast of India. Mar Pollut Bull 2020; 154(January): 111055.
[http://dx.doi.org/10.1016/j.marpolbul.2020.111055] [PMID: 32174503]
[70]
Chen Y, Awasthi AK, Wei F, Tan Q, Li J. Single-use plastics: Production, usage, disposal, and adverse impacts. Sci Total Environ 2021; 752: 141772.
[http://dx.doi.org/10.1016/j.scitotenv.2020.141772] [PMID: 32892042]
[71]
Review on plastic wastes in marine environment – Biodegradation and biotechnological solutions. Mar Pollut Bull 2020; 150(May)
[http://dx.doi.org/10.1016/j.marpolbul.2019.110733]
[72]
Lebreton L, Slat B, Ferrari F, et al. Evidence that the great pacific garbage patch is rapidly accumulating plastic. Sci Rep 2018; 8(1): 4666.
[http://dx.doi.org/10.1038/s41598-018-22939-w] [PMID: 29568057]
[73]
Chaturvedi S, Yadav BP, Siddiqui NA, Chaturvedi SK. Mathematical modelling and analysis of plastic waste pollution and its impact on the ocean surface. J Ocean Eng Sci 2020; 5(2): 136-63.
[http://dx.doi.org/10.1016/j.joes.2019.09.005]
[74]
Zhang K, Shi H, Peng J, et al. Microplastic pollution in China’s inland water systems: A review of findings, methods, characteristics, effects, and management. Sci Total Environ 2018; 630: 1641-53.
[http://dx.doi.org/10.1016/j.scitotenv.2018.02.300] [PMID: 29554780]
[75]
Dusaucy J, Gateuille D, Perrette Y, Naffrechoux E. Microplastic pollution of worldwide lakes. Environ Pollut 2021; 284: 117075.
[http://dx.doi.org/10.1016/j.envpol.2021.117075] [PMID: 33894537]
[76]
Schmidt C, Krauth T, Wagner S. Correction to: Export of plastic debris by rivers into the sea (Environmental Science and Technology (2017) 51: 21 (12246-12253) DOI: 10.1021/acs.est.7b02368). Environ Sci Technol 2018; 52(2): 927.
[http://dx.doi.org/10.1021/acs.est.7b02368]
[77]
Schmidt C, Krauth T, Wagner S. Export of plastic debris by rivers into the sea. Environ Sci Technol 2017; 51(21): 12246-53.
[http://dx.doi.org/10.1021/acs.est.7b02368] [PMID: 29019247]
[78]
Veerasingam S, Ranjani M, Venkatachalapathy R, et al. Microplastics in different environmental compartments in India: Analytical methods, distribution, associated contaminants and research needs. ” TrAC - Trends Analyt Chem 2020; 133: 116071.
[http://dx.doi.org/10.1016/j.trac.2020.116071]
[79]
Lechthaler S, Waldschläger K, Sandhani CG, et al. Baseline study on microplastics in indian rivers under different anthropogenic influences Water (Switzerland) 2021; 13(12).
[http://dx.doi.org/10.3390/w13121648]
[80]
Wanner P. Plastic in agricultural soils - A global risk for groundwater systems and drinking water supplies? - A review. Chemosphere 2021; 264(Pt 1): 128453.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128453] [PMID: 33038754]
[81]
Annual-report. department of agriculture, cooperation & farmers welfare. Minist. Agric. Farmers Welf. Gov 2019.
[82]
Iyare PU, Ouki SK, Bond T. Microplastics removal in wastewater treatment plants: A critical review. Environ Sci Water Res Technol 2020; 6(10): 2664-75.
[http://dx.doi.org/10.1039/D0EW00397B]
[83]
Murphy F, Ewins C, Carbonnier F, Quinn B. Wastewater Treatment Works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 2016; 50(11): 5800-8.
[http://dx.doi.org/10.1021/acs.est.5b05416] [PMID: 27191224]
[84]
Talvitie J, Mikola A, Setälä O, Heinonen M, Koistinen A. How well is microlitter purified from wastewater? - A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Res 2017; 109: 164-72.
[http://dx.doi.org/10.1016/j.watres.2016.11.046] [PMID: 27883921]
[85]
Simon M, Vianello A, Vollertsen J. Removal of > 10 μm microplastic particles from treated wastewater by a disc filter. Water (Switzerland) 2019; 11(9).
[http://dx.doi.org/10.3390/w11091935]
[86]
Bayo J, López-Castellanos J, Olmos S. Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. Mar Pollut Bull 2020; 156(April): 111211.
[http://dx.doi.org/10.1016/j.marpolbul.2020.111211] [PMID: 32365007]
[87]
Lv X, Dong Q, Zuo Z, Liu Y, Huang X, Wu WM. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. J Clean Prod 2019; 225: 579-86.
[http://dx.doi.org/10.1016/j.jclepro.2019.03.321]
[88]
Talvitie J, Mikola A, Koistinen A, Setälä O. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res 2017; 123: 401-7.
[http://dx.doi.org/10.1016/j.watres.2017.07.005] [PMID: 28686942]
[89]
Hidayaturrahman H, Lee TG. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar Pollut Bull 2019; 146(July): 696-702.
[http://dx.doi.org/10.1016/j.marpolbul.2019.06.071] [PMID: 31426211]
[90]
Liu X, Yuan W, Di M, Li Z, Wang J. Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China Chem Eng J 2019; 362: 176-82.
[http://dx.doi.org/10.1016/j.cej.2019.01.033]
[91]
Lapointe M, Farner JM, Hernandez LM, Tufenkji N. Understanding and improving microplastic removal during water treatment: Impact of coagulation and flocculation. Environ Sci Technol 2020; 54(14): 8719-27.
[http://dx.doi.org/10.1021/acs.est.0c00712] [PMID: 32543204]
[92]
Rajala K, Grönfors O, Hesampour M, Mikola A. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Res 2020; 183: 116045.
[http://dx.doi.org/10.1016/j.watres.2020.116045] [PMID: 32777592]
[93]
Ma B, Xue W, Ding Y, Hu C, Liu H, Qu J. Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. J Environ Sci (China) 2019; 78: 267-75.
[http://dx.doi.org/10.1016/j.jes.2018.10.006] [PMID: 30665645]
[94]
Peixoto J, Silva LP, Krüger RH. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater 2017; 324(Pt B): 634-44.
[http://dx.doi.org/10.1016/j.jhazmat.2016.11.037] [PMID: 27889181]
[95]
Muhonja CN, Makonde H, Magoma G, Imbuga M. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One 2018; 13(7): e0198446.
[http://dx.doi.org/10.1371/journal.pone.0198446] [PMID: 29979708]
[96]
Vimala PP, Mathew L. Biodegradation of polyethylene using bacillus subtilis. Procedia Technol 2016; 24: 232-9.
[http://dx.doi.org/10.1016/j.protcy.2016.05.031]
[97]
Skariyachan S, Patil AA, Shankar A, Manjunath M, Bachappanavar N, Kiran S. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym Degrad Stabil 2018; 149: 52-68.
[http://dx.doi.org/10.1016/j.polymdegradstab.2018.01.018]
[98]
Han YN, Wei M, Han F, et al. Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of arthrobacter sp. and streptomyces sp. Microorganisms 2020; 8(12): 1-15.
[http://dx.doi.org/10.3390/microorganisms8121979] [PMID: 33322790]
[99]
Abraham J, Ghosh E, Mukherjee P, Gajendiran A. Microbial degradation of low density polyethylene. Environ Prog & Sustain Energy 2017; 36(1): 147-54.
[http://dx.doi.org/10.1002/ep.12467]
[100]
Chaudhary AK, Vijayakumar RP. Effect of chemical treatment on biological degradation of high-density polyethylene (HDPE). Environ Dev Sustain 2020; 22(2): 1093-104.
[http://dx.doi.org/10.1007/s10668-018-0236-6]
[101]
Magni S, Binelli A, Pittura L, et al. The fate of microplastics in an italian wastewater treatment plant. Sci Total Environ 2019; 652: 602-10.
[http://dx.doi.org/10.1016/j.scitotenv.2018.10.269] [PMID: 30368189]
[102]
Cristaldi A, Fiore M, Zuccarello P, et al. Efficiency of wastewater treatment plants (Wwtps) for microplastic removal: A systematic review. Int J Environ Res Public Health 2020; 17(21): 1-23.
[http://dx.doi.org/10.3390/ijerph17218014] [PMID: 33143273]
[103]
Rai PK, Lee J, Brown RJC, Kim KH. Micro- and nano-plastic pollution: Behavior, microbial ecology, and remediation technologies. J Clean Prod 2021; 291: 125240.
[http://dx.doi.org/10.1016/j.jclepro.2020.125240]
[104]
Yuan J, Ma J, Sun Y, Zhou T, Zhao Y, Yu F. Microbial degradation and other environmental aspects of microplastics/plastics. Sci Total Environ 2020; 715: 136968.
[http://dx.doi.org/10.1016/j.scitotenv.2020.136968] [PMID: 32014782]
[105]
Shen M, Zeng G, Zhang Y, Wen X, Song B, Tang W. Can biotechnology strategies effectively manage environmental (micro)plastics? Sci Total Environ 2019; 697: 134200.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134200] [PMID: 31491631]
[106]
Babu V, Pasha SK, Gupta G, Majumdar CB, Choudhury B. Enzymatic surface modification of polyacrylonitrile and its copolymers: Effects of polymer surface area and protein adsorption. Fibers Polym 2014; 15(1): 24-9.
[http://dx.doi.org/10.1007/s12221-014-0024-3]
[107]
Tian L, Kolvenbach B, Corvini N, et al. Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment. N Biotechnol 2017; 38(Pt B): 101-5.
[http://dx.doi.org/10.1016/j.nbt.2016.07.008] [PMID: 27450755]
[108]
Awasthi S, Srivastava P, Singh P, Tiwary D, Mishra PK. Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech 2017; 7(5): 1-10.
[http://dx.doi.org/10.1007/s13205-017-0959-3]
[109]
Wei R, Oeser T, Schmidt J, et al. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnol Bioeng 2016; 113(8): 1658-65.
[http://dx.doi.org/10.1002/bit.25941] [PMID: 26804057]
[110]
Huang Q, Hiyama M, Kabe T, Kimura S, Iwata T. Enzymatic self-biodegradation of poly(l-lactic acid) films by embedded heat-treated and immobilized Proteinase K. Biomacromolecules 2020; 21(8): 3301-7.
[http://dx.doi.org/10.1021/acs.biomac.0c00759] [PMID: 32678613]
[111]
Liu SY, Leung MML, Fang JKH, Chua SL. Engineering a microbial ‘trap and release’ mechanism for microplastics removal. Chem Eng J 2021; 404: 127079.
[http://dx.doi.org/10.1016/j.cej.2020.127079]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy