Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Emerging Role of Quercetin in the Treatment of Chronic Pain

Author(s): Cheng Liu, Dai-Qiang Liu, Yu-Ke Tian, Wei Mei, Xue-Bi Tian, Ai-Jun Xu* and Ya-Qun Zhou*

Volume 20, Issue 12, 2022

Published on: 03 October, 2022

Page: [2346 - 2353] Pages: 8

DOI: 10.2174/1570159X20666220812122437

Price: $65

conference banner
Abstract

Despite much research efforts being devoted to designing alternative pharmacological interventions, chronic pain remains to be an unresolved clinical problem. Quercetin, a compound that belongs to the flavonoids family, is abundantly found in fruits and vegetables. Emerging evidence indicates that quercetin possesses anti-nociceptive effects in different rodent models of chronic pain, including inflammatory pain, neuropathic pain and cancer pain. In this review, we summarize the mechanisms underlying the analgesic effect of quercetin in preclinical studies. These studies showed that quercetin exerts potent analgesic effects against chronic pain via suppressing neuroinflammation and oxidative stress as well as modulation of synaptic plasticity, GABAergic system, and opioidergic system. Considering that the safety of quercetin is well established, it has great potential for clinical use in pain treatment.

Keywords: Chronic pain, quercetin, neuroinflammation, oxidative stress, synaptic plasticity, GABAergic system.

Graphical Abstract
[1]
Goldberg, D.S.; McGee, S.J. Pain as a global public health priority. BMC Public Health, 2011, 11(1), 770.
[http://dx.doi.org/10.1186/1471-2458-11-770] [PMID: 21978149]
[2]
Ge, M.M.; Zhou, Y.Q.; Tian, X.B.; Manyande, A.; Tian, Y.K.; Ye, D.W.; Yang, H. Src-family protein tyrosine kinases: A promising target for treating chronic pain. Biomed. Pharmacother., 2020, 110017.
[3]
Palop Larrea, V.; Martinez-Mir, I. Use of opioids for chronic non-cancer pain. Med. Clin. (Barc.), 2021, 156(2), 96-98.
[http://dx.doi.org/10.1016/j.medcli.2019.10.024] [PMID: 32183985]
[4]
Eccleston, C.; Cooper, T.E.; Fisher, E.; Anderson, B.; Wilkinson, N.M. Non-steroidal anti-inflammatory drugs (NSAIDs) for chronic non-cancer pain in children and adolescents. Cochrane Database Syst. Rev., 2017, 8, CD012537.
[PMID: 28770976]
[5]
Sideris-Lampretsas, G.; Malcangio, M. Microglial heterogeneity in chronic pain. Brain Behav. Immun., 2021, 96, 279-289.
[http://dx.doi.org/10.1016/j.bbi.2021.06.005] [PMID: 34139287]
[6]
Culp, C.; Kim, H.K.; Abdi, S. Ketamine use for cancer and chronic pain management. Front. Pharmacol., 2021, 11, 599721.
[http://dx.doi.org/10.3389/fphar.2020.599721] [PMID: 33708116]
[7]
Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Sun, J.; Zhou, X.R.; Xing, C.; Ye, D.W.; Tian, Y.K. The role of CXCR3 in neurological diseases. Curr. Neuropharmacol., 2019, 17(2), 142-150.
[http://dx.doi.org/10.2174/1570159X15666171109161140] [PMID: 29119926]
[8]
Zhao, L.; Wang, H.; Du, X. The therapeutic use of quercetin in ophthalmology: Recent applications. Biomed. Pharmacother., 2021, 137, 111371.
[9]
Soofiyani, S.R.; Hosseini, K.; Forouhandeh, H.; Ghasemnejad, T.; Tarhriz, V.; Asgharian, P.; Reiner, Ž.; Sharifi-Rad, J.; Cho, W.C. Quercetin as a novel therapeutic approach for lymphoma. Oxid. Med. Cell. Longev., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/3157867] [PMID: 34381559]
[10]
Grewal, A.K.; Singh, T.G.; Sharma, D.; Sharma, V.; Singh, M.; Rahman, M.H.; Najda, A.; Walasek-Janusz, M.; Kamel, M.; Albadrani, G.M.; Akhtar, M.F.; Saleem, A.; Abdel-Daim, M.M. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed. Pharmacother., 2021, 140, 111729.
[11]
Ghafouri-Fard, S.; Shabestari, F.A.; Vaezi, S.; Abak, A.; Shoorei, H.; Karimi, A.; Taheri, M.; Basiri, A. Emerging impact of quercetin in the treatment of prostate cancer., 2021, 138, 111548.
[12]
Li, Z.; Zhang, J.; Ren, X.; Liu, Q.; Yang, X. The mechanism of quercetin in regulating osteoclast activation and the PAR2/TRPV1 signaling pathway in the treatment of bone cancer pain. Int. J. Clin. Exp. Pathol., 2018, 11(11), 5149-5156.
[PMID: 31949595]
[13]
Çivi, S.; Emmez, G.; Dere, Ü.A.; Börcek, A.Ö.; Emmez, H. Effects of quercetin on chronic constriction nerve injury in an experimental rat model. Acta Neurochir. (Wien), 2016, 158(5), 959-965.
[http://dx.doi.org/10.1007/s00701-016-2761-0] [PMID: 26960544]
[14]
Britti, D.; Crupi, R.; Impellizzeri, D.; Gugliandolo, E.; Fusco, R.; Schievano, C.; Morittu, V.M.; Evangelista, M.; Di Paola, R.; Cuzzocrea, S. A novel composite formulation of palmitoylethanolamide and quercetin decreases inflammation and relieves pain in inflammatory and osteoarthritic pain models. BMC Vet. Res., 2017, 13(1), 229.
[http://dx.doi.org/10.1186/s12917-017-1151-z] [PMID: 28768536]
[15]
Anjaneyulu, M.; Chopra, K. Quercetin attenuates thermal hyperalgesia and cold allodynia in STZ-induced diabetic rats. Indian J. Exp. Biol., 2004, 42(8), 766-769.
[PMID: 15573524]
[16]
Gao, W.; Zan, Y.; Wang, Z.J.; Hu, X.; Huang, F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol. Sin., 2016, 37(9), 1166-1177.
[http://dx.doi.org/10.1038/aps.2016.58] [PMID: 27498772]
[17]
Choi, S.R.; Han, H.J.; Beitz, A.J.; Lee, J.H. Intrathecal interleukin-1beta decreases sigma-1 receptor expression in spinal astrocytes in a murine model of neuropathic pain. Biomed. Pharmacother., 2021, 144, 112272.
[18]
Ruiz-Cantero, M.C.; González-Cano, R.; Tejada, M.Á.; Santos-Caballero, M.; Perazzoli, G.; Nieto, F.R.; Cobos, E.J. Sigma-1 receptor: A drug target for the modulation of neuroimmune and neuroglial interactions during chronic pain. Pharmacol. Res., 2021, 163, 105339.
[http://dx.doi.org/10.1016/j.phrs.2020.105339] [PMID: 33276102]
[19]
Espinosa-Juárez, J.V.; Jaramillo-Morales, O.A.; Déciga-Campos, M.; Moreno-Rocha, L.A.; López-Muñoz, F.J. Sigma‐1 receptor antagonist (BD ‐1063) potentiates the antinociceptive effect of quercetin in neuropathic pain induced by chronic constriction injury. Drug Dev. Res., 2021, 82(2), 267-277.
[http://dx.doi.org/10.1002/ddr.21750] [PMID: 33051885]
[20]
Jiang, B.C.; Liu, T.; Gao, Y.J. Chemokines in chronic pain: Cellular and molecular mechanisms and therapeutic potential. Pharmacol. Ther., 2020, 212, 107581.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107581] [PMID: 32450191]
[21]
Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology, 2018, 129(2), 343-366.
[http://dx.doi.org/10.1097/ALN.0000000000002130] [PMID: 29462012]
[22]
Liu, D.Q.; Zhou, Y.Q.; Gao, F. Targeting cytokines for morphine tolerance: A narrative review. Curr. Neuropharmacol., 2019, 17(4), 366-376.
[http://dx.doi.org/10.2174/1570159X15666171128144441] [PMID: 29189168]
[23]
Zhou, Y.Q.; Liu, Z.; Liu, H.Q.; Liu, D.Q.; Chen, S.P.; Ye, D.W.; Tian, Y.K. Targeting glia for bone cancer pain. Expert Opin. Ther. Targets, 2016, 20(11), 1365-1374.
[http://dx.doi.org/10.1080/14728222.2016.1214716] [PMID: 27428617]
[24]
Ji, R.R.; Xu, Z.Z.; Gao, Y.J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov., 2014, 13(7), 533-548.
[http://dx.doi.org/10.1038/nrd4334] [PMID: 24948120]
[25]
Benameur, T.; Soleti, R.; Porro, C. The potential neuroprotective role of free and encapsulated quercetin mediated by miRNA against neurological diseases. Nutrients, 2021, 13(4), 1318.
[http://dx.doi.org/10.3390/nu13041318] [PMID: 33923599]
[26]
Olayinka, J.; Eduviere, A.; Adeoluwa, O.; Fafure, A.; Adebanjo, A.; Ozolua, R. Quercetin mitigates memory deficits in scopolamine mice model via protection against neuroinflammation and neurodegeneration. Life Sci., 2022, 292, 120326.
[http://dx.doi.org/10.1016/j.lfs.2022.120326] [PMID: 35031260]
[27]
Lee, B.; Yeom, M.; Shim, I.; Lee, H.; Hahm, D.H. Protective effects of quercetin on anxiety-like symptoms and neuroinflammation induced by lipopolysaccharide in rats. Evid. Based Complement. Alternat. Med., 2020, 2020, 4892415.
[28]
Muto, N.; Matsuoka, Y.; Arakawa, K.; Kurita, M.; Omiya, H.; Taniguchi, A.; Kaku, R.; Morimatsu, H. Quercetin attenuates neuropathic pain in rats with spared nerve injury. Acta Med. Okayama, 2018, 72(5), 457-465.
[PMID: 30369602]
[29]
Yang, R.; Li, L.; Yuan, H.; Liu, H.; Gong, Y.; Zou, L.; Li, S.; Wang, Z.; Shi, L.; Jia, T.; Zhao, S.; Wu, B.; Yi, Z.; Gao, Y.; Li, G.; Xu, H.; Liu, S.; Zhang, C.; Li, G.; Liang, S. Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X 4 receptor in dorsal root ganglia. J. Cell. Physiol., 2019, 234(3), 2756-2764.
[http://dx.doi.org/10.1002/jcp.27091] [PMID: 30145789]
[30]
Ye, G.; Lin, C.; Zhang, Y.; Ma, Z.; Chen, Y.; Kong, L.; Yuan, L.; Ma, T. Quercetin alleviates neuropathic pain in the rat CCI model by mediating AMPK/MAPK pathway. J. Pain Res., 2021, 14, 1289-1301.
[http://dx.doi.org/10.2147/JPR.S298727] [PMID: 34040433]
[31]
Zhou, Y.Q.; Liu, Z.; Liu, Z.H.; Chen, S.P.; Li, M.; Shahveranov, A.; Ye, D.W.; Tian, Y.K. Interleukin-6: An emerging regulator of pathological pain. J. Neuroinflammation, 2016, 13(1), 141.
[http://dx.doi.org/10.1186/s12974-016-0607-6] [PMID: 27267059]
[32]
Zhou, Y.Q.; Gao, H.Y.; Guan, X.H.; Yuan, X.; Fang, G.G.; Chen, Y.; Ye, D.W. Chemokines and their receptors: Potential therapeutic targets for bone cancer pain. Curr. Pharm. Des., 2015, 21(34), 5029-5033.
[http://dx.doi.org/10.2174/1381612821666150831141931] [PMID: 26320755]
[33]
Ge, M.M.; Chen, S.P.; Zhou, Y.Q.; Li, Z.; Tian, X.B.; Gao, F.; Manyande, A.; Tian, Y.K.; Yang, H. The therapeutic potential of GABA in neuron-glia interactions of cancer-induced bone pain. Eur. J. Pharmacol., 2019, 858, 172475.
[http://dx.doi.org/10.1016/j.ejphar.2019.172475] [PMID: 31228456]
[34]
Valério, D.A.; Georgetti, S.R.; Magro, D.A.; Casagrande, R.; Cunha, T.M.; Vicentini, F.T.M.C.; Vieira, S.M.; Fonseca, M.J.V.; Ferreira, S.H.; Cunha, F.Q.; Verri, W.A. Jr Quercetin reduces inflammatory pain: Inhibition of oxidative stress and cytokine production. J. Nat. Prod., 2009, 72(11), 1975-1979.
[http://dx.doi.org/10.1021/np900259y] [PMID: 19899776]
[35]
Calixto-Campos, C.; Corrêa, M.P.; Carvalho, T.T.; Zarpelon, A.C.; Hohmann, M.S.N.; Rossaneis, A.C.; Coelho-Silva, L.; Pavanelli, W.R.; Pinge-Filho, P.; Crespigio, J.; Bernardy, C.C.F.; Casagrande, R.; Verri, W.A. Jr Quercetin reduces Ehrlich tumor-induced cancer pain in mice. Anal. Cell. Pathol. (Amst.), 2015, 2015, 1-18.
[http://dx.doi.org/10.1155/2015/285708] [PMID: 26351625]
[36]
Ji, C.; Xu, Y.; Han, F.; Sun, D.; Zhang, H.; Li, X.; Yao, X.; Wang, H. Quercetin alleviates thermal and cold hyperalgesia in a rat neuropathic pain model by inhibiting Toll-like receptor signaling. 2017, 94, 652-658.
[37]
D’Amico, R.; Impellizzeri, D.; Cuzzocrea, S.; Di Paola, R. ALIAmides update: Palmitoylethanolamide and its formulations on management of peripheral neuropathic pain. Int. J. Mol. Sci., 2020, 21(15), 5330.
[http://dx.doi.org/10.3390/ijms21155330] [PMID: 32727084]
[38]
Mabou Tagne, A.; Fotio, Y.; Lin, L.; Squire, E.; Ahmed, F.; Rashid, T.I.; Karimian Azari, E.; Piomelli, D. Palmitoylethanolamide and hemp oil extract exert synergistic anti-nociceptive effects in mouse models of acute and chronic pain. Pharmacol. Res., 2021, 167, 105545.
[http://dx.doi.org/10.1016/j.phrs.2021.105545] [PMID: 33722712]
[39]
Ruiz-Miyazawa, K.W.; Staurengo-Ferrari, L.; Mizokami, S.S.; Domiciano, T.P.; Vicentini, F.T.M.C.; Camilios-Neto, D.; Pavanelli, W.R.; Pinge-Filho, P.; Amaral, F.A.; Teixeira, M.M.; Casagrande, R.; Verri, W.A., Jr Quercetin inhibits gout arthritis in mice: Induction of an opioid-dependent regulation of inflammasome. Inflammopharmacology, 2017, 25(5), 555-570.
[http://dx.doi.org/10.1007/s10787-017-0356-x] [PMID: 28508104]
[40]
Wang, H.; Huang, M.; Wang, W.; Zhang, Y.; Ma, X.; Luo, L.; Xu, X.; Xu, L.; Shi, H.; Xu, Y.; Wang, A.; Xu, T. Microglial TLR4-induced TAK1 phosphorylation and NLRP3 activation mediates neuroinflammation and contributes to chronic morphine-induced antinociceptive tolerance. Pharmacol. Res., 2021, 165, 105482.
[http://dx.doi.org/10.1016/j.phrs.2021.105482] [PMID: 33549727]
[41]
Chen, R.; Yin, C.; Fang, J.; Liu, B. The NLRP3 inflammasome: An emerging therapeutic target for chronic pain. J. Neuroinflammation, 2021, 18(1), 84.
[http://dx.doi.org/10.1186/s12974-021-02131-0] [PMID: 33785039]
[42]
Chen, S.P.; Zhou, Y.Q.; Wang, X.M.; Sun, J.; Cao, F. HaiSam, S.; Ye, D.W.; Tian, Y.K. Pharmacological inhibition of the NLRP3 in fl ammasome as a potential target for cancer-induced bone pain. Pharmacol. Res., 2019, 147, 104339.
[http://dx.doi.org/10.1016/j.phrs.2019.104339] [PMID: 31276771]
[43]
Borghi, S.M.; Mizokami, S.S.; Pinho-Ribeiro, F.A.; Fattori, V.; Crespigio, J.; Clemente-Napimoga, J.T.; Napimoga, M.H.; Pitol, D.L.; Issa, J.P.M.; Fukada, S.Y.; Casagrande, R.; Verri, W.A., Jr The flavonoid quercetin inhibits titanium dioxide (TiO 2)-induced chronic arthritis in mice. J. Nutr. Biochem., 2018, 53, 81-95.
[http://dx.doi.org/10.1016/j.jnutbio.2017.10.010] [PMID: 29197723]
[44]
Han, X.; Xu, T.; Fang, Q.; Zhang, H.; Yue, L.; Hu, G.; Sun, L. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol., 2021, 44, 102010.
[http://dx.doi.org/10.1016/j.redox.2021.102010] [PMID: 34082381]
[45]
Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[46]
Raygude, K.S.; Kandhare, A.D.; Ghosh, P.; Ghule, A.E.; Bodhankar, S.L. Evaluation of ameliorative effect of quercetin in experimental model of alcoholic neuropathy in rats. Inflammopharmacology, 2012, 20(6), 331-341.
[http://dx.doi.org/10.1007/s10787-012-0122-z] [PMID: 22349996]
[47]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[48]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[49]
Trovato Salinaro, A.; Pennisi, M.; Di Paola, R.; Scuto, M.; Crupi, R.; Cambria, M.T.; Ontario, M.L.; Tomasello, M.; Uva, M.; Maiolino, L.; Calabrese, E.J.; Cuzzocrea, S.; Calabrese, V. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: Modulation by nutritional mushrooms. Immun. Ageing, 2018, 8.
[50]
Mancuso, C.; Pani, G.; Calabrese, V. Bilirubin: An endogenous scavenger of nitric oxide and reactive nitrogen species, Redox report : Communications in free radical research., 2006, 11(5), 207-213.
[51]
Miquel, S.; Champ, C.; Day, J.; Aarts, E.; Bahr, B.A.; Bakker, M.; Bánáti, D.; Calabrese, V.; Cederholm, T.; Cryan, J.; Dye, L.; Farrimond, J.A.; Korosi, A.; Layé, S.; Maudsley, S.; Milenkovic, D.; Mohajeri, M.H.; Sijben, J.; Solomon, A.; Spencer, J.P.E.; Thuret, S.; Vanden Berghe, W.; Vauzour, D.; Vellas, B.; Wesnes, K.; Willatts, P.; Wittenberg, R.; Geurts, L. Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Res. Rev., 2018, 42, 40-55.
[http://dx.doi.org/10.1016/j.arr.2017.12.004] [PMID: 29248758]
[52]
Azevedo, M.I.; Pereira, A.F.; Nogueira, R.B.; Rolim, F.E.; Brito, G.A.C.; Wong, D.V.T.; Lima-Júnior, R.C.P.; de Albuquerque Ribeiro, R.; Vale, M.L. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol. Pain, 2013, 9, 1744-8069-9-53.
[http://dx.doi.org/10.1186/1744-8069-9-53] [PMID: 24152430]
[53]
Sun, J.; Li, J.Y.; Zhang, L.Q.; Li, D.Y.; Wu, J.Y.; Gao, S.J.; Liu, D.Q.; Zhou, Y.Q.; Mei, W. Nrf2 activation attenuates chronic constriction injury-induced neuropathic pain via induction of PGC-1α-mediated mitochondrial biogenesis in the spinal cord. Oxid. Med. Cell. Longev., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/9577874] [PMID: 34721761]
[54]
Zhou, Y.; Liu, D.; Chen, S.; Chen, N.; Sun, J.; Wang, X.; Cao, F.; Tian, Y.; Ye, D. Nrf2 activation ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain. Acta Pharmacol. Sin., 2020, 41(8), 1041-1048.
[http://dx.doi.org/10.1038/s41401-020-0394-6] [PMID: 32203087]
[55]
Zhou, Y.Q.; Mei, W.; Tian, X.B.; Tian, Y.K.; Liu, D.Q.; Ye, D.W. The therapeutic potential of Nrf2 inducers in chronic pain: Evidence from preclinical studies. Pharmacol. Ther., 2021, 225, 107846.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107846] [PMID: 33819559]
[56]
Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Chen, N.; Sun, J.; Wang, X.M.; Li, D.Y.; Tian, Y.K.; Ye, D.W. PPARgamma activation mitigates mechanical allodynia in paclitaxel-induced neuropathic pain via induction of Nrf2/HO-1 signaling pathway. 2020, 129, 110356.
[57]
Bliss, T.V.P.; Collingridge, G.L.; Kaang, B.K.; Zhuo, M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat. Rev. Neurosci., 2016, 17(8), 485-496.
[http://dx.doi.org/10.1038/nrn.2016.68] [PMID: 27307118]
[58]
Luo, C.; Kuner, T.; Kuner, R. Synaptic plasticity in pathological pain. Trends Neurosci., 2014, 37(6), 343-355.
[http://dx.doi.org/10.1016/j.tins.2014.04.002] [PMID: 24833289]
[59]
Wang, R.; Qiu, Z.; Wang, G.; Hu, Q.; Shi, N.; Zhang, Z.; Wu, Y.; Zhou, C. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice. Eur. J. Pharmacol., 2020, 882, 173266.
[http://dx.doi.org/10.1016/j.ejphar.2020.173266] [PMID: 32553736]
[60]
Zeilhofer, H.U. Loss of glycinergic and GABAergic inhibition in chronic pain—contributions of inflammation and microglia. Int. Immunopharmacol., 2008, 8(2), 182-187.
[http://dx.doi.org/10.1016/j.intimp.2007.07.009] [PMID: 18182224]
[61]
Fu, Q.; Shi, D.; Zhou, Y.; Zheng, H.; Xiang, H.; Tian, X.; Gao, F.; Manyande, A.; Cao, F.; Tian, Y.; Ye, D. MHC-I promotes apoptosis of GABAergic interneurons in the spinal dorsal horn and contributes to cancer induced bone pain. Exp. Neurol., 2016, 286, 12-20.
[http://dx.doi.org/10.1016/j.expneurol.2016.09.002] [PMID: 27619625]
[62]
Zhou, Y.Q.; Chen, S.P.; Liu, D.Q.; Manyande, A.; Zhang, W.; Yang, S.B.; Xiong, B.R.; Fu, Q.C.; Song, Z.; Rittner, H.; Ye, D.W.; Tian, Y.K. The role of spinal GABAB receptors in cancer-induced bone pain in rats. J. Pain, 2017, 18(8), 933-946.
[http://dx.doi.org/10.1016/j.jpain.2017.02.438] [PMID: 28323246]
[63]
Filho, A.W.; Filho, V.C.; Olinger, L.; de Souza, M.M. Quercetin: Further investigation of its antinociceptive properties and mechanisms of action. Arch. Pharm. Res., 2008, 31(6), 713-721.
[http://dx.doi.org/10.1007/s12272-001-1217-2] [PMID: 18563352]
[64]
Hossain, R.; Al-Khafaji, K.; Khan, R.A.; Sarkar, C.; Islam, M.S.; Dey, D.; Jain, D.; Faria, F.; Akbor, R.; Atolani, O.; Oliveira, S.M.R.; Siyadatpanah, A.; Pereira, M.L.; Islam, M.T. Quercetin and/or ascorbic acid modulatory effect on phenobarbital-induced sleeping mice possibly through GABAA and GABAB receptor interaction pathway. Pharmaceuticals (Basel), 2021, 14(8), 721.
[http://dx.doi.org/10.3390/ph14080721] [PMID: 34451819]
[65]
Bruehl, S.; Chung, O.Y. Parental history of chronic pain may be associated with impairments in endogenous opioid analgesic systems. Pain, 2006, 124(3), 287-294.
[http://dx.doi.org/10.1016/j.pain.2006.04.018] [PMID: 16725261]
[66]
Malafoglia, V.; Ilari, S.; Vitiello, L.; Tenti, M.; Balzani, E.; Muscoli, C.; Raffaeli, W.; Bonci, A. The interplay between chronic pain, opioids, and the immune system. Neuroscientist, 2021.
[http://dx.doi.org/10.1177/10738584211030493] [PMID: 34269117]
[67]
Anjaneyulu, M.; Chopra, K. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(6), 1001-1005.
[http://dx.doi.org/10.1016/S0278-5846(03)00160-X] [PMID: 14499317]
[68]
Shimazu, R.; Anada, M.; Miyaguchi, A.; Nomi, Y.; Matsumoto, H. Evaluation of blood–brain barrier permeability of polyphenols, anthocyanins, and their metabolites. J. Agric. Food Chem., 2021, 69(39), 11676-11686.
[http://dx.doi.org/10.1021/acs.jafc.1c02898] [PMID: 34555897]
[69]
Sivanesan, E.; Maher, D.P.; Raja, S.N.; Linderoth, B.; Guan, Y. Supraspinal mechanisms of spinal cord stimulation for modulation of pain. Anesthesiology, 2019, 130(4), 651-665.
[http://dx.doi.org/10.1097/ALN.0000000000002353] [PMID: 30556812]
[70]
Bannister, K.; Dickenson, A.H. Central nervous system targets: Supraspinal mechanisms of analgesia. Neurotherapeutics, 2020, 17(3), 839-845.
[http://dx.doi.org/10.1007/s13311-020-00887-6] [PMID: 32700132]
[71]
Mogil, J.S. Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat. Rev. Neurosci., 2020, 21(7), 353-365.
[http://dx.doi.org/10.1038/s41583-020-0310-6] [PMID: 32440016]
[72]
Halievski, K.; Ghazisaeidi, S.; Salter, M.W. Sex-dependent mechanisms of chronic pain: A focus on microglia and P2X4R. J. Pharmacol. Exp. Ther., 2020, 375(1), 202-209.
[http://dx.doi.org/10.1124/jpet.120.265017] [PMID: 32114512]
[73]
He, J.T.; Li, X.Y.; Zhao, X.; Liu, X. Hyperpolarization-activated and cyclic nucleotide-gated channel proteins as emerging new targets in neuropathic pain. Rev. Neurosci., 2019, 30(6), 639-649.
[http://dx.doi.org/10.1515/revneuro-2018-0094] [PMID: 30768426]
[74]
Liu, F.; Wuni, G.Y.; Bahuva, R.; Shafiq, M.A.; Gattas, B.S.; Ibetoh, C.N.; Stratulat, E.; Gordon, D.K. Pacemaking activity in the peripheral nervous system: Physiology and roles of hyperpolarization activated and cyclic nucleotide-gated channels in neuropathic pain. Cureus, 2020, 12(10), e11111.
[http://dx.doi.org/10.7759/cureus.11111] [PMID: 33240707]
[75]
Liang, Y.; Xu, Z.; Wu, X.; Pang, J.; Zhou, P.; Cao, Y. Inhibition of hyperpolarization-activated cyclic nucleotide-gated channels with natural flavonoid quercetin. Biochem. Biophys. Res. Commun., 2020, 533(4), 952-957.
[http://dx.doi.org/10.1016/j.bbrc.2020.09.102] [PMID: 33008592]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy