Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Neuronavigated Repetitive Transcranial Stimulation Improves Neurocognitive Functioning in Veterans with Schizophrenia: A Possible Role of BDNF Polymorphism

Author(s): Xiuru Su, Haixia Liu, Xuan Wang, Xiuling Pan, Xuan Zhang, Xinyan Lu, Long Zhao, Yingnan Chen, Yujie Shang, Fengchun Wu* and Meihong Xiu*

Volume 21, Issue 1, 2023

Published on: 23 September, 2022

Page: [142 - 150] Pages: 9

DOI: 10.2174/1570159X20666220803154820

Price: $65

conference banner
Abstract

It has been reported in the previous literatures that high-frequency (HF) neuronavigated repetitive transcranial magnetic stimulation (rTMS) may improve neurocognitive functioning in patients with schizophrenia. Nonetheless, the heterogeneity of the research findings with regards to the effectiveness of HF-rTMS on the neurocognitive functioning in patients with schizophrenia greatly hinders its clinical application. The current study was designed to determine the predictive role of BDNF variants for neurocognitive improvements after rTMS administration in veterans with schizophrenia. 109 hospitalized veterans with schizophrenia were randomly allocated to active HF-rTMS (n=63) or sham stimulation (n=46) over left DLPFC for 4 consecutive weeks. Neurocognitive functions were assessed by using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) at baseline and at the end of week 4. BDNF polymorphism was genotyped by the technicians. Compared with sham stimulation sessions, the immediate memory performance was significantly increased in active sessions after neuronavigated HF-rTMS administration. In addition, patients with the CC homozygotes demonstrated greater improvement of immediate memory after rTMS treatment, while T allele carriers showed no significant improvement in immediate memory domain relative to baseline performance of immediate memory. Our findings suggest that add-on neuronavigated HF-rTMS is beneficial on immediate memory only in patients with CC homozygotes, but not in T allele carriers. This pilot study provides further evidence for BDNF as a promise biomarker in predicting the clinical response to rTMS stimulation.

Keywords: Schizophrenia, rTMS, clinical response, BDNF, DLPFC, high-frequency.

Graphical Abstract
[1]
Bowie, C.R.; Harvey, P.D. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr. Dis. Treat., 2006, 2(4), 531-536.
[http://dx.doi.org/10.2147/nedt.2006.2.4.531] [PMID: 19412501]
[2]
Keefe, R.S.; Fenton, W.S. How should DSM-V criteria for schizophrenia include cognitive impairment? Schizophr. Bull., 2007, 33(4), 912-920.
[http://dx.doi.org/10.1093/schbul/sbm046] [PMID: 17567627]
[3]
Green, M.F.; Kern, R.S.; Braff, D.L.; Mintz, J. Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the “right stuff”? Schizophr. Bull., 2000, 26(1), 119-136.
[http://dx.doi.org/10.1093/oxfordjournals.schbul.a033430] [PMID: 10755673]
[4]
Husa, A.P.; Moilanen, J.; Murray, G.K.; Marttila, R.; Haapea, M.; Rannikko, I.; Barnett, J.H.; Jones, P.B.; Isohanni, M.; Remes, A.M.; Koponen, H.; Miettunen, J.; Jääskeläinen, E. Lifetime antipsychotic medication and cognitive performance in schizophrenia at age 43 years in a general population birth cohort. Psychiatry Res., 2017, 247, 130-138.
[http://dx.doi.org/10.1016/j.psychres.2016.10.085] [PMID: 27888683]
[5]
Hsu, W.Y.; Lane, H.Y.; Lin, C.H. Medications used for cognitive enhancement in patients with schizophrenia, bipolar disorder, Alzheimer’s disease, and Parkinson’s disease. Front. Psychiatry, 2018, 9, 91.
[http://dx.doi.org/10.3389/fpsyt.2018.00091] [PMID: 29670547]
[6]
Best, M.W.; Bowie, C.R. A review of cognitive remediation approaches for schizophrenia: From top-down to bottom-up, brain training to psychotherapy. Expert Rev. Neurother., 2017, 17(7), 713-723.
[http://dx.doi.org/10.1080/14737175.2017.1331128] [PMID: 28511562]
[7]
George, M.S.; Whither, T.M.S. Whither TMS: A one-trick pony or the beginning of a neuroscientific revolution? Am. J. Psychiatry, 2019, 176(11), 904-910.
[http://dx.doi.org/10.1176/appi.ajp.2019.19090957] [PMID: 31672044]
[8]
Cosmo, C.; Zandvakili, A.; Petrosino, N.J.; Berlow, Y.A.; Philip, N.S. Repetitive transcranial magnetic stimulation for treatment-resistant depression: Recent critical advances in patient care. Curr. Treat. Options Psychiatry, 2021, 8(2), 47-63.
[http://dx.doi.org/10.1007/s40501-021-00238-y] [PMID: 33723500]
[9]
Zorzo, C.; Banqueri, M.; Higarza, S.G.; Pernía, A.M.; Arias, J.L. Current state of transcranial magnetic stimulation and its use in psychiatry. Actas Esp. Psiquiatr., 2019, 47(3), 110-120.
[PMID: 31233209]
[10]
Patel, R.; Silla, F.; Pierce, S.; Theule, J.; Girard, T.A. Cognitive functioning before and after repetitive transcranial magnetic stimulation (rTMS): A quantitative meta-analysis in healthy adults. Neuropsychologia, 2020, 141, 107395.
[http://dx.doi.org/10.1016/j.neuropsychologia.2020.107395] [PMID: 32142730]
[11]
Di Lazzaro, V.; Bella, R.; Benussi, A.; Bologna, M.; Borroni, B.; Capone, F.; Chen, K.S.; Chen, R.; Chistyakov, A.V.; Classen, J.; Kiernan, M.C.; Koch, G.; Lanza, G.; Lefaucheur, J.P.; Matsumoto, H.; Nguyen, J.P.; Orth, M.; Pascual-Leone, A.; Rektorova, I.; Simko, P.; Taylor, J.P.; Tremblay, S.; Ugawa, Y.; Dubbioso, R.; Ranieri, F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin. Neurophysiol., 2021, 132(10), 2568-2607.
[http://dx.doi.org/10.1016/j.clinph.2021.05.035] [PMID: 34482205]
[12]
Fisicaro, F.; Lanza, G.; Bella, R.; Pennisi, M. Self-neuroenhancement: The last frontier of noninvasive brain stimulation? J. Clin. Neurol., 2020, 16(1), 158-159.
[http://dx.doi.org/10.3988/jcn.2020.16.1.158] [PMID: 31942774]
[13]
Barr, M.S.; Farzan, F.; Rajji, T.K.; Voineskos, A.N.; Blumberger, D.M.; Arenovich, T.; Fitzgerald, P.B.; Daskalakis, Z.J. Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biol. Psychiatry, 2013, 73(6), 510-517.
[http://dx.doi.org/10.1016/j.biopsych.2012.08.020] [PMID: 23039931]
[14]
Güleken, M.D.; Akbaş, T.; Erden, S.Ç.; Akansel, V.; Al, Z.C.; Özer, Ö.A. The effect of bilateral high frequency repetitive transcranial magnetic stimulation on cognitive functions in schizophrenia. Schizophr. Res. Cogn., 2020, 22, 100183.
[http://dx.doi.org/10.1016/j.scog.2020.100183] [PMID: 32714846]
[15]
Huang, W.; Shen, F.; Zhang, J.; Xing, B. Effect of repetitive transcranial magnetic stimulation on cigarette smoking in patients with schizophrenia. Shanghai Jingshen Yixue, 2016, 28(6), 309-317.
[PMID: 28638206]
[16]
Boggio, P.S.; Fregni, F.; Bermpohl, F.; Mansur, C.G.; Rosa, M.; Rumi, D.O.; Barbosa, E.R.; Odebrecht Rosa, M.; Pascual-Leone, A.; Rigonatti, S.P.; Marcolin, M.A.; Araujo Silva, M.T. Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Mov. Disord., 2005, 20(9), 1178-1184.
[http://dx.doi.org/10.1002/mds.20508] [PMID: 15895421]
[17]
Huang, C.C.; Su, T.P.; Shan, I.K.; Wei, I.H. Effect of 5 Hz repetitive transcranial magnetic stimulation on cognition during a Go/NoGo task. J. Psychiatr. Res., 2004, 38(5), 513-520.
[http://dx.doi.org/10.1016/j.jpsychires.2004.01.006] [PMID: 15380402]
[18]
Zhuo, K.; Tang, Y.; Song, Z.; Wang, Y.; Wang, J.; Qian, Z.; Li, H.; Xiang, Q.; Chen, T.; Yang, Z.; Xu, Y.; Fan, X.; Wang, J.; Liu, D. Repetitive transcranial magnetic stimulation as an adjunctive treatment for negative symptoms and cognitive impairment in patients with schizophrenia: A randomized, double-blind, sham-controlled trial. Neuropsychiatr. Dis. Treat., 2019, 15, 1141-1150.
[http://dx.doi.org/10.2147/NDT.S196086] [PMID: 31190822]
[19]
Ziemann, U.; Paulus, W.; Nitsche, M.A.; Pascual-Leone, A.; Byblow, W.D.; Berardelli, A.; Siebner, H.R.; Classen, J.; Cohen, L.G.; Rothwell, J.C. Consensus: Motor cortex plasticity protocols. Brain Stimul., 2008, 1(3), 164-182.
[http://dx.doi.org/10.1016/j.brs.2008.06.006] [PMID: 20633383]
[20]
Wassermann, E.M.; Zimmermann, T. Transcranial magnetic brain stimulation: Therapeutic promises and scientific gaps. Pharmacol. Ther., 2012, 133(1), 98-107.
[http://dx.doi.org/10.1016/j.pharmthera.2011.09.003] [PMID: 21924290]
[21]
Salomons, T.V.; Dunlop, K.; Kennedy, S.H.; Flint, A.; Geraci, J.; Giacobbe, P.; Downar, J. Resting-state cortico-thalamic-striatal connectivity predicts response to dorsomedial prefrontal rTMS in major depressive disorder. Neuropsychopharmacology, 2014, 39(2), 488-498.
[http://dx.doi.org/10.1038/npp.2013.222] [PMID: 24150516]
[22]
Maeda, F.; Keenan, J.P.; Tormos, J.M.; Topka, H.; Pascual-Leone, A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp. Brain Res., 2000, 133(4), 425-430.
[http://dx.doi.org/10.1007/s002210000432] [PMID: 10985677]
[23]
Nettekoven, C.; Volz, L.J.; Leimbach, M.; Pool, E.M.; Rehme, A.K.; Eickhoff, S.B.; Fink, G.R.; Grefkes, C. Inter-individual variability in cortical excitability and motor network connectivity following multiple blocks of rTMS. Neuroimage, 2015, 118, 209-218.
[http://dx.doi.org/10.1016/j.neuroimage.2015.06.004] [PMID: 26052083]
[24]
Goldsworthy, M.R.; Müller-Dahlhaus, F.; Ridding, M.C.; Ziemann, U. Inter-subject variability of LTD-like plasticity in human motor cortex: A matter of preceding motor activation. Brain Stimul., 2014, 7(6), 864-870.
[http://dx.doi.org/10.1016/j.brs.2014.08.004] [PMID: 25216649]
[25]
Cantone, M.; Lanza, G.; Ranieri, F.; Opie, G.M.; Terranova, C. Editorial: Non-invasive brain stimulation in the study and modulation of metaplasticity in neurological disorders. Front. Neurol., 2021, 12, 721906.
[http://dx.doi.org/10.3389/fneur.2021.721906] [PMID: 34276553]
[26]
Rauti, R.; Cellot, G.; D’Andrea, P.; Colliva, A.; Scaini, D.; Tongiorgi, E.; Ballerini, L. BDNF impact on synaptic dynamics: Extra or intracellular long-term release differently regulates cultured hippocampal synapses. Mol. Brain, 2020, 13(1), 43.
[http://dx.doi.org/10.1186/s13041-020-00582-9] [PMID: 32183860]
[27]
Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol., 2018, 38(3), 579-593.
[http://dx.doi.org/10.1007/s10571-017-0510-4] [PMID: 28623429]
[28]
Poo, M.M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci., 2001, 2(1), 24-32.
[http://dx.doi.org/10.1038/35049004] [PMID: 11253356]
[29]
Wang, H.Y.; Crupi, D.; Liu, J.; Stucky, A.; Cruciata, G.; Di Rocco, A.; Friedman, E.; Quartarone, A.; Ghilardi, M.F. Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte. J. Neurosci., 2011, 31(30), 11044-11054.
[http://dx.doi.org/10.1523/JNEUROSCI.2125-11.2011] [PMID: 21795553]
[30]
Levine, E.S.; Dreyfus, C.F.; Black, I.B.; Plummer, M.R. Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl. Acad. Sci. USA, 1995, 92(17), 8074-8077.
[http://dx.doi.org/10.1073/pnas.92.17.8074] [PMID: 7644540]
[31]
Figurov, A.; Pozzo-Miller, L.D.; Olafsson, P.; Wang, T.; Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, 1996, 381(6584), 706-709.
[http://dx.doi.org/10.1038/381706a0] [PMID: 8649517]
[32]
Hanson, I.M.; Seawright, A.; van Heyningen, V. The human BDNF gene maps between FSHB and HVBS1 at the boundary of 11p13-p14. Genomics, 1992, 13(4), 1331-1333.
[http://dx.doi.org/10.1016/0888-7543(92)90060-6] [PMID: 1505967]
[33]
Liu, J.; Wang, P.; Sun, L.; Guan, X.; Xiu, M.; Zhang, X. The association between BDNF levels and risperidone-induced weight gain is dependent on the BDNF Val66Met polymorphism in antipsychotic-naive first episode schizophrenia patients: A 12-week prospective study. Transl. Psychiatry, 2021, 11(1), 458.
[http://dx.doi.org/10.1038/s41398-021-01585-3] [PMID: 34482368]
[34]
Ahmed, A.O.; Kramer, S.; Hofman, N.; Flynn, J.; Hansen, M.; Martin, V.; Pillai, A.; Buckley, P.F. A meta-analysis of brain-derived neurotrophic factor effects on brain volume in schizophrenia: Genotype and serum levels. Neuropsychobiol., 2021, 80(5), 411-424.
[http://dx.doi.org/10.1159/000514126] [PMID: 33706323]
[35]
Soliman, F.; Glatt, C.E.; Bath, K.G.; Levita, L.; Jones, R.M.; Pattwell, S.S.; Jing, D.; Tottenham, N.; Amso, D.; Somerville, L.H.; Voss, H.U.; Glover, G.; Ballon, D.J.; Liston, C.; Teslovich, T.; Van Kempen, T.; Lee, F.S.; Casey, B.J. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science, 2010, 327(5967), 863-866.
[http://dx.doi.org/10.1126/science.1181886] [PMID: 20075215]
[36]
Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; Lu, B.; Weinberger, D.R. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 2003, 112(2), 257-269.
[http://dx.doi.org/10.1016/S0092-8674(03)00035-7] [PMID: 12553913]
[37]
Hariri, A.R.; Goldberg, T.E.; Mattay, V.S.; Kolachana, B.S.; Callicott, J.H.; Egan, M.F.; Weinberger, D.R. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci., 2003, 23(17), 6690-6694.
[http://dx.doi.org/10.1523/JNEUROSCI.23-17-06690.2003] [PMID: 12890761]
[38]
Dempster, E.; Toulopoulou, T.; McDonald, C.; Bramon, E.; Walshe, M.; Filbey, F.; Wickham, H.; Sham, P.C.; Murray, R.M.; Collier, D.A. Association between BDNF val66 met genotype and episodic memory. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2005, 134B(1), 73-75.
[http://dx.doi.org/10.1002/ajmg.b.30150] [PMID: 15719396]
[39]
Chaieb, L.; Antal, A.; Ambrus, G.G.; Paulus, W. Brain-derived neurotrophic factor: Its impact upon neuroplasticity and neuroplasticity inducing transcranial brain stimulation protocols. Neurogenetics, 2014, 15(1), 1-11.
[http://dx.doi.org/10.1007/s10048-014-0393-1] [PMID: 24567226]
[40]
Cheeran, B.J.; Ritter, C.; Rothwell, J.C.; Siebner, H.R. Mapping genetic influences on the corticospinal motor system in humans. Neuroscience, 2009, 164(1), 156-163.
[http://dx.doi.org/10.1016/j.neuroscience.2009.01.054] [PMID: 19409217]
[41]
Jayasekeran, V.; Pendleton, N.; Holland, G.; Payton, A.; Jefferson, S.; Michou, E.; Vasant, D.; Ollier, B.; Horan, M.; Rothwell, J.; Hamdy, S. Val66Met in brain-derived neurotrophic factor affects stimulus-induced plasticity in the human pharyngeal motor cortex. Gastroenterology, 2011, 141(3), 827-836.
[http://dx.doi.org/10.1053/j.gastro.2011.05.047]
[42]
Lu, H.; Zhang, T.; Wen, M.; Sun, L. Impact of repetitive transcranial magnetic stimulation on post-stroke dysmnesia and the role of BDNF Val66Met SNP. Med. Sci. Monit., 2015, 21, 761-768.
[http://dx.doi.org/10.12659/MSM.892337] [PMID: 25770310]
[43]
Witte, A.V.; Kürten, J.; Jansen, S.; Schirmacher, A.; Brand, E.; Sommer, J.; Flöel, A. Interaction of BDNF and COMT polymorphisms on paired-associative stimulation-induced cortical plasticity. J. Neurosci., 2012, 32(13), 4553-4561.
[http://dx.doi.org/10.1523/JNEUROSCI.6010-11.2012] [PMID: 22457502]
[44]
Su, X.; Qiao, L.; Liu, Q.; Shang, Y.; Guan, X.; Xiu, M.; Zhang, X. Genetic polymorphisms of BDNF on cognitive functions in drug-naive first episode patients with schizophrenia. Sci. Rep., 2021, 11(1), 20057.
[http://dx.doi.org/10.1038/s41598-021-99510-7] [PMID: 34625629]
[45]
Xiu, M.H.; Guan, H.Y.; Zhao, J.M.; Wang, K.Q.; Pan, Y.F.; Su, X.R.; Wang, Y.H.; Guo, J.M.; Jiang, L.; Liu, H.Y.; Sun, S.G.; Wu, H.R.; Geng, H.S.; Liu, X.W.; Yu, H.J.; Wei, B.C.; Li, X.P.; Trinh, T.; Tan, S.P.; Zhang, X.Y. Cognitive enhancing effect of high-frequency neuronavigated rTMS in chronic schizophrenia patients with predominant negative symptoms: A double-blind controlled 32-week follow-up study. Schizophr. Bull., 2020, sbaa035.
[http://dx.doi.org/10.1093/schbul/sbaa035] [PMID: 32185388]
[46]
Barr, M.S.; Farzan, F.; Arenovich, T.; Chen, R.; Fitzgerald, P.B.; Daskalakis, Z.J. The effect of repetitive transcranial magnetic stimulation on gamma oscillatory activity in schizophrenia. PLoS One, 2011, 6(7), e22627.
[http://dx.doi.org/10.1371/journal.pone.0022627] [PMID: 21818354]
[47]
Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; Jääskeläinen, S.K.; Langguth, B.; Leocani, L.; Londero, A.; Nardone, R.; Nguyen, J.P.; Nyffeler, T.; Oliveira-Maia, A.J.; Oliviero, A.; Padberg, F.; Palm, U.; Paulus, W.; Poulet, E.; Quartarone, A.; Rachid, F.; Rektorová, I.; Rossi, S.; Sahlsten, H.; Schecklmann, M.; Szekely, D.; Ziemann, U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin. Neurophysiol., 2020, 131(2), 474-528.
[http://dx.doi.org/10.1016/j.clinph.2019.11.002] [PMID: 31901449]
[48]
Randolph, C.; Tierney, M.C.; Mohr, E.; Chase, T.N. The repeatable battery for the assessment of neuropsychological status (RBANS): Preliminary clinical validity. J. Clin. Exp. Neuropsychol., 1998, 20(3), 310-319.
[http://dx.doi.org/10.1076/jcen.20.3.310.823] [PMID: 9845158]
[49]
Jurinke, C.; Oeth, P.; van den Boom, D. MALDI-TOF mass spectrometry: A versatile tool for high-performance DNA analysis. Mol. Biotechnol., 2004, 26(2), 147-164.
[http://dx.doi.org/10.1385/MB:26:2:147] [PMID: 14764940]
[50]
Gao, J.; Xiu, M.H.; Liu, D.Y.; Wei, C.W.; Zhang, X. Interactive effect of MTHFR C677T polymorphism and sex on symptoms and cognitive functions in Chinese patients with chronic schizophrenia. Aging (Albany NY), 2020, 12(11), 10290-10299.
[http://dx.doi.org/10.18632/aging.103248] [PMID: 32497019]
[51]
Woo, N.H.; Teng, H.K.; Siao, C.J.; Chiaruttini, C.; Pang, P.T.; Milner, T.A.; Hempstead, B.L.; Lu, B. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat. Neurosci., 2005, 8(8), 1069-1077.
[http://dx.doi.org/10.1038/nn1510] [PMID: 16025106]
[52]
Cheeran, B.; Talelli, P.; Mori, F.; Koch, G.; Suppa, A.; Edwards, M.; Houlden, H.; Bhatia, K.; Greenwood, R.; Rothwell, J.C. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J. Physiol., 2008, 586(23), 5717-5725.
[http://dx.doi.org/10.1113/jphysiol.2008.159905] [PMID: 18845611]
[53]
Mastroeni, C.; Bergmann, T.O.; Rizzo, V.; Ritter, C.; Klein, C.; Pohlmann, I.; Brueggemann, N.; Quartarone, A.; Siebner, H.R. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex? PLoS One, 2013, 8(2), e57957.
[http://dx.doi.org/10.1371/journal.pone.0057957] [PMID: 23469118]
[54]
Nakamura, K.; Enomoto, H.; Hanajima, R.; Hamada, M.; Shimizu, E.; Kawamura, Y.; Sasaki, T.; Matsuzawa, D.; Sutoh, C.; Shirota, Y.; Terao, Y.; Ugawa, Y. Quadri-pulse stimulation (QPS) induced LTP/LTD was not affected by Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Neurosci. Lett., 2011, 487(3), 264-267.
[http://dx.doi.org/10.1016/j.neulet.2010.10.034] [PMID: 20970479]
[55]
Licinio, J.; Dong, C.; Wong, M.L. Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant treatment response. Arch. Gen. Psychiatry, 2009, 66(5), 488-497.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.38] [PMID: 19414708]
[56]
Wang, F.; Geng, X.; Tao, H.Y.; Cheng, Y. The restoration after repetitive transcranial magnetic stimulation treatment on cognitive ability of vascular dementia rats and its impacts on synaptic plasticity in hippocampal CA1 area. J. Mol. Neurosci., 2010, 41(1), 145-155.
[http://dx.doi.org/10.1007/s12031-009-9311-7] [PMID: 19953343]
[57]
Zhang, X.Y.; Chen, C.; Tan, Y.L.; Tan, S.; Luo, X.; Zuo, L.; Soares, J.C. BDNF polymorphisms are associated with cognitive performance in schizophrenia patients versus healthy controls. J. Clin. Psychiatry, 2016, 77(8), e1011-e1018.
[http://dx.doi.org/10.4088/JCP.15m10269] [PMID: 27561148]
[58]
Lessmann, V.; Gottmann, K.; Malcangio, M. Neurotrophin secretion: Current facts and future prospects. Prog. Neurobiol., 2003, 69(5), 341-374.
[http://dx.doi.org/10.1016/S0301-0082(03)00019-4] [PMID: 12787574]
[59]
Mori, F.; Ribolsi, M.; Kusayanagi, H.; Siracusano, A.; Mantovani, V.; Marasco, E.; Bernardi, G.; Centonze, D. Genetic variants of the NMDA receptor influence cortical excitability and plasticity in humans. J. Neurophysiol., 2011, 106(4), 1637-1643.
[http://dx.doi.org/10.1152/jn.00318.2011] [PMID: 21753020]
[60]
Nitsche, M.A.; Lampe, C.; Antal, A.; Liebetanz, D.; Lang, N.; Tergau, F.; Paulus, W. Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur. J. Neurosci., 2006, 23(6), 1651-1657.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04676.x] [PMID: 16553629]
[61]
Lu, B.; Nagappan, G.; Guan, X.; Nathan, P.J.; Wren, P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat. Rev. Neurosci., 2013, 14(6), 401-416.
[http://dx.doi.org/10.1038/nrn3505] [PMID: 23674053]
[62]
Bariohay, B.; Tardivel, C.; Pio, J.; Jean, A.; Félix, B. BDNF-TrkB signaling interacts with the GABAergic system to inhibit rhythmic swallowing in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295(4), R1050-R1059.
[http://dx.doi.org/10.1152/ajpregu.90407.2008] [PMID: 18685070]
[63]
Bocchio-Chiavetto, L.; Miniussi, C.; Zanardini, R.; Gazzoli, A.; Bignotti, S.; Specchia, C.; Gennarelli, M. 5-HTTLPR and BDNF Val66Met polymorphisms and response to rTMS treatment in drug resistant depression. Neurosci. Lett., 2008, 437(2), 130-134.
[http://dx.doi.org/10.1016/j.neulet.2008.04.005] [PMID: 18450378]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy