Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Ayurvedic Herbal Therapies: A Review of Treatment and Management of Dementia

Author(s): Vinod Srivastava, Deepali Mathur, Soumyashree Rout, Bikash Kumar Mishra, Viraaj Pannu and Akshay Anand*

Volume 19, Issue 8, 2022

Published on: 07 October, 2022

Page: [568 - 584] Pages: 17

DOI: 10.2174/1567205019666220805100008

Price: $65

conference banner
Abstract

Dementia has been characterized by atypical neurological syndromes and several cognitive deficits, such as extended memory loss, strange behavior, unusual thinking, impaired judgment, impotence, and difficulty with daily living activities. Dementia is not a disease, but it is caused by several neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Lewy’s bodies. Several drugs and remedies are indicated for alleviating unusual cognitive decline, but no effective pharmacological treatment regimens are available without side effects. Herbal drugs or traditional medicines like Ayurveda have been known for facilitating and corroborating the balance between mind, brain, body, and environment. Ayurvedic therapy comprises 600 herbal formulas, 250 single plant remedies, and natural and holistic health-giving treatments that relieve dementia in patients and increase vitality. Ayurvedic Rasayana herbs [rejuvenating elements] strengthen the brain cells, enhance memory, and decrease stress. The current medicine scenario in the treatment of dementia has prompted the shift in exploring the efficacy of ayurvedic medicine, its safety, and its efficiency. This review presents the literature on several herbal treatments for improving dementia symptomatology and patients’ quality of life.

Keywords: Ayurveda, dementia, ashwagandha, turmeric, brahmi, shankhapushpi.

[1]
Dementia. World Health Organization. 2017. Available from: http://www.who.int/mediacentre/factsheets/fs362/en/ (Accessed on: 17 April, 2018).
[2]
Qiu C, Fratiglioni L. Aging without dementia is achievable: Current evidence from epidemiological research. J Alzheimers Dis 2018; 62(3): 933-42.
[http://dx.doi.org/10.3233/JAD-171037] [PMID: 29562544]
[3]
Winblad B, Amouyel P, Andrieu S, et al. Defeating Alzheimer’s disease and other dementias: A priority for European science and society. Lancet Neurol 2016; 15(5): 455-532.
[http://dx.doi.org/10.1016/S1474-4422(16)00062-4] [PMID: 26987701]
[4]
Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer’s disease: Age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70(11): 960-9.
[http://dx.doi.org/10.1097/NEN.0b013e318232a379] [PMID: 22002422]
[5]
Dementia: Number of people affected to triple in next 30 years. World Health Organization 2017. Available from: http://www.who.int/mediacentre/news/releases/2017/dementia-triple-affected/en/ (Accessed on: August 11, 2022).
[6]
Mendez MF. Early-onset Alzheimer’s disease and its variants. Continuum (Minneapolis Minn) 2019; 25(1): 34-51.
[http://dx.doi.org/10.1212/CON.0000000000000687] [PMID: 30707186]
[7]
Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement 2013; 9(1): 63-75.e2.
[http://dx.doi.org/10.1016/j.jalz.2012.11.007] [PMID: 23305823]
[8]
Rashrash M, Schommer JC, Brown LM. Prevalence and predictors of herbal medicine use among adults in the United States. J Patient Exp 2017; 4(3): 108-13.
[http://dx.doi.org/10.1177/2374373517706612] [PMID: 28959715]
[9]
Ferran J, Wilson K, Doran M, et al. The early-onset dementias: A study of clinical characteristics and service use. Int J Geriatr Psychiatry 1996; 11(10): 863-9.
[http://dx.doi.org/10.1002/(SICI)1099-1166(199610)11:10<863::AID-GPS394>3.0.CO;2-7]
[10]
Vieira RT, Caixeta L, Machado S, et al. Epidemiology of early-onset dementia: A review of the literature. Clin Pract Epidemiol Ment Health 2013; 9(1): 88-95.
[http://dx.doi.org/10.2174/1745017901309010088] [PMID: 23878613]
[11]
Read S, Wittenberg R, Karagiannidou M, et al. The effect of midlife risk factors on dementia in older age; London: Public Health England 2017. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/633096/2017
[12]
Sundström A, Adolfsson AN, Nordin M, Adolfsson R. Loneliness increases the risk of all cause dementia and Alzheimer’s disease. J Gerontol B Psychol Sci Soc Sci 2020; 75(5): 919-26.
[http://dx.doi.org/10.1093/geronb/gbz139] [PMID: 31676909]
[13]
Sofi F, Valecchi D, Bacci D, et al. Physical activity and risk of cognitive decline: A meta-analysis of prospective studies. J Intern Med 2011; 269(1): 107-17.
[http://dx.doi.org/10.1111/j.1365-2796.2010.02281.x] [PMID: 20831630]
[14]
Guure CB, Ibrahim NA, Adam MB, Said SM. Impact of physical activity on cognitive decline, dementia and its subtypes: Meta-analysis of prospective study. BioMed Res Int 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/9016924] [PMID: 28271072]
[15]
Prince M, Guerchet M, Prina M. The epidemiology and impact of dementia: Current state and future trends. In: WHO/MSD/MER/153. Geneva: World Health Organization 2015. Available from: http://www.who.int/mental_health/neurology/dementia/dementia_thematicbrief_epidemiology.pdf [Accessed on: 17 April, 2018].
[16]
Mental health. World Health Organization 2018. Available from: http://www.who.int/mental_health/neurology/dementia/en/ [Accessed on: 17 April, 2018].
[17]
Saxena S, Dua T. Towards a dementia plan: A WHO guide. World Health Organization 2018. Available from: http://www.who.int/mental_health/neurology/dementia/policy_guidance/en (Accessed August 11, 2022).
[18]
Vestergaard M, Hamada T, Morita M, Takagi M. Cholesterol, lipids, amyloid Beta, and Alzheimer’s. Curr Alzheimer Res 2010; 7(3): 262-70.
[http://dx.doi.org/10.2174/156720510791050821] [PMID: 19715550]
[19]
Lanoiselée HM, Nicolas G, Wallon D, et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer’s disease: A genetic screening study of familial and sporadic cases. PLoS Med 2017; 14(3): e1002270.
[http://dx.doi.org/10.1371/journal.pmed.1002270] [PMID: 28350801]
[20]
Raux G, Guyant-Maréchal L, Martin C, et al. Molecular diagnosis of autosomal dominant early onset Alzheimer’s disease: An update. J Med Genet 2005; 42(10): 793-5.
[http://dx.doi.org/10.1136/jmg.2005.033456] [PMID: 16033913]
[21]
Naj AC, Jun G, Beecham GW, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 2011; 43(5): 436-41.
[http://dx.doi.org/10.1038/ng.801] [PMID: 21460841]
[22]
Mullane K, Williams M. Alzheimer’s disease (AD) therapeutics – 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem Pharmacol 2018; 158: 359-75.
[http://dx.doi.org/10.1016/j.bcp.2018.09.026] [PMID: 30273553]
[23]
Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007; 69(24): 2197-204.
[http://dx.doi.org/10.1212/01.wnl.0000271090.28148.24] [PMID: 17568013]
[24]
de la Torre JC. The vascular hypothesis of Alzheimer’s disease: Bench to bedside and beyond. Neurodegener Dis 2010; 7(1-3): 116-21.
[http://dx.doi.org/10.1159/000285520] [PMID: 20173340]
[25]
Moon JH, Lim S, Han JW, et al. Carotid intima-media thickness is associated with the progression of cognitive impairment in older adults. Stroke 2015; 46(4): 1024-30.
[http://dx.doi.org/10.1161/STROKEAHA.114.008170] [PMID: 25737314]
[26]
Tiwari R, Tripathi J. A critical appraisal of dementia with special reference to Smritibuddhihrass. Ayu 2013; 34(3): 235-42.
[http://dx.doi.org/10.4103/0974-8520.123102] [PMID: 24501515]
[27]
Hirono H, Watanabe K, Hasegawa K. Anti-dementia drugs and hepatotoxicity-Report of two cases. Int J Gerontol 2018; 12(3): 261-3.
[http://dx.doi.org/10.1016/j.ijge.2018.02.008]
[28]
Diwan S, Hougham GW, Sachs GA. Strain experienced by caregivers of dementia patients receiving palliative care: Findings from the Palliative Excellence in Alzheimer Care Efforts (PEACE) Program. J Palliat Med 2004; 7(6): 797-807.
[http://dx.doi.org/10.1089/jpm.2004.7.797] [PMID: 15684847]
[29]
Quality indicators for dementia. Available from: http://www.oecd.org/els/health-systems/Item-4c-HCQI-dementia-OECD.pdf [Accessed on: 17 April, 2018].
[30]
Sharma AK, Kumar R, Mishra A, Gupta R. Problems associated with clinical trials of Ayurvedic medicines. Rev Bras Farmacogn 2010; 20(2): 276-81.
[http://dx.doi.org/10.1590/S0102-695X2010000200023]
[31]
Linde K, Jonas WB, Melchart D, Willich S. The methodological quality of randomized controlled trials of homeopathy, herbal medicines and acupuncture. Int J Epidemiol 2001; 30(3): 526-31.
[http://dx.doi.org/10.1093/ije/30.3.526] [PMID: 11416076]
[32]
Schwartz S. Psychoactive herbs in veterinary behavior medicine. John Wiley & Sons 2008.
[33]
Frawley D, Ranade S, Lele A. Ayurveda and marma therapy: Energy points in yogic healing. USA: Lotus Press 2003.
[34]
Lad VD, Bams M, Anisha Durve MS. Marma points of Ayurveda. Albuquerque, NM: Ayurvedic Press 2008.
[35]
Choudhary B. Approach to neurological disorder in Ayurveda. Indian J Med Res Pharm Sci 2015; 2(12): 2349-5340.
[36]
Gokhale BV. Ayurvedīya Padārthavijñāna The Philosophy of Āyurveda based on the Philosophies of Vaiáeṣika. Nyāya and Sāṃkhya 1953; Vol. 34
[37]
Singh RH. The basic tenets of Ayurvedic dietetics and nutrition Ayurvedic Science of Food and Nutrition. Springer: New York, NY 2014; pp. 15-23.
[http://dx.doi.org/10.1007/978-1-4614-9628-1_2]
[38]
Jayasundar R. Ayurveda: A distinctive approach to health and disease. Curr Sci 2010; 8(7): 908-14.
[39]
Dimock EC. Hinduism Encyclopedia Britannica Available from: https://www.britannica.com/topic/Hinduism (Accessed on: January 26, 2022).
[40]
Chaudhuri K, Chandola HM, Ravishankar B, Samarakoon SMS, Kumar R. Evaluation of diet and life style in etiopathogenesis of senile dementia: A survey study. Ayu 2011; 32(2): 171-6.
[http://dx.doi.org/10.4103/0974-8520.92554] [PMID: 22408297]
[41]
Govindaraj P, Nizamuddin S, Sharath A, et al. Genome-wide analysis correlates Ayurveda Prakriti. Sci Rep 2015; 5(1): 15786.
[http://dx.doi.org/10.1038/srep15786] [PMID: 26511157]
[42]
Dubey T, Chinnathambi S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease. Arch Biochem Biophys 2019; 676: 108153.
[http://dx.doi.org/10.1016/j.abb.2019.108153] [PMID: 31622587]
[43]
Gupta K, Mamidi P. Schizophrenia or dementia or mood disorder with psychosis? Int J Yoga-Philos Psychol Parapsychol 2020; 8(2): 75-86.
[44]
Camacho M, Macleod AD, Maple-Grødem J, et al. Early constipation predicts faster dementia onset in Parkinson’s disease. NPJ Parkinsons Dis 2021; 7(1): 45.
[http://dx.doi.org/10.1038/s41531-021-00191-w] [PMID: 34039994]
[45]
Sharma PV. Caraka Samhita, Chaukhambha Orientalia (Reprint Edition.). 2011; 1-4.
[46]
Murthy KRS. Susruta Samhita; Chaukhambha Orientalia (Reprint Edition.). 2010; 1.
[47]
Valiathan MS. The legacy of Charaka. In: Orient. Longman 2003.
[48]
Wang J, Zhang H, Tang X. Cholinergic deficiency involved in vascular dementia: Possible mechanism and strategy of treatment. Acta Pharmacol Sin 2009; 30(7): 879-88.
[http://dx.doi.org/10.1038/aps.2009.82] [PMID: 19574993]
[49]
Brahma SK, Debnath PK. Therapeutic importance of Rasayana drugs with special reference to their multi-dimensional actions. Aryavaidyan 2003; 16: 160-3.
[50]
Rege NN, Thatte UM, Dahanukar SA. Adaptogenic properties of six rasayana herbs used in Ayurvedic medicine. Phytother Res 1999; 13(4): 275-91.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199906)13:4<275::AID-PTR510>3.0.CO;2-S] [PMID: 10404532]
[51]
Schlebusch L, Bosch BA, Polglase G, Kleinschmidt I, Pillay BJ, Cassimjee MH. A double-blind, placebo-controlled, double-centre study of the effects of an oral multivitamin-mineral combination on stress. S Afr Med J 2000; 90(12): 1216-23.
[PMID: 11234653]
[52]
Murphy BM, Frigo LC. Development, implementation, and results of a successful multidisciplinary adverse drug reaction reporting program in a university teaching hospital. Hosp Pharm 1993; 28(12): 1199-1204, 1240.
[PMID: 10130617]
[53]
Dwevedi C, Chandrakar K, Singh V, Tiwari SP. Indian herbal medicines used for treatment of dementia: An overview. Indian J Pharmacol 2014; 1(9): 553-71.
[54]
Mercola J. Ashwagandha: Ancient herb proven to be a potential cure for Alzheimer’s. 2012. Available from: http://articles.mercola.com/sites/articles/archive/2012/04/07/ashwag (Accessed on: August 11, 2022).
[55]
Rao RV, Descamps O, John V, Bredesen DE. Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimers Res Ther 2012; 4(3): 22.
[http://dx.doi.org/10.1186/alzrt125] [PMID: 22747839]
[56]
Russo A, Izzo AA, Cardile V, Borrelli F, Vanella A. Indian medicinal plants as antiradicals and DNA cleavage protectors. Phytomedicine 2001; 8(2): 125-32.
[http://dx.doi.org/10.1078/0944-7113-00021] [PMID: 11315755]
[57]
Farooqui AA, Farooqui T, Madan A, Ong JHJ, Ong WY. Ayurvedic medicine for the treatment of dementia: Mechanistic aspects. Evid Based Complement Alternat Med 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/2481076] [PMID: 29861767]
[58]
Narayan M, Seeley KW, Jinwal UK. Identification and quantitative analysis of cellular proteins affected by treatment with withaferin a using a SILAC-based proteomics approach. J Ethnopharmacol 2015; 175: 86-92.
[http://dx.doi.org/10.1016/j.jep.2015.09.024] [PMID: 26392330]
[59]
Sun GY, Li R, Cui J, et al. Withania somnifera and its withanolides attenuate oxidative and inflammatory responses and up-regulate antioxidant responses in BV-2 microglial cells. Neuromolecular Med 2016; 18(3): 241-52.
[http://dx.doi.org/10.1007/s12017-016-8411-0] [PMID: 27209361]
[60]
Patnaik N. Role of medicinal plants [Brahmi and Ashwagandha] in the treatment of Alzheimer’s disease. Int J Life Sci Scienti Res 2015; 2(1): 15-7.
[61]
Choudhary D, Bhattacharyya S, Bose S. Efficacy and safety of Ashwagandha (Withania somneria (L.) Dunal) root extract in improving memory and cognitive functions. J Diet Suppl 2017; 14(6): 599-612.
[http://dx.doi.org/10.1080/19390211.2017.1284970] [PMID: 28471731]
[62]
Tohda C, Kuboyama T, Komatsu K. Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells. Neuroreport 2000; 11(9): 1981-5.
[http://dx.doi.org/10.1097/00001756-200006260-00035] [PMID: 10884056]
[63]
Kuboyama T, Tohda C, Komatsu K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 2005; 144(7): 961-71.
[http://dx.doi.org/10.1038/sj.bjp.0706122] [PMID: 15711595]
[64]
Elhadidy ME, Sawie HG, Meguid NA. Protective effect of Ashwagandha against neurotoxicity induced by aluminium chloride in rats. Asian Pac J Trop Biomed 2018; 8(1): 59-66.
[http://dx.doi.org/10.4103/2221-1691.221139]
[65]
Paul S, Chakraborty S, Anand U, et al. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed Pharmacother 2021; 143: 112175.
[http://dx.doi.org/10.1016/j.biopha.2021.112175] [PMID: 34649336]
[66]
Singh N, Bhalla M, De Jager P, Gilca M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 2011; 8(5S) (Suppl.): 208-13.
[http://dx.doi.org/10.4314/ajtcam.v8i5S.9] [PMID: 22754076]
[67]
Sharifi-Rad J, Quispe C, Ayatollahi SA, et al. Chemical composition, biological activity and health-promoting effects of Withania somnifera for pharma-food industry applications. J Food Qual 2021; 2021: 1-14.
[http://dx.doi.org/10.1155/2021/8985179]
[68]
Toden S, Theiss AL, Wang X, Goel A. Essential turmeric oils enhance anti-inflammatory efficacy of curcumin in dextran sulfate sodium-induced colitis. Sci Rep 2017; 7(1): 814.
[http://dx.doi.org/10.1038/s41598-017-00812-6] [PMID: 28400554]
[69]
Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 2005; 280(7): 5892-901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[70]
Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 2013; 85(6): 705-17.
[http://dx.doi.org/10.1016/j.bcp.2012.11.016] [PMID: 23219527]
[71]
Gupta SC, Prasad S, Kim JH, et al. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 2011; 28(12): 1937-55.
[http://dx.doi.org/10.1039/c1np00051a] [PMID: 21979811]
[72]
Wang Y, Yin H, Wang L, et al. Curcumin as a potential treatment for Alzheimer’s disease: A study of the effects of curcumin on hippocampal expression of glial fibrillary acidic protein. Am J Chin Med 2013; 41(1): 59-70.
[http://dx.doi.org/10.1142/S0192415X13500055] [PMID: 23336507]
[73]
Begum AN, Jones MR, Lim GP, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 2008; 326(1): 196-208.
[http://dx.doi.org/10.1124/jpet.108.137455] [PMID: 18417733]
[74]
Cole GM, Lim GP, Yang F, et al. Prevention of Alzheimer’s disease: Omega-3 fatty acid and phenolic antioxidant interventions. Neurobiol Aging 2005; 26 (Suppl. 1): 133-6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.005]
[75]
Brondino N, Re S, Boldrini A, et al. Curcumin as a therapeutic agent in dementia: A mini systematic review of human studies. Sci World J 2014; 2014: 1-6.
[http://dx.doi.org/10.1155/2014/174282] [PMID: 24578620]
[76]
Park SY, Kim HS, Cho EK, et al. Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem Toxicol 2008; 46(8): 2881-7.
[http://dx.doi.org/10.1016/j.fct.2008.05.030] [PMID: 18573304]
[77]
Zhang L, Fiala M, Cashman J, et al. Curcuminoids enhance amyloid-β uptake by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 2006; 10(1): 1-7.
[http://dx.doi.org/10.3233/JAD-2006-10101] [PMID: 16988474]
[78]
Kim H, Park BS, Lee KG, et al. Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid. J Agric Food Chem 2005; 53(22): 8537-41.
[http://dx.doi.org/10.1021/jf051985c] [PMID: 16248550]
[79]
Chainani-Wu N. Safety and anti-inflammatory activity of Curcumin: A component of tumeric. [Curcuma longa]. J Altern Complement Med 2003; 9(1): 161-8.
[80]
Voulgaropoulou SD, van Amelsvoort TAMJ, Prickaerts J, Vingerhoets C. The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res 2019; 1725: 146476.
[http://dx.doi.org/10.1016/j.brainres.2019.146476] [PMID: 31560864]
[81]
Nasri H, Sahinfard N, Rafieian M, et al. Turmeric: A spice with multifunctional medicinal properties. J Herbmed Pharmacol 2014; 3(1): 5-8.
[82]
Kumar A, Singh A. Interaction of turmeric (Curcuma longa (L.) with beneficial microbes: A review. 3 Biotech 2017; 7(6): 357.
[83]
Prasad S, Aggarwal BB, Benzie IFF, Wachtel-Galor S. Turmeric, the golden spice Herbal Medicine: Biomolecular and Clinical Aspects. (2nd ed.), UK: Taylor and Francis Group 2011.
[84]
Chanda S, Ramachandra TV. Phytochemical and pharmacological importance of turmeric [Curcuma longa]: A review. J Pharmacol 2019; 9(1): 16-23p.
[85]
Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive effect of nootropic drug Brahmi (Bacopa monnieri) in Alzheimer’s disease. Ann Neurosci 2017; 24(2): 111-22.
[http://dx.doi.org/10.1159/000475900] [PMID: 28588366]
[86]
Jeyasri R, Muthuramalingam P, Suba V, Ramesh M, Chen J-T. Bacopa monnieri and their bioactive compounds inferred Multi-target treatment strategy for neurological diseases: A cheminformatics and system pharmacology approach. Biomolecules 2020; 10(4): 536.
[http://dx.doi.org/10.3390/biom10040536]
[87]
Simpson T, Pase M, Stough C. Bacopa monnieri as an antioxidant therapy to reduce oxidative stress in the aging brain. Evid Based Complement Alternat Med 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/615384] [PMID: 26413126]
[88]
Majumdar S, Basu A, Paul P, Halder M, Jha S. Bacosides and neuroprotection. Nat Prod 2013; pp. 3639-60.
[89]
Bhattacharya SK, Bhattacharya A, Kumar A, Ghosal S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res 2000; 14(3): 174-9.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<174::AID-PTR624>3.0.CO;2-O] [PMID: 10815010]
[90]
Dhanasekaran M, Tharakan B, Holcomb LA, Hitt AR, Young KA, Manyam BV. Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. Phytother Res 2007; 21(10): 965-9.
[http://dx.doi.org/10.1002/ptr.2195] [PMID: 17604373]
[91]
Anand P, Nair HB, Sung B, et al. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 2010; 79(3): 330-8.
[http://dx.doi.org/10.1016/j.bcp.2009.09.003]
[92]
Kamkaew N, Scholfield CN, Ingkaninan K, et al. Bacopa monnieri and its constituents is hypotensive in anaesthetized rats and vasodilator in various artery types. J Ethnopharmacol 2011; 137(1): 790-5.
[93]
Singh HK, Srimal RC, Srivastava AK, Garg NK, Dhawan BN. Neuro-psychopharmacological effects of bacosides A and B. Proceedings of Fourth Conference on the Neurobiology of Learning and Memory. Irvine, California. Oct 17-20, 1990; pp. 80.
[94]
Singh HK, Dhawan BN. Drugs affecting learning and memory. Lectures Neurobiol 1992; 1: 189-207.
[95]
Chowdhuri KD, Parmar D, Kakkar P, Shukla R, Seth PK, Srimal RC. Antistress effects of bacosides of Bacopa monnieri: Modulation of Hsp70 expression, superoxide dismutase and cytochrome P450 activity in rat brain. Phytother Res 2002; 16(7): 639-45.
[96]
Debnath T, Kim D, Lim B. Natural products as a source of anti-inflammatory agents associated with inflammatory bowel disease. Molecules 2013; 18(6): 7253-70.
[http://dx.doi.org/10.3390/molecules18067253] [PMID: 23783459]
[97]
Madhu K, Prakash T. Bacoside-A attenuated in vitro activation of primary astrocyte and microglial cultures. European J Pharm Med Res 2018; 5(11): 337-41.
[98]
Nemetchek MD, Stierle AA, Stierle DB, Lurie DI. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. J Ethnopharmacol 2017; 197: 92-100.
[http://dx.doi.org/10.1016/j.jep.2016.07.073]
[99]
Abdul MAS, Vijayabalan S, Madhavan P, et al. Bacopa monneri, a neuroprotective lead in Alzheimer’s disease: A review on its properties, mechanisms of action and preclinical and clinical studies. Drug Target Insights 2019; 13: 1177392819866412.
[http://dx.doi.org/10.1177/1177392819866412] [PMID: 31391778]
[100]
Rajan KE, Preethi J, Singh HK. Molecular and functional characterization of Bacopa monniera: A retrospective review. Evid Based Complement Alternat Med 2015; 2015: 945217.
[http://dx.doi.org/10.1155/2015/945217] [PMID: 26413131]
[101]
Konar A, Gautam A, Thakur MK. Bacopa monniera [CDRI-08] upregulates the expression of neuronal and glial plasticity markers in the brain of scopolamine induced amnesic mice. Evid Based Complement Alternat Med 2015; 2015: 837012.
[http://dx.doi.org/10.1155/2015/837012] [PMID: 26413129]
[102]
Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol 2010; 127(1): 26-31.
[http://dx.doi.org/10.1016/j.jep.2009.09.056] [PMID: 19808086]
[103]
Hota SK, Barhwal K, Baitharu I, Prasad D, Singh SB, Ilavazhagan G. Bacopa monniera leaf extract ameliorates hypobaric hypoxia induced spatial memory impairment. Neurobiol Dis 2009; 34(1): 23-39.
[http://dx.doi.org/10.1016/j.nbd.2008.12.006] [PMID: 19154788]
[104]
Mathur D, Goyal K, Koul V, Anand A. The molecular links of re-emerging therapy: A review of evidence of Brahmi. Front Pharmacol 2016; 7: 44.
[http://dx.doi.org/10.3389/fphar.2016.00044] [PMID: 26973531]
[105]
Nandy S, Dey A, Mukherjeeb A. Advances in dammarane-type triterpenoid saponins from Bacopa monnieri: Structure, bioactivity, biotechnology and neuroprotection. Stud Nat Prod Chem 2019; 63: 489-533.
[http://dx.doi.org/10.1016/B978-0-12-817901-7.00015-0]
[106]
Choudhary S, Kumari I, Thakur S, Kaurav H, Chaudhary G. Brahmi (Bacopa monnieri): A potential ayurvedic cognitive enhancer & neuroprotective herb. Int J Ayurveda Pharma Res 2021; 9(5): 41-9.
[http://dx.doi.org/10.47070/ijapr.v9i5.1917]
[107]
Dey T, Mishra SP. Memory boosters: A review on Indian Ayurvedic herbs. Int J Innov Res Sci Eng Technol 2017; 6(11): 21180.
[108]
Amin H, Sharma R, Vyas M. Shankhapusphi [Convolvulus pluricaulis Choisy]: Validation of the therapeutic claims through contemporary studies. Int J Green Pharm 2014; 8(4): 193-200.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.028]
[109]
Bhowmik D, Kumar S, Paswan S, Srivastava S. Traditional Indian herbs Convolvulus pluricaulis and its medicinal importance. J Pharmacogn Phytochem 2012; 1: 2178-4136.
[110]
Sethiya NK, Nahata A, Mishra SH, Dixit VK. An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine. J Chin Integr Med 2009; 7(11): 1001-22.
[http://dx.doi.org/10.3736/jcim20091101] [PMID: 19912732]
[111]
Chandel U, Kharoliwal S. A review on traditional Indian herbs Convolvulus pluricaulis Linn and its medicinal importance. Int J Pure App Biosci 2014; 2(6): 326-9.
[112]
Malik J, Karan M, Vasisht K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of Shankhpushpi. Pharm Biol 2011; 49(12): 1234-42.
[http://dx.doi.org/10.3109/13880209.2011.584539] [PMID: 21846173]
[113]
Shukla SP. Anti-anxiety agents of plant origin. Probe (Memphis) 1981; 20: 201-8.
[114]
Dandiya PC. The pharmacological basis of herbal drugs acting on CNS. Eastern Pharm 1990; 33: 39-47.
[115]
Dubey GP, Pathak SR, Gupta BS. Combined effect of Brahmi (Bacopa monniera) and Shankhpushpi (Convolvulus pluricaulis) on cognitive functions. Pharmacopsychoecol 1994; 7: 249-51.
[116]
Manyam BV. Dementia in Ayurveda. J Altern Complement Med 1999; 5(1): 81-8.
[http://dx.doi.org/10.1089/acm.1999.5.81] [PMID: 10100034]
[117]
Nahata A, Patil UK, Dixit VK. Anxiolytic activity of Evolvulus alsinoides and Convulvulus pluricaulis in rodents. Pharm Biol 2009; 47(5): 444-51.
[http://dx.doi.org/10.1080/13880200902822596]
[118]
Dhingra D, Valecha R. Evaluation of the antidepressant like activity of Convolvulus pluricaulis in the mouse forced swim and tail suspension tests. Med Sci Monit 2007; 13(7): BR155-61.
[119]
Sharma K, Bhatnagar M, Kulkarni SK. Effect of Convolvulus pluricaulis Choisy and Asparagus racemosus Willd on learning and memory in young and old mice: A comparative evaluation. Indian J Exp Biol 2010; 48(5): 479-85.
[PMID: 20795365]
[120]
Rai K, Murthy KD, Karanth KS, Nalini K, Rao MS, Srinivasan KK. Clitoria ternatea root extract enhances acetylcholine content in rat hippocampus. Flioterapia 2002; 73(7-8): 685-9.
[http://dx.doi.org/10.1016/S0367-326X(02)00249-6]
[121]
Pinchas M, Baranes D. Dendritic branch intersections are structurally regulated targets for efficient axonal wiring and synaptic clustering. PLoS One 2013; 8(12): e82083.
[http://dx.doi.org/10.1371/journal.pone.0082083] [PMID: 24349189]
[122]
Sinha SN, Dixit VP, Madnawat AVS, Sharma OP. The possible potentiation of cognitive processing on administration of Convolvulus microphyllus in rats. Indiana Med 1989; 1: 1-6.
[123]
Sethiya NK, Nahata A, Singh PK, Mishra SH. Neuropharmacological evaluation on four traditional herbs used as nervine tonic and commonly available as Shankhpushpi in India. J Ayurveda Integr Med 2019; 10(1): 25-31.
[http://dx.doi.org/10.1016/j.jaim.2017.08.012] [PMID: 29530454]
[124]
Thakur S, Kaurav H. Ayurvedic medicinal importance of Sankhapushpi (Convolvulus pluricaulis): Potential cognition boosting herb. Int J Pharm Sci Res Health Care 2021; 4.
[125]
Balkrishna A, Thakur P, Varshney A. Phytochemical profile, pharmacological attributes and medicinal properties of Convolvulus Prostratus-A cognitive enhancer herb for the management of neurodegenerative etiologies. Front Pharmacol 2020; 11: 171.
[http://dx.doi.org/10.3389/fphar.2020.00171] [PMID: 32194410]
[126]
Ganie SH, Ali Z, Das S, Srivastav PS, Sharma MP. Identification of sankhapushpi by morphological, chemical and molecular markers 2015; 3(2): 1-9.
[127]
Centella asiatica [asiatic pennywort], Invasive species compendium. CABI 2017. Available from: https://www.cabi.org/isc/datasheet/12048 (Accessed August 11, 2022).
[128]
Inamdar PK, Yeole RD, Ghogare AB, de Souza NJ. Determination of biologically active constituents in Centella asiatica. J Chromatogr A 1996; 742(1-2): 127-30.
[http://dx.doi.org/10.1016/0021-9673(96)00237-3]
[129]
Xu Y, Cao Z, Khan I, Luo Y. Gotu Kola (Centella asiatica) extract enhances phosphorylation of cyclic AMP response element binding protein in neuroblastoma cells expressing amyloid beta peptide. J Alzheimers Dis 2008; 13(3): 341-9.
[http://dx.doi.org/10.3233/JAD-2008-13311] [PMID: 18431001]
[130]
Siddiqui BS, Aslam H, Ali ST, Khan S, Begum S. Chemical constituents of Centella asiatica. J Asian Nat Prod Res 2007; 9(4): 407-14.
[http://dx.doi.org/10.1080/10286020600782454] [PMID: 17613628]
[131]
Ramesh BN, Indi SS, Rao KSJ. Studies to understand the effect of Centella asiatica on Aβ[42] aggregation in vitro. Curr Trends Biotechnol Pharm 2010; 4(2): 716-24.
[132]
Lokanathan Y, Omar N. Recent updates in neuroprotective and neurogenerative potential of Centella asiatica. Malays J Med Sci 2016; 23(1): 4-14.
[133]
Coyle J, Puttfarcken P. Glutamate toxicity. Science 1993; 262(5134): 689-95.
[http://dx.doi.org/10.1126/science.7901908] [PMID: 7901908]
[134]
Dhanasekaran M, Holcomb LA, Hitt AR, et al. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model. Phytother Res 2009; 23(1): 14-9.
[http://dx.doi.org/10.1002/ptr.2405] [PMID: 19048607]
[135]
Gray N, Morré J, Kelley J, et al. Centella asiatica protects against the toxic effects of intracellular beta-amyloid accumulation. Planta Med 2013; 79(10): 1348596.
[http://dx.doi.org/10.1055/s-0033-1348596]
[136]
Gray NE, Sampath H, Zweig JA, Quinn JF, Soumyanath A. Centella asiatica attenuates amyloid-β-induced oxidative stress and mitochondrial dysfunction. J Alzheimers Dis 2015; 45(3): 933-46.
[http://dx.doi.org/10.3233/JAD-142217] [PMID: 25633675]
[137]
Gray NE, Zweig JA, Murchison C, et al. Centella asiatica attenuates Aβ-induced neurodegenerative spine loss and dendritic simplification. Neurosci Lett 2017; 646: 24-9.
[http://dx.doi.org/10.1016/j.neulet.2017.02.072] [PMID: 28279707]
[138]
Ahmad RM, Justin TA, Manivasagam T, Nataraj J, Essa MM, Chidambaram SB. Asiatic acid nullified aluminium toxicity in in vitro model of Alzheimer’s disease. Front Biosci (Elite Ed) 2018; 10(2): 287-99.
[PMID: 28930619]
[139]
Sabaragamuwa R, Perera CO, Fedrizzi B. Centella asiatica (Gotu kola) as a neuroprotectant and its potential role in healthy ageing. Trends Food Sci Technol 2018; 79: 88-97.
[http://dx.doi.org/10.1016/j.tifs.2018.07.024]
[140]
Sun B, Wu L, Wu Y, et al. Therapeutic potential of Centella asiatica and itstriterpenes: A review. Front Pharmacol 2020; 11: 568032.
[http://dx.doi.org/10.3389/fphar.2020.568032] [PMID: 33013406]
[141]
Singh DC, Dhyani S, Kaur G. A critical review on Guggulu (Commiphora wightii (arn) Bhand.) & its miraculous medicinal uses. Int J Ayur. Pharm Res 2015; 3(1): 1-9.
[142]
Sarup P, Bala S, Kamboj S. Pharmacology and phytochemistry of oleo-gum resin of Commiphora weightii. Scientifca 2015; 138039: 1-14.
[143]
Das GR. A new hypolipidaemic agent (gugulipid). J Assoc Phys India 1990; 38(2): 186.
[PMID: 2248657]
[144]
Urizar NL, Moore DD. GUGULIPID: A natural cholesterol-lowering agent. Annu Rev Nutr 2003; 23(1): 303-13.
[http://dx.doi.org/10.1146/annurev.nutr.23.011702.073102] [PMID: 12626688]
[145]
Perluigi M, Joshi G, Sultana R, et al. In vivo protective effects of ferulic acid ethyl ester against amyloid-beta peptide 1–42-induced oxidative stress. J Neurosci Res 2006; 84(2): 418-26.
[http://dx.doi.org/10.1002/jnr.20879] [PMID: 16634068]
[146]
Sultana R, Ravagna A, Mohmmad-Abdul H, Calabrese V, Butterfield DA. Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1-42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J Neurochem 2005; 92(4): 749-58.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02899.x] [PMID: 15686476]
[147]
Cui J, Huang L, Zhao A, et al. Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump. J Biol Chem 2003; 278(12): 10214-20.
[http://dx.doi.org/10.1074/jbc.M209323200] [PMID: 12525500]
[148]
Szapary PO, Wolfe ML, Bloedon LT, et al. Guggulipid for the treatment of hypercholesterolemia: A randomized controlled trial. JAMA 2003; 290(6): 765-72.
[http://dx.doi.org/10.1001/jama.290.6.765] [PMID: 12915429]
[149]
Nohr LA, Rasmussen LB, Straand J. Resin from the mukul myrrh tree, guggul, can it be used for treating hypercholesterolemia? A randomized, controlled study. Complement Ther Med 2009; 17(1): 16-22.
[http://dx.doi.org/10.1016/j.ctim.2008.07.001] [PMID: 19114224]
[150]
Urizar NL, Liverman AB, Dodds DNT, et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 2002; 296(5573): 1703-6.
[http://dx.doi.org/10.1126/science.1072891] [PMID: 11988537]
[151]
Morley JE, Banks WA. Lipids and cognition. J Alzheimers Dis 2010; 20(3): 737-47.
[http://dx.doi.org/10.3233/JAD-2010-091576] [PMID: 20413879]
[152]
Eckert GP, Kirsch C, Leutz S, Wood WG, Müller WE. Cholesterol modulates amyloid beta-peptide’s membrane interactions. Pharmacopsychiatry 2003; 36 (Suppl. 2): S136-43.
[PMID: 14574628]
[153]
Harris JR, Milton NGN. Cholesterol in Alzheimer’s disease and other amyloidogenic disorders. Subcell Biochem 2010; 51: 47-75.
[http://dx.doi.org/10.1007/978-90-481-8622-8_2] [PMID: 20213540]
[154]
Saxena G, Singh SP, Pal R, Singh S, Pratap R, Nath C. Gugulipid, an extract of Commiphora wighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol Biochem Behav 2007; 86(4): 797-805.
[http://dx.doi.org/10.1016/j.pbb.2007.03.010] [PMID: 17477963]
[155]
Shrivastav MK, Ahmed I, et al. Ayurvedic medicinal plant- Guggulu (Commiphora wightii): A birds eye view. Int J Pharm Pharm Sci 2015; 2(5): 25-9.
[156]
Sanglongi B, Rao G, Baswaraj S. Pharmaceutical study of Guggulu (Commiphora mukul linn.) W.S.R to its various shodhana properties. Int J Dev Res 2017; 7(6): 13000-6.
[157]
Sanka N, Santhipriya N, Nadendla RR. An updated review on Anti-Alzheimer’s herbal drugs. J Drug Deliv Ther 2018; 8(6): 360-72.
[http://dx.doi.org/10.22270/jddt.v8i6.2049]
[158]
Joshi H, Parle M. Nardostachys jatamansi improves learning and memory in mice. J Med Food 2006; 9(1): 113-8.
[http://dx.doi.org/10.1089/jmf.2006.9.113] [PMID: 16579738]
[159]
Thakur S, Kaurav H, Chaudhary G. Nardostachys jatamansi: Importance of highly significant and endangered plant in Ayurveda. Int J Res Ayurveda Pharm 2021; 12(3): 124-30.
[http://dx.doi.org/10.7897/2277-4343.120387]
[160]
Chandrasekhar K, Kapoor J, Anishetty S. A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian J Psychol Med 2012; 34(3): 255-62.
[http://dx.doi.org/10.4103/0253-7176.106022] [PMID: 23439798]
[161]
Ng QX, Loke W, Foo NX, et al. A systematic review of the clinical use of Withania somnifera (Ashwagandha) to ameliorate cognitive dysfunction. Phytother Res 2020; 34(3): 583-90.
[http://dx.doi.org/10.1002/ptr.6552] [PMID: 31742775]
[162]
Gupta M, Kaur G. Withania somnifera (L.) Dunal ameliorates neurodegeneration and cognitive impairments associated with systemic inflammation. BMC Complement Altern Med 2019; 19(1): 217.
[http://dx.doi.org/10.1186/s12906-019-2635-0] [PMID: 31416451]
[163]
Begum VH, Sadique J. Long term effect of herbal drug Withania somnifera on adjuvant induced arthritis in rats. Indian J Exp Biol 1988; 26(11): 877-82.
[PMID: 3248848]
[164]
Tohda C, Komatsu K, Kuboyama T. Scientific basis of the anti-dementia drugs of constituents from Ashwagandha. J Trad Med 2005; 22 (Suppl. 1): 176-82.
[165]
Bhattacharya SK, Goel RK, Kaur R, Ghosal S. Anti-stress activity of sitoindosides VII and VIII, new acylsterylglucosides from Withania somnifera. Phytother Res 1987; 1(1): 32-7.
[http://dx.doi.org/10.1002/ptr.2650010108]
[166]
Bassani TB, Turnes JM, Moura ELR, et al. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer’s type. Behav Brain Res 2017; 335: 41-54.
[http://dx.doi.org/10.1016/j.bbr.2017.08.014] [PMID: 28801114]
[167]
Small GW, Siddarth P, Li Z, et al. Memory and brain amyloid and tau effects of a bioavailable form of Curcumin in non-demented adults: A double blind placebo-controlled 18-month trial. Am J Geriatr Psychiatry 2018; 26(3): 266-77.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010] [PMID: 29246725]
[168]
Sharman J, Galeshi R, Onega L, Ashby S, Sharman K. The efficacy of Curcumin on cognition, depressionand agitation in older adults with Alzheimer’s disease. Open Nutr J 2017; 11(1): 11-6.
[http://dx.doi.org/10.2174/1874288201711010011]
[169]
Mishra M, Mishra AK, Mishra U. Brahmi (Bacopa monnieri Linn) in the treatment of dementias – a pilot study. Future Healthc J 2019; 6 (Suppl. 1): 69.
[http://dx.doi.org/10.7861/futurehosp.6-1-s69] [PMID: 31363591]
[170]
Phakdeekul W, Kedthongma W. Effectiveness of Bacopa herb for solving dementia in the elderly. Sys Rev Pharma 2021; 12(10): 548-53.
[171]
Sethiya NK, Nahata A, Dixit VK, Mishra SH. Cognition boosting effect of Canscora decussata (a South Indian Shankhpushpi). Eur J Integr Med 2012; 4(1): e113-21.
[http://dx.doi.org/10.1016/j.eujim.2011.11.003]
[172]
Reshma RG, Anirudhan R. Effect of Sankhapushpi [Clitoria ternatea Linn] choorna in the working memory of children. Int J Ayurveda Pharma Res 2019; 7(3): 42-8.
[173]
Soumyanath A, Zhong YP, Henson E, et al. Centella asiatica extract improves behavioral deficits in a mouse model of Alzheimer’s disease: Investigation of a possible mechanism of action. Int J Alzheimers Dis 2012; 2012: 1-9.
[http://dx.doi.org/10.1155/2012/381974] [PMID: 22506133]
[174]
Wattanathorn J, Mator L, Muchimapura S, et al. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J Ethnopharmacol 2008; 116(2): 325-32.
[http://dx.doi.org/10.1016/j.jep.2007.11.038] [PMID: 18191355]
[175]
Huang C, Wang J, Lu X, et al. Z-guggulsterone negatively controls microglia-mediated neuroinflammation via blocking IκB-α–NF-κBB signals. Neurosci Lett 2016; 619: 34-42.
[http://dx.doi.org/10.1016/j.neulet.2016.02.021] [PMID: 26879835]
[176]
Raghav S, Singh H, Dalal PK, Srivastava JS, Asthana OP. Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Int J Psychiatry 2006; 48(4): 238-42.
[PMID: 20703343]
[177]
Raina RS, Chopra VS, Sharma R, et al. The psychomotor effects of Brahmi and caffeine in healthy male volunteers. J Clin Diagn Res 2009; 3: 1827-35.
[178]
Calabrese C, Gregory WL, Leo M, Kraemer D, Bora K, Oken B. Effect of standardized Bacopa monniera extract on cognitive function in elderly. A randomized double blind placebo controlled study. J Altern Complement Med 2008; 14: 707-13.
[http://dx.doi.org/10.1089/acm.2008.0018] [PMID: 18611150]
[179]
Carlson JJ, Farquhar JW, DiNucci E, et al. Safety and efficacy of a ginkgo biloba-containing dietary supplement on cognitive function, quality of life, and platelet function in healthy, cognitively intact older adults. J Am Diet Assoc 2007; 107(3): 422-32.
[http://dx.doi.org/10.1016/j.jada.2006.12.011] [PMID: 17324660]
[180]
Lewis JE, Melillo AB, Tiozzo E, et al. A double-blind, randomized clinical trial of dietary supplementation on cognitive and immune functioning in healthy older adults. BMC Complement Altern Med 2014; 14(1): 43.
[http://dx.doi.org/10.1186/1472-6882-14-43] [PMID: 24495355]
[181]
Hashiguchi M, Ohta Y, Shimizu M, Maruyama J, Mochizuki M. Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. J Pharm Health Care Sci 2015; 1(1): 14.
[http://dx.doi.org/10.1186/s40780-015-0014-7] [PMID: 26819725]
[182]
Singh M, Saxena G, Arya S. Evaluation of anti-stress effects of Nardostachys jatamansi Dc root extract on clinical patients: A psychological estimation. In: ESSENCE Int J Env Rehab Conser. 2017; 8: pp. (2)54-61.
[183]
Seddon N, D’Cunha NM, Mellor DD, et al. Effects of Curcumin on cognitive function-A systematic review of randomized controlled trials. Explor Res Hypothesis Med 2019; 4(1): 1-11.
[http://dx.doi.org/10.14218/ERHM.2018.00024]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy