Generic placeholder image

Current Women`s Health Reviews

Editor-in-Chief

ISSN (Print): 1573-4048
ISSN (Online): 1875-6581

Review Article

The Effect of Postbiotics On Depressive Symptoms and Polycystic Ovary Syndrome (PCOS) in Human Health: A Short Review

Author(s): Mohadeseh Pirhadi, Gholamreza Jahed Khaniki, Amir Sasan Mozaffari Nejad* and Parisa Sadighara*

Volume 19, Issue 3, 2023

Published on: 26 September, 2022

Article ID: e040822207264 Pages: 6

DOI: 10.2174/1573404819666220804093852

Price: $65

Abstract

Postbiotics are known as preparations comprising inert microorganisms and/or their ingredients that activate health profits on the host. They stimulate the intestine microbiome, support gut immune activity, and prevent pathogenic microorganism duplication. Although postbiotics are a type of probiotic waste, they can apply some beneficial effects on human health, such as antiobesity, antioxidant, immunomodulatory, and anti-carcinogenic. Accordingly, many studies suggested a conclusive effect of postbiotics on polycystic ovary syndrome (PCOS) in women and depressive symptomatology. The aim of our study was to provide an updated review of these subjects. We conducted a systematic search of the literature in multiple databases, such as Web of Science, Google Scholar, Science Direct, and PubMed based on some keywords. In the current review, we have focused on better understanding of postbiotics on consumers’ health providing a base for future investigation.

Keywords: Anxiety, depression, lactic acid bacteria, nervous system, polycystic ovary syndrome, postbiotic.

Graphical Abstract
[1]
Marietta, E.; Rishi, A.; Taneja, V. Immunogenetic control of the intestinal microbiota. Immunology, 2015, 145(3), 313-322.
[http://dx.doi.org/10.1111/imm.12474] [PMID: 25913295]
[2]
Chaluvadi, S.; Hotchkiss, A.T.; Yam, K. Gut microbiota: Impact of probiotics, prebiotics, synbiotics, pharmabiotics, and postbiotics on human health.Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion; Elsevier Inc., 2015, pp. 515-523.
[http://dx.doi.org/10.1016/B978-0-12-802189-7.00036-8]
[3]
Mato, J.M. Martيnez-Chantar, M.L.; Lu, S.C. Systems biology for hepatologists. Hepatology, 2014, 60(2), 736-743.
[http://dx.doi.org/10.1002/hep.27023] [PMID: 24449428]
[4]
Hernández-Granados M.J.; Franco-Robles, E. Postbiotics in human health: Possible new functional ingredients? Food Res. Int., 2020, 137, 109660.
[http://dx.doi.org/10.1016/j.foodres.2020.109660] [PMID: 33233239]
[5]
Wegh, C.A.M.; Geerlings, S.Y.; Knol, J.; Roeselers, G.; Belzer, C. Postbiotics and their potential applications in early life nutrition and beyond. Int. J. Mol. Sci., 2019, 20(19), 4673.
[http://dx.doi.org/10.3390/ijms20194673] [PMID: 31547172]
[6]
Pritchard, C.; Mayers, A.; Baldwin, D. Changing patterns of neurological mortality in the 10 major developed countries--1979-2010. Public Health, 2013, 127(4), 357-368.
[http://dx.doi.org/10.1016/j.puhe.2012.12.018] [PMID: 23601790]
[7]
Chudzik, A. Orzyowska, A.; Rola, R.; Stanisz, G.J. Probiotics, prebiotics and postbiotics on mitigation of depression symptoms: Modulation of the brain-gut-microbiome axis. Biomolecules, 2021, 11(7), 1000.
[http://dx.doi.org/10.3390/biom11071000] [PMID: 34356624]
[8]
Morris, G.; Berk, M.; Carvalho, A.; Caso, J.R.; Sanz, Y.; Walder, K.; Maes, M. The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol. Neurobiol., 2017, 54(6), 4432-4451.
[http://dx.doi.org/10.1007/s12035-016-0004-2] [PMID: 27349436]
[9]
O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res., 2015, 277, 32-48.
[http://dx.doi.org/10.1016/j.bbr.2014.07.027] [PMID: 25078296]
[10]
Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161(2), 264-276.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[11]
Maguire, M.; Maguire, G. Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: Towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev. Neurosci., 2019, 30(2), 179-201.
[http://dx.doi.org/10.1515/revneuro-2018-0024] [PMID: 30173208]
[12]
Mohamadshahi, M.; Veissi, M.; Haidari, F.; Shahbazian, H.; Kaydani, G.A.; Mohammadi, F. Effects of probiotic yogurt consumption on inflammatory biomarkers in patients with type 2 diabetes. Bioimpacts, 2014, 4(2), 83-88.
[http://dx.doi.org/10.5681/bi.2014.007] [PMID: 25035851]
[13]
Vaghef-Mehrabany, E.; Vaghef-Mehrabany, L.; Asghari-Jafarabadi, M.; Homayouni-Rad, A.; Issazadeh, K.; Alipour, B. Effects of probiotic supplementation on lipid profile of women with rheumatoid arthritis: A randomized placebo-controlled clinical trial. Health Promot. Perspect., 2017, 7(2), 95-101.
[http://dx.doi.org/10.15171/hpp.2017.17] [PMID: 28326290]
[14]
Fathi-zavoshti, H.; Douroud, N.; Shahbazi, N. Evaluating the role of postbiotics as a new generation of probiotics in health and diseases. Journal of Ardabil University of Medical Sciences, 2020, 19(4), 381-399.
[http://dx.doi.org/10.29252/jarums.19.4.381]
[15]
Kothari, D.; Patel, S.; Kim, S.K. Probiotic supplements might not be universally-effective and safe: A review. Biomed. Pharmacother., 2019, 111, 537-547.
[http://dx.doi.org/10.1016/j.biopha.2018.12.104] [PMID: 30597307]
[16]
Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol., 2018, 75, 105-114.
[http://dx.doi.org/10.1016/j.tifs.2018.03.009]
[17]
de Almada, C.N.; Almada, C.N.; Martinez, C.R.P. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci. Technol., 2016, 58, 96-114.
[http://dx.doi.org/10.1016/j.tifs.2016.09.011]
[18]
Chuah, L.O.; Foo, H.L.; Loh, T.C.; Mohammed Alitheen, N.B.; Yeap, S.K.; Abdul Mutalib, N.E.; Abdul Rahim, R.; Yusoff, K. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement. Altern. Med., 2019, 19(1), 114.
[http://dx.doi.org/10.1186/s12906-019-2528-2] [PMID: 31159791]
[19]
Homayouni Rad, A.; Samadi Kafil, H. Therapeutically effects of functional postbiotic foods. Clinical Excellence, 2020, 10(2), 33-52. Available from: http://ce.mazums.ac.ir/article-1-532- en.html
[20]
Gezginc, Y.; Topcal, F.; Comertpay, S.; Akyol, I. Quantitative analysis of the lactic acid and acetaldehyde produced by Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional Turkish yogurts using HPLC. J. Dairy Sci., 2015, 98(3), 1426-1434.
[http://dx.doi.org/10.3168/jds.2014-8447] [PMID: 25547312]
[21]
Xavier-Santos, D.; Bedani, R.; Lima, E.D. Impact of probiotics and prebiotics targeting metabolic syndrome. J. Funct. Foods, 2020, 64, 103666.
[http://dx.doi.org/10.1016/j.jff.2019.103666]
[22]
Guimarães J.T.; Balthazar, C.F.; Silva, R. Impact of probiotics and prebiotics on food texture. Curr. Opin. Food Sci., 2020, 33, 38-44.
[http://dx.doi.org/10.1016/j.cofs.2019.12.002]
[23]
Delzenne, N.M.; Olivares, M.; Neyrinck, A.M.; Beaumont, M. Kjølbæk, L.; Larsen, T.M.; Benítez-Páez, A; Romaní-Pérez, M.; Garcia-Campayo, V.; Bosscher, D.; Sanz, Y.; van der Kamp, J.W. Nutritional interest of dietary fiber and prebiotics in obesity: Lessons from the MyNewGut consortium. Clin. Nutr., 2020, 39(2), 414-424.
[http://dx.doi.org/10.1016/j.clnu.2019.03.002] [PMID: 30904186]
[24]
Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as novel health-promoting ingredients in functional foods. Health Promot. Perspect., 2020, 10(1), 3-4.
[http://dx.doi.org/10.15171/hpp.2020.02] [PMID: 32104650]
[25]
Hajipour, N.; Homayouni-Rad, A. Response to the paper” The effect of prebiotics on the viability of encapsulated probiotic bacteria. Lebensm. Wiss. Technol., 2018, 90, 606-606.
[http://dx.doi.org/10.1016/j.lwt.2017.11.035]
[26]
Wallace, C.J.K.; Milev, R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann. Gen. Psychiatry, 2017, 16(1), 1-10.
[http://dx.doi.org/10.1186/s12991-017-0138-2]
[27]
Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord., 2018, 228, 13-19.
[http://dx.doi.org/10.1016/j.jad.2017.11.063] [PMID: 29197739]
[28]
Li, Y.; Tan, Y.; Xia, G.; Shuai, J. Effects of probiotics, prebiotics, and synbiotics on polycystic ovary syndrome: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr., 2021, 1-17.
[http://dx.doi.org/10.1080/10408398.2021.1951155] [PMID: 34287081]
[29]
Calcaterra, V.; Verduci, E.; Cena, H.; Magenes, V.C.; Todisco, C.F.; Tenuta, E.; Gregorio, C.; De Giuseppe, R.; Bosetti, A.; Di Profio, E.; Zuccotti, G. Polycystic ovary syndrome in insulin-resistant adolescents with obesity: The role of nutrition therapy and food supplements as a strategy to protect fertility. Nutrients, 2021, 13(6), 1848.
[http://dx.doi.org/10.3390/nu13061848] [PMID: 34071499]
[30]
Abbas, H.H.; Abudulhadi, S.; Mohammed, A. Effect of lactobacillus sp. crude bacteriocin (CB) and cell-free supernatant (CFS) against E. coli growth and adherence on vaginal epithelial cell surface. Int. J. Adv. Res. (Indore), 2016, 4(1), 614-620.
[31]
Rishi, L.; Mittal, G.; Agarwal, R.K.; Sharma, T. Melioration in anti-staphylococcal activity of conventional antibiotic (s) by organic acids present in the cell free supernatant of Lactobacillus paraplantarum. Indian J. Microbiol., 2017, 57(3), 359-364.
[http://dx.doi.org/10.1007/s12088-017-0659-z] [PMID: 28904422]
[32]
Kumar, R.; Sharma, A.; Gupta, M. Cell-free culture supernatant of probiotic Lactobacillus fermentum protects against H 2 O 2-induced premature senescence by suppressing ROS-Akt-mTOR axis in murine preadipocytes. Probiotics Antimicrob. Proteins, 2020, 12(2), 563-576.
[http://dx.doi.org/10.1007/s12602-019-09576-z]
[33]
Sang, L.X.; Chang, B.; Dai, C.; Gao, N.; Liu, W.X.; Jiang, M. Heat-killed VSL#3 ameliorates dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Int. J. Mol. Sci., 2013, 15(1), 15-28.
[http://dx.doi.org/10.3390/ijms15010015] [PMID: 24451125]
[34]
Fichera, G.A.; Fichera, M.; Milone, G. Antitumoural activity of a cytotoxic peptide of Lactobacillus casei peptidoglycan and its interaction with mitochondrial-bound hexokinase. Anticancer Drugs, 2016, 27(7), 609-619.
[http://dx.doi.org/10.1097/CAD.0000000000000367] [PMID: 27101258]
[35]
Li, N.; Russell, W.M. Douglas-Escobar, M Live and heat-killed Lactobacillus rhamnosus GG: Effects on proinflammatory and anti-inflammatory cytokines/chemokines in gastrostomy-fed infant rats. Pediatr. Res., 2009, 66(2), 203-207.
[http://dx.doi.org/10.1203/PDR.0b013e3181aabd4f]
[36]
Ueno, N.; Fujiya, M.; Segawa, S.; Nata, T.; Moriichi, K.; Tanabe, H.; Mizukami, Y.; Kobayashi, N.; Ito, K.; Kohgo, Y. Heat-killed body of lactobacillus brevis SBC8803 ameliorates intestinal injury in a murine model of colitis by enhancing the intestinal barrier function. Inflamm. Bowel Dis., 2011, 17(11), 2235-2250.
[http://dx.doi.org/10.1002/ibd.21597] [PMID: 21987297]
[37]
Wang, S.; Ahmadi, S.; Nagpal, R.; Jain, S.; Mishra, S.P.; Kavanagh, K.; Zhu, X.; Wang, Z.; McClain, D.A.; Kritchevsky, S.B.; Kitzman, D.W.; Yadav, H. Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: From C. elegans to mice. Geroscience, 2020, 42(1), 333-352.
[http://dx.doi.org/10.1007/s11357-019-00137-4] [PMID: 31814084]
[38]
Giordani, B.; Costantini, P.E.; Fedi, S.; Cappelletti, M.; Abruzzo, A.; Parolin, C.; Foschi, C.; Frisco, G.; Calonghi, N.; Cerchiara, T.; Bigucci, F.; Luppi, B.; Vitali, B. Liposomes containing biosurfactants isolated from Lactobacillus gasseri exert antibiofilm activity against methicillin resistant Staphylococcus aureus strains. Eur. J. Pharm. Biopharm., 2019, 139, 246-252.
[http://dx.doi.org/10.1016/j.ejpb.2019.04.011] [PMID: 30991089]
[39]
Gao, Q.; Gao, Q.; Min, M.; Zhang, C.; Peng, S.; Shi, Z. Ability of Lactobacillus plantarum lipoteichoic acid to inhibit Vibrio anguillarum-induced inflammation and apoptosis in silvery pomfret (Pampus argenteus) intestinal epithelial cells. Fish Shellfish Immunol., 2016, 54, 573-579.
[http://dx.doi.org/10.1016/j.fsi.2016.05.013] [PMID: 27179425]
[40]
Ahn, K.B.; Baik, J.E.; Park, O.J.; Yun, C.H.; Han, S.H. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans. PLoS One, 2018, 13(2), e0192694.
[http://dx.doi.org/10.1371/journal.pone.0192694] [PMID: 29420616]
[41]
Vemuri, R.; Gundamaraju, R.; Shinde, T.; Perera, A.P.; Basheer, W.; Southam, B.; Gondalia, S.V.; Karpe, A.V.; Beale, D.J.; Tristram, S.; Ahuja, K.D.K.; Ball, M.; Martoni, C.J.; Eri, R. Lactobacillus acidophilus DDS-1 modulates intestinal-specific microbiota, short-chain fatty acid and immunological profiles in aging mice. Nutrients, 2019, 11(6), 1297.
[http://dx.doi.org/10.3390/nu11061297] [PMID: 31181695]
[42]
Shamasbi, S.G.; Ghanbari-Homayi, S.; Mirghafourvand, M. The effect of probiotics, prebiotics, and synbiotics on hormonal and inflammatory indices in women with polycystic ovary syndrome: A systematic review and meta-analysis. Eur. J. Nutr., 2020, 59(2), 433-450.
[http://dx.doi.org/10.1007/s00394-019-02033-1] [PMID: 31256251]
[43]
Venugopalan, V.; Shriner, K.A.; Wong-Beringer, A. Regulatory oversight and safety of probiotic use. Emerg. Infect. Dis., 2010, 16(11), 1661-1665.
[http://dx.doi.org/10.3201/eid1611.100574] [PMID: 21029521]
[44]
Liong, M.T. Safety of probiotics: Translocation and infection. Nutr. Rev., 2008, 66(4), 192-202.
[http://dx.doi.org/10.1111/j.1753-4887.2008.00024.x] [PMID: 18366533]
[45]
Collado, M.C.; Vinderola, G.; Salminen, S. Postbiotics: Facts and open questions. A position paper on the need for a consensus definition. Benef. Microbes, 2019, 10(7), 711-719.
[http://dx.doi.org/10.3920/BM2019.0015] [PMID: 31965850]
[46]
Danneskiold-Samsøe, N.B.; Dias de Freitas Queiroz Barros, H.; Santos, R.; Bicas, J.L.; Cazarin, C.B.B.; Madsen, L.; Kristiansen, K.; Pastore, G.M.; Brix, S.; Maróstica Júnior, M.R. Interplay between food and gut microbiota in health and disease. Food Res. Int., 2019, 115, 23-31.
[http://dx.doi.org/10.1016/j.foodres.2018.07.043] [PMID: 30599936]
[47]
Beristain-Bauza, S.D.C. Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial activity of whey protein films supplemented with Lactobacillus sakei cell-free supernatant on fresh beef. Food Microbiol., 2017, 62, 207-211.
[http://dx.doi.org/10.1016/j.fm.2016.10.024] [PMID: 27889150]
[48]
Huang, Y.; Zhao, S.; Yao, K. Physicochemical, microbiological, rheological, and sensory properties of yoghurts with new polysaccharide extracts from Lactarius volemus Fr. using three probiotics. Int. J. Dairy Technol., 2020, 73(1), 168-181.
[http://dx.doi.org/10.1111/1471-0307.12653]
[49]
Rather, I.A.; Seo, B.J.; Kumar, V.J.R. Biopreservative potential of Lactobacillus plantarum YML007 and efficacy as a replacement for chemical preservatives in animal feed. Food Sci. Biotechnol., 2014, 23(1), 195-200.
[http://dx.doi.org/10.1007/s10068-014-0026-3]
[50]
Nakamura, K.; Arakawa, K.; Kawai, Y.; Yasuta, N.; Chujo, T.; Watanabe, M.; Iioka, H.; Tanioka, M.; Nishimura, J.; Kitazawa, H.; Tsurumi, K.; Saito, T. Food preservative potential of gassericin A-containing concentrate prepared from a cheese whey culture supernatant from Lactobacillus gasseri LA39. Anim. Sci. J., 2013, 84(2), 144-149.
[http://dx.doi.org/10.1111/j.1740-0929.2012.01048.x] [PMID: 23384356]
[51]
da Silva Sabo, S.; Pérez-Rodríguez, N.; Domínguez, J.M.; de Souza Oliveira, R.P. Inhibitory substances production by Lactobacillus plantarum ST16Pa cultured in hydrolyzed cheese whey supplemented with soybean flour and their antimicrobial efficiency as biopreservatives on fresh chicken meat. Food Res. Int., 2017, 99(Pt 1), 762-769.
[http://dx.doi.org/10.1016/j.foodres.2017.05.026] [PMID: 28784542]
[52]
Moradi, M.; Tajik, H.; Mardani, K. Efficacy of lyophilized cell-free supernatant of Lactobacillus salivarius (Ls-BU2) on Escherichia coli and shelf life of ground beefVeterinary Research Forum; Faculty of Veterinary Medicine, Urmia University: Urmia, Iran, 2019.
[http://dx.doi.org/10.30466/vrf.2019.101419.2417]
[53]
Azarnia, S.; Lee, B.H.; Yaylayan, V. Proteolysis development in enzyme-modified cheddar cheese using natural and recombinant enzymes of Lactobacillus rhamnosus S93. Food Chem., 2010, 120(1), 174-178.
[http://dx.doi.org/10.1016/j.foodchem.2009.10.003]
[54]
Tomasik, P.; Tomasik, P. Probiotics, non-dairy prebiotics and postbiotics in nutrition. Appl. Sci. (Basel), 2020, 10(4), 1470.
[http://dx.doi.org/10.3390/app10041470]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy