Review Article

抗胆碱酯酶药物治疗阿尔茨海默病:最新综述

卷 30, 期 6, 2023

发表于: 07 October, 2022

页: [701 - 724] 页: 24

弟呕挨: 10.2174/0929867329666220803113411

价格: $65

conference banner
摘要

背景:阿尔茨海默病(AD)是一种进行性神经退行性疾病,损害认知系统并导致痴呆。一般来说,AD影响65岁以上的人,如果我们考虑到预期寿命的增加,这意味着社会影响。目前市场上的药物只能减缓疾病的发展。从这个意义上说,寻找新药是药物化学的一个相关课题。本研究采用的治疗策略为胆碱能假说,其中乙酰胆碱酯酶(AChE)抑制剂是本病的主要治疗方法。 目的:综述具有AChE抑制功能的合成化合物和天然化合物的研究进展。 方法:根据2010年最后5年AChE抑制剂的研究收集数据。对合成和天然化合物进行了研究,其中采用了配体药物设计(LBDD)和结构药物设计(SBDD)策略,以更好地了解有前景的治疗药物的构效关系。 结果:用于计算生物利用度雷达、亲脂性、类药性和药代动力学参数的物理化学和药代动力学性质的预测(SwissADME)表明,大多数活性化合物与以下特征相关:分子量大于377 g/mol;摩尔折射率大于114;分数Csp3小于0.39,TPSA大于43 Å2。大多数活性化合物的亲脂性参数在2.5 ~ 4.52之间,具有主要的亲脂性特征。研究了与药物开发相关的原子和键/相互作用,数据指出了以下趋势:重原子数在16 ~ 41之间;芳香族重原子数在6 ~ 22之间;1 ~ 14之间的可旋转键数;h -键受体数量在1 ~ 11之间;h -债券捐赠者少于7个。分子对接研究表明,所有化合物的goldscore都高于作为阳性对照的药物,表明与酶的相互作用更强。 结论:所选化合物具有开发新型抗胆碱酯酶药物的潜力,可作为开发新候选药物的良好起点。此外,设计规则也可以从我们的分析中提取出来。

关键词: 阿尔茨海默病 (AD)、AChE 抑制剂、分子对接、构效关系 (SAR)、基于结构的药物设计 (SBDD)、基于配体的药物设计 (LBDD)、药代动力学。

[1]
Harris, J.R. Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease; Springer Science & Business Media, 2012.
[http://dx.doi.org/10.1007/978-94-007-5416-4]
[2]
Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[3]
Alzheimer Association 2018 Alzheimer’s disease facts and figures. Alzheimers Dement., 2018, 14, 701-701.
[4]
Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(10), 565-581.
[http://dx.doi.org/10.1038/s41582-019-0244-7] [PMID: 31501588]
[5]
Scheltens, P.; Blennow, K.; Breteler, M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; der Flier, W.M. Alzheimer’s Disease. Lancet, 2016, 388, 505-517.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[6]
WHO. Dementia. Available from:https://www.who.int/news-room/fact-sheets/detail/dementia (Accessed on: Sep 13, 2021).
[7]
Jensen, H.L.B.; Lillenes, M.S.; Rabano, A.; Günther, C-C.; Riaz, T.; Kalayou, S.T.; Ulstein, I.D.; Bøhmer, T.; Tønjum, T. Expression of nucleotide excision repair in Alzheimer’s disease is higher in brain tissue than in blood. Neurosci. Lett., 2018, 672, 53-58.
[http://dx.doi.org/10.1016/j.neulet.2018.02.043] [PMID: 29474873]
[8]
Agüera-Ortiz, L.; García-Ramos, R.; Grandas Pérez, F.J.; López-Álvarez, J.; Montes Rodríguez, J.M.; Olazarán Rodríguez, F.J.; Olivera Pueyo, J.; Pelegrin Valero, C.; Porta-Etessam, J. Depression in Alzheimer’s disease: A delphi consensus on etiology, risk factors, and clinical management. Front. Psychiatry, 2021, 12, 638651.
[http://dx.doi.org/10.3389/fpsyt.2021.638651] [PMID: 33716830]
[9]
Shen, Z.; Yi, Y.; Bompelli, A.; Yu, F.; Wang, Y.; Zhang, R. Extracting lifestyle factors for alzheimer’s disease from clinical notes using deep learning with weak supervision. arXiv, 2021, 2021, 2101.09244.
[10]
Cho, S.; Lee, H.; Seo, J. Impact of genetic risk factors for Alzheimer’s disease on brain glucose metabolism. Mol. Neurobiol., 2021, 58(6), 2608-2619.
[http://dx.doi.org/10.1007/s12035-021-02297-x] [PMID: 33479841]
[11]
Więckowska-Gacek, A.; Mietelska-Porowska, A.; Wydrych, M.; Wojda, U. Western diet as a trigger of Alzheimer’s disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res. Rev., 2021, 70, 101397.
[http://dx.doi.org/10.1016/j.arr.2021.101397] [PMID: 34214643]
[12]
Ventura, H.N.; Fonseca, L. The health of elderly people bearing Alzheimer’s disease: An integrative review. Rev. de Pes. Cuidado é Fund. Onl., 2018, 10, 941-944.
[13]
Henriques, A.D.; Benedet, A.L.; Camargos, E.F.; Rosa-Neto, P.; Nóbrega, O.T. Fluid and imaging biomarkers for Alzheimer’s disease: Where we stand and where to head to. Exp. Gerontol., 2018, 107, 169-177.
[http://dx.doi.org/10.1016/j.exger.2018.01.002] [PMID: 29307736]
[14]
Gyasi, Y.I.; Pang, Y.P.; Li, X.R.; Gu, J.X.; Cheng, X.J.; Liu, J.; Xu, T.; Liu, Y. Biological applications of near infrared fluorescence dye probes in monitoring Alzheimer’s disease. Eur. J. Med. Chem., 2020, 187, 111982.
[http://dx.doi.org/10.1016/j.ejmech.2019.111982] [PMID: 31877538]
[15]
Itzhaki, R.F.; Lin, W.R.; Shang, D.; Wilcock, G.K.; Faragher, B.; Jamieson, G.A. Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet, 1997, 349(9047), 241-244.
[http://dx.doi.org/10.1016/S0140-6736(96)10149-5] [PMID: 9014911]
[16]
Letenneur, L.; Pérès, K.; Fleury, H.; Garrigue, I.; Barberger-Gateau, P.; Helmer, C.; Orgogozo, J-M.; Gauthier, S.; Dartigues, J-F. Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: A population-based cohort study. PLoS One, 2008, 3(11), e3637.
[http://dx.doi.org/10.1371/journal.pone.0003637] [PMID: 18982063]
[17]
Wozniak, M.A.; Frost, A.L.; Preston, C.M.; Itzhaki, R.F. Antivirals reduce the formation of key Alzheimer’s disease molecules in cell cultures acutely infected with herpes simplex virus type 1. PLoS One, 2011, 6(10), e25152.
[http://dx.doi.org/10.1371/journal.pone.0025152] [PMID: 22003387]
[18]
Piacentini, R.; De Chiara, G.; Li Puma, D.D.; Ripoli, C.; Marcocci, M.E.; Garaci, E.; Palamara, A.T.; Grassi, C. HSV-1 and Alzheimer’s disease: More than a hypothesis. Front. Pharmacol., 2014, 5, 97.
[http://dx.doi.org/10.3389/fphar.2014.00097] [PMID: 24847267]
[19]
Harris, S.A.; Harris, E.A. Herpes simplex virus type 1 and other pathogens are key causative factors in sporadic Alzheimer’s disease. J. Alzheimers Dis., 2015, 48(2), 319-353.
[http://dx.doi.org/10.3233/JAD-142853] [PMID: 26401998]
[20]
Kłysik, K.; Pietraszek, A.; Karewicz, A.; Nowakowska, M. Acyclovir in the treatment of herpes viruses - A review. Curr. Med. Chem., 2020, 27(24), 4118-4137.
[http://dx.doi.org/10.2174/0929867325666180309105519] [PMID: 29521211]
[21]
Reitz, C.; Mayeux, R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol., 2014, 88(4), 640-651.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[22]
Ferreira, S.T.; Klein, W.L. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol. Learn. Mem., 2011, 96(4), 529-543.
[http://dx.doi.org/10.1016/j.nlm.2011.08.003] [PMID: 21914486]
[23]
Coyle, J.T.; Price, D.L.; DeLong, M.R. Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science, 1983, 219(4589), 1184-1190.
[http://dx.doi.org/10.1126/science.6338589] [PMID: 6338589]
[24]
Nguyen, V.T.T.; Sallbach, J.; Dos Santos Guilherme, M.; Endres, K. Influence of acetylcholine esterase inhibitors and memantine, clinically approved for Alzheimer’s dementia treatment, on intestinal properties of the mouse. Int. J. Mol. Sci., 2021, 22(3), 1015.
[http://dx.doi.org/10.3390/ijms22031015] [PMID: 33498392]
[25]
Campoy, F.J.; Vidal, C.J.; Muñoz-Delgado, E.; Montenegro, M.F.; Cabezas-Herrera, J.; Nieto-Cerón, S. Cholinergic system and cell proliferation. Chem. Biol. Interact., 2016, 259(Pt B), 257-265.
[http://dx.doi.org/10.1016/j.cbi.2016.04.014] [PMID: 27083142]
[26]
Verma, S.; Kumar, A.; Tripathi, T.; Kumar, A. Muscarinic and nicotinic acetylcholine receptor agonists: Current scenario in Alzheimer’s disease therapy. J. Pharm. Pharmacol., 2018, 70(8), 985-993.
[http://dx.doi.org/10.1111/jphp.12919] [PMID: 29663387]
[27]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[28]
Bartus, R.T. On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol., 2000, 163(2), 495-529.
[http://dx.doi.org/10.1006/exnr.2000.7397] [PMID: 10833325]
[29]
Silveyra, M.-X.; García-Ayllón, M.-S. Changes in acetylcholinesterase expression are associated with altered presenilin-1 levels. Neurobiol. Aging, 2012, 33, 627.
[30]
Arendt, T.; Brückner, M.K.; Morawski, M.; Jäger, C.; Gertz, H-J. Early neurone loss in Alzheimer’s disease: Cortical or subcortical? Acta Neuropathol. Commun., 2015, 3(1), 10.
[http://dx.doi.org/10.1186/s40478-015-0187-1] [PMID: 25853173]
[31]
Kumar, B.; Thakur, A.; Dwivedi, A.R.; Kumar, R.; Kumar, V. Multi-target-directed ligands as an effective strategy for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2022, 29(10), 1757-1803.
[http://dx.doi.org/10.2174/0929867328666210512005508] [PMID: 33982650]
[32]
Chaves, S.; Várnagy, K.; Santos, M.A. Recent multi-target approaches on the development of anti- alzheimer’s agents integrating metal chelation activity. Curr. Med. Chem., 2021, 28(35), 7247-7277.
[http://dx.doi.org/10.2174/0929867328666210218183032] [PMID: 33602068]
[33]
Sharma, K. Cholinesterase inhibitors as Alzheimer's therapeutics (Review). Mol. Med. Rep., 2019, 20(2), 1479-1487.
[PMID: 31257471]
[34]
Forlenza, O.V. Tratamento farmacológico da doença de Alzheimer. Arch. Clin. Psychiatry, 2005, 32(3), 137-148.
[http://dx.doi.org/10.1590/S0101-60832005000300006]
[35]
Zemek, F.; Drtinova, L.; Nepovimova, E.; Sepsova, V.; Korabecny, J.; Klimes, J.; Kuca, K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf., 2014, 13(6), 759-774.
[PMID: 24845946]
[36]
Coyle, J.; Kershaw, P. Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: Effects on the course of Alzheimer’s disease. Biol. Psychiatry, 2001, 49(3), 289-299.
[http://dx.doi.org/10.1016/S0006-3223(00)01101-X] [PMID: 11230880]
[37]
Ashani, Y.; Peggins, J.O., III; Doctor, B.P. Mechanism of inhibition of cholinesterases by huperzine A. Biochem. Biophys. Res. Commun., 1992, 184(2), 719-726.
[http://dx.doi.org/10.1016/0006-291X(92)90649-6] [PMID: 1575745]
[38]
Shaw, K.P.; Aracava, Y.; Akaike, A.; Daly, J.W.; Rickett, D.L.; Albuquerque, E.X. The reversible cholinesterase inhibitor physostigmine has channel-blocking and agonist effects on the acetylcholine receptor-ion channel complex. Mol. Pharmacol., 1985, 28(6), 527-538.
[PMID: 2417099]
[39]
Sheeja Malar, D.; Beema Shafreen, R.; Karutha Pandian, S.; Pandima Devi, K. Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant Grewia tiliaefolia - An in vitro and in silico study. Pharm. Biol., 2017, 55(1), 381-393.
[http://dx.doi.org/10.1080/13880209.2016.1241811] [PMID: 27931177]
[40]
Lane, R.M.; Potkin, S.G.; Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol., 2006, 9(1), 101-124.
[http://dx.doi.org/10.1017/S1461145705005833] [PMID: 16083515]
[41]
Zouari-Bouassida, K.; Trigui, M.; Makni, S.; Jlaiel, L.; Tounsi, S. Seasonal variation in essential oils composition and the biological and pharmaceutical protective effects of Mentha longifolia leaves grown in Tunisia. BioMed Res. Int., 2018, 2018, 7856517.
[http://dx.doi.org/10.1155/2018/7856517] [PMID: 30627570]
[42]
Choi, D.Y.; Lee, Y.J.; Hong, J.T.; Lee, H.J. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res. Bull., 2012, 87(2-3), 144-153.
[http://dx.doi.org/10.1016/j.brainresbull.2011.11.014] [PMID: 22155297]
[43]
Murray, A.P.; Faraoni, M.B.; Castro, M.J.; Alza, N.P.; Cavallaro, V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr. Neuropharmacol., 2013, 11(4), 388-413.
[http://dx.doi.org/10.2174/1570159X11311040004] [PMID: 24381530]
[44]
Eruygur, N.; Koçyiğit, U.M.; Taslimi, P.; Ataş, M.; Tekin, M.; Gülçin, İ. Screening the in vitro antioxidant, antimicrobial, anticholinesterase, antidiabetic activities of endemic Achillea cucullata (Asteraceae) ethanol extract. S. Afr. J. Bot., 2019, 120, 141-145.
[http://dx.doi.org/10.1016/j.sajb.2018.04.001]
[45]
Ullah, F.; Ayaz, M.; Sadiq, A.; Hussain, A.; Ahmad, S.; Imran, M.; Zeb, A. Phenolic, flavonoid contents, anticholinesterase and antioxidant evaluation of Iris germanica var; florentina. Nat. Prod. Res., 2016, 30(12), 1440-1444.
[http://dx.doi.org/10.1080/14786419.2015.1057585] [PMID: 26166432]
[46]
Hajlaoui, H.; Mighri, H.; Aouni, M.; Gharsallah, N.; Kadri, A. Chemical composition and in vitro evaluation of antioxidant, antimicrobial, cytotoxicity and anti-acetylcholinesterase properties of Tunisian Origanum majorana L. essential oil. Microb. Pathog., 2016, 95, 86-94.
[http://dx.doi.org/10.1016/j.micpath.2016.03.003] [PMID: 26997648]
[47]
Ahmad, S.; Ullah, F.; Sadiq, A.; Ayaz, M.; Imran, M.; Ali, I.; Zeb, A.; Ullah, F.; Shah, M.R. Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. BMC Complement. Altern. Med., 2016, 16(1), 29.
[http://dx.doi.org/10.1186/s12906-016-0998-z] [PMID: 26810212]
[48]
Kaufmann, D.; Kaur Dogra, A.; Tahrani, A.; Herrmann, F.; Wink, M. Extracts from traditional Chinese medicinal plants inhibit acetylcholinesterase, a known Alzheimer’s disease target. Molecules, 2016, 21(9), 1161.
[http://dx.doi.org/10.3390/molecules21091161] [PMID: 27589716]
[49]
Deveci, E.; Tel-Çayan, G.; Duru, M.E. Phenolic profile, antioxidant, anticholinesterase, and anti-tyrosinase activities of the various extracts of ferula elaeochytris and sideritis stricta. Int. J. Food Prop., 2018, 21(1), 771-783.
[http://dx.doi.org/10.1080/10942912.2018.1431660]
[50]
Temel, H.E.; Demirci, B.; Demirci, F.; Celep, F.; Kahraman, A.; Doğan, M.; Başer, K.H.C. Chemical characterization and anticholinesterase effects of essential oils derived from salvia species. J. Essent. Oil Res., 2016, 28(4), 322-331.
[http://dx.doi.org/10.1080/10412905.2016.1159257]
[51]
Sadiq, A.; Zeb, A.; Ullah, F.; Ahmad, S.; Ayaz, M.; Rashid, U.; Muhammad, N. Chemical characterization, analgesic, antioxidant, and anticholinesterase potentials of essential oils from Isodon rugosus wall. ex. Benth. Front. Pharmacol., 2018, 9, 623.
[http://dx.doi.org/10.3389/fphar.2018.00623] [PMID: 29950997]
[52]
Gali, L.; Bedjou, F. Antioxidant and anticholinesterase effects of the ethanol extract, ethanol extract fractions and total alkaloids from the cultivated Ruta chalepensis. S. Afr. J. Bot., 2019, 120, 163-169.
[http://dx.doi.org/10.1016/j.sajb.2018.04.011]
[53]
Hwang, J-S.; Cho, C.H.; Baik, M-Y.; Park, S-K.; Heo, H.J.; Cho, Y-S.; Kim, D-O. Effects of freeze-drying on antioxidant and anticholinesterase activities in various cultivars of kiwifruit (Actinidia spp.). Food Sci. Biotechnol., 2017, 26(1), 221-228.
[http://dx.doi.org/10.1007/s10068-017-0030-5] [PMID: 30263532]
[54]
Qu, Z.; Zhang, J.; Yang, H.; Gao, J.; Chen, H.; Liu, C.; Gao, W. Prunella vulgaris L., an edible and medicinal plant, attenuates scopolamine-induced memory impairment in rats. J. Agric. Food Chem., 2017, 65(2), 291-300.
[http://dx.doi.org/10.1021/acs.jafc.6b04597] [PMID: 28001065]
[55]
Venditti, A.; Frezza, C.; Sciubba, F.; Serafini, M.; Bianco, A.; Cianfaglione, K.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Maggi, F. Volatile components, polar constituents and biological activity of tansy daisy (Tanacetum Macrophyllum (Waldst. et Kit.) Schultz Bip.). Ind. Crops Prod., 2018, 118, 225-235.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.056]
[56]
Ali Reza, A.S.M.; Hossain, M.S.; Akhter, S.; Rahman, M.R.; Nasrin, M.S.; Uddin, M.J.; Sadik, G.; Khurshid Alam, A.H.M. In vitro antioxidant and cholinesterase inhibitory activities of Elatostema papillosum leaves and correlation with their phytochemical profiles: A study relevant to the treatment of Alzheimer’s disease. BMC Complement. Altern. Med., 2018, 18(1), 123.
[http://dx.doi.org/10.1186/s12906-018-2182-0] [PMID: 29622019]
[57]
Rahman, M.A.; Uddin, S.; Wilcock, C. Medicinal plants used by chakma tribe in hill tracts districts of Bangladesh. Indian J. Tradit. Knowl., 2007, 6, 508-517.
[58]
Naghibi, F.; Mosadegh, M.; Mohammadi Motamed, S.; Ghorbani, A.B. Labiatae family in folk medicine in Iran: From ethnobotany to pharmacology. Iran. J. Pharm. Sci., 2005, 4, 63-79.
[59]
Mimica-Dukić, N.; Božin, B.; Soković, M.; Mihajlović, B.; Matavulj, M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med., 2003, 69(5), 413-419.
[http://dx.doi.org/10.1055/s-2003-39704] [PMID: 12802721]
[60]
Džamić, A.M.; Soković, M.D.; Ristić, M.S.; Novaković, M.; Grujić-Jovanović, S.; Tešević, V.; Marin, P.D. Antifungal and antioxidant activity of Mentha longifolia (L.) Hudson (Lamiaceae) essential oil. Bot. Serb., 2010, 34, 57-61.
[61]
Zhao, H.; Zhou, S.; Zhang, M.; Feng, J.; Wang, S.; Wang, D.; Geng, Y.; Wang, X. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch. J. Pharm. Biomed, 2016, 120, 235-240.
[http://dx.doi.org/10.1016/j.jpba.2015.12.025] [PMID: 26760241]
[62]
Kalaycıoğlu, Z.; Gazioğlu, I.; Erim, F.B. Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L. Nat. Prod. Res., 2017, 31(24), 2914-2917.
[http://dx.doi.org/10.1080/14786419.2017.1299727] [PMID: 28287280]
[63]
Karakaya, S.; Koca, M.; Yılmaz, S.V.; Yıldırım, K.; Pınar, N.M.; Demirci, B.; Brestic, M.; Sytar, O. Molecular docking studies of coumarins isolated from extracts and essential oils of Zosima absinthifolia link as potential inhibitors for Alzheimer’s disease. Molecules, 2019, 24(4), 722.
[http://dx.doi.org/10.3390/molecules24040722] [PMID: 30781573]
[64]
Yang, X.; Zhang, W.; Ying, X.; Stien, D. New flavonoids from Portulaca oleracea L. and their activities. Fitoterapia, 2018, 127, 257-262.
[http://dx.doi.org/10.1016/j.fitote.2018.02.032] [PMID: 29501925]
[65]
Türkan, F.; Taslimi, P.; Saltan, F.Z. Tannic acid as a natural antioxidant compound: Discovery of a potent metabolic enzyme inhibitor for a new therapeutic approach in diabetes and Alzheimer’s disease. J. Biochem. Mol. Toxicol., 2019, 33(8), e22340.
[http://dx.doi.org/10.1002/jbt.22340] [PMID: 30974029]
[66]
Ademosun, A.O.; Oboh, G.; Bello, F.; Ayeni, P.O. Antioxidative properties and effect of quercetin and its glycosylated form (rutin) on acetylcholinesterase and butyrylcholinesterase activities. J. Evid. Based Complementary Altern. Med., 2016, 21(4), NP11-NP17.
[http://dx.doi.org/10.1177/2156587215610032] [PMID: 26438716]
[67]
Farag, M.A.; Ezzat, S.M.; Salama, M.M.; Tadros, M.G. Anti-acetylcholinesterase potential and metabolome classification of 4 Ocimum species as determined via UPLC/qTOF/MS and chemometric tools. J. Pharm. Biomed., 2016, 125, 292-302.
[http://dx.doi.org/10.1016/j.jpba.2016.03.037] [PMID: 27061877]
[68]
Salleh, W.M.N.H.W.; Ahmad, F.; Yen, K.H.; Zulkifli, R.M. Anticholinesterase and anti-inflammatory constituents from beilschmiedia pulverulenta kosterm. Nat. Prod. Sci., 2016, 22(4), 225.
[http://dx.doi.org/10.20307/nps.2016.22.4.225]
[69]
Niu, B.; Zhang, M.; Du, P.; Jiang, L.; Qin, R.; Su, Q.; Chen, F.; Du, D.; Shu, Y.; Chou, K-C. Small molecular floribundiquinone B derived from medicinal plants inhibits acetylcholinesterase activity. Oncotarget, 2017, 8(34), 57149-57162.
[http://dx.doi.org/10.18632/oncotarget.19169] [PMID: 28915661]
[70]
Wei, X.; Jiang, J-S.; Feng, Z-M.; Zhang, P-C. Anthraquinone-benzisochromanquinone dimers from the roots of Berchemia floribunda. Chem. Pharm. Bull. (Tokyo), 2008, 56(9), 1248-1252.
[http://dx.doi.org/10.1248/cpb.56.1248] [PMID: 18758095]
[71]
Bourne, Y.; Taylor, P.; Radić, Z.; Marchot, P. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J., 2003, 22(1), 1-12.
[http://dx.doi.org/10.1093/emboj/cdg005] [PMID: 12505979]
[72]
Dzoyem, J.P.; Nkuete, A.H.L.; Ngameni, B.; Eloff, J.N. Anti-inflammatory and anticholinesterase activity of six flavonoids isolated from Polygonum and Dorstenia species. Arch. Pharm. Res., 2017, 40(10), 1129-1134.
[http://dx.doi.org/10.1007/s12272-015-0612-9] [PMID: 26048035]
[73]
Ji, H.F.; Zhang, H.Y. Theoretical evaluation of flavonoids as multipotent agents to combat Alzheimer’s disease. J. Mol. Struct., 2006, 767(1-3), 3-9.
[http://dx.doi.org/10.1016/j.theochem.2006.04.041]
[74]
Blaikie, L.; Kay, G.; Kong Thoo Lin, P. Current and emerging therapeutic targets of alzheimer’s disease for the design of multi-target directed ligands. MedChemComm, 2019, 10(12), 2052-2072.
[http://dx.doi.org/10.1039/C9MD00337A] [PMID: 32206241]
[75]
Ferreira, J.P.S.; Albuquerque, H.M.T.; Cardoso, S.M.; Silva, A.M.S.; Silva, V.L.M. Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur. J. Med. Chem., 2021, 221, 113492.
[http://dx.doi.org/10.1016/j.ejmech.2021.113492] [PMID: 33984802]
[76]
Shidore, M.; Machhi, J.; Shingala, K.; Murumkar, P.; Sharma, M.K.; Agrawal, N.; Tripathi, A.; Parikh, Z.; Pillai, P.; Yadav, M.R. Benzylpiperidine-linked diarylthiazoles as potential anti-alzheimer’s agents: Synthesis and biological evaluation. J. Med. Chem., 2016, 59(12), 5823-5846.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00426] [PMID: 27253679]
[77]
Więckowska, A.; Kołaczkowski, M.; Bucki, A.; Godyń, J.; Marcinkowska, M.; Więckowski, K.; Zaręba, P.; Siwek, A.; Kazek, G.; Głuch-Lutwin, M.; Mierzejewski, P.; Bienkowski, P.; Sienkiewicz-Jarosz, H.; Knez, D.; Wichur, T.; Gobec, S.; Malawska, B. Novel multi-target-directed ligands for Alzheimer’s disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2016, 124, 63-81.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.016] [PMID: 27560283]
[78]
Peauger, L.; Azzouz, R.; Gembus, V.; Ţînţaş, M-L.; Sopková-de Oliveira Santos, J.; Bohn, P.; Papamicaël, C.; Levacher, V. Donepezil-based central acetylcholinesterase inhibitors by means of a “bio-oxidizable” prodrug strategy: Design, synthesis, and in vitro biological evaluation. J. Med. Chem., 2017, 60(13), 5909-5926.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00702] [PMID: 28613859]
[79]
García-Font, N.; Hayour, H.; Belfaitah, A.; Pedraz, J.; Moraleda, I.; Iriepa, I.; Bouraiou, A.; Chioua, M.; Marco-Contelles, J.; Oset-Gasque, M.J. Potent anticholinesterasic and neuroprotective pyranotacrines as inhibitors of beta-amyloid aggregation, oxidative stress and tau-phosphorylation for Alzheimer’s disease. Eur. J. Med. Chem., 2016, 118, 178-192.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.023] [PMID: 27128182]
[80]
Hepnarova, V.; Korabecny, J.; Matouskova, L.; Jost, P.; Muckova, L.; Hrabinova, M.; Vykoukalova, N.; Kerhartova, M.; Kucera, T.; Dolezal, R.; Nepovimova, E.; Spilovska, K.; Mezeiova, E.; Pham, N.L.; Jun, D.; Staud, F.; Kaping, D.; Kuca, K.; Soukup, O. The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer’s disease. Eur. J. Med. Chem., 2018, 150, 292-306.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.083] [PMID: 29533874]
[81]
Eghtedari, M.; Sarrafi, Y.; Nadri, H.; Mahdavi, M.; Moradi, A.; Homayouni Moghadam, F.; Emami, S.; Firoozpour, L.; Asadipour, A.; Sabzevari, O.; Foroumadi, A. New tacrine-derived AChE/BuChE inhibitors: Synthesis and biological evaluation of 5-amino-2-phenyl- 4H-pyrano[2,3-b]quinoline-3-carboxylates. Eur. J. Med. Chem., 2017, 128, 237-246.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.042] [PMID: 28189905]
[82]
Ulus, R.; Zengin Kurt, B.; Gazioğlu, I.; Kaya, M. Microwave assisted synthesis of novel hybrid tacrine-sulfonamide derivatives and investigation of their antioxidant and anticholinesterase activities. Bioorg. Chem., 2017, 70, 245-255.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.005] [PMID: 28153340]
[83]
Hiremathad, A.; Chand, K.; Esteves, A.R.; Cardoso, S.M.; Ramsay, R.R.; Chaves, S.; Keri, R.S.; Santos, M.A. Tacrine-allyl/propargylcysteine-benzothiazole trihybrids as potential anti-alzheimer’s drug candidates. RSC Advances, 2016, 6(58), 53519-53532.
[http://dx.doi.org/10.1039/C6RA03455A]
[84]
Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H-Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, D.R. A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 612-632.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.021] [PMID: 28841514]
[85]
Sameem, B.; Saeedi, M.; Mahdavi, M.; Nadri, H.; Moghadam, F.H.; Edraki, N.; Khan, M.I.; Amini, M. Synthesis, docking study and neuroprotective effects of some novel pyrano[3,2-c]chromene derivatives bearing morpholine/phenylpiperazine moiety. Bioorg. Med. Chem., 2017, 25(15), 3980-3988.
[http://dx.doi.org/10.1016/j.bmc.2017.05.043] [PMID: 28587871]
[86]
Ghanei-Nasab, S.; Khoobi, M.; Hadizadeh, F.; Marjani, A.; Moradi, A.; Nadri, H.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and anticholinesterase activity of coumarin-3-carboxamides bearing tryptamine moiety. Eur. J. Med. Chem., 2016, 121, 40-46.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.014] [PMID: 27214510]
[87]
Barbosa, F.A.R.; Canto, R.F.S.; Saba, S.; Rafique, J.; Braga, A.L. Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(22), 5762-5770.
[http://dx.doi.org/10.1016/j.bmc.2016.09.031] [PMID: 27681239]
[88]
Reis, J.; Cagide, F.; Valencia, M.E.; Teixeira, J.; Bagetta, D.; Pérez, C.; Uriarte, E.; Oliveira, P.J.; Ortuso, F.; Alcaro, S.; Rodríguez-Franco, M.I.; Borges, F. Multi-target-directed ligands for Alzheimer’s disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors. Eur. J. Med. Chem., 2018, 158, 781-800.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.056] [PMID: 30245401]
[89]
Hebda, M.; Bajda, M.; Więckowska, A.; Szałaj, N.; Pasieka, A.; Panek, D.; Godyń, J.; Wichur, T.; Knez, D.; Gobec, S.; Malawska, B. Synthesis, molecular modelling and biological evaluation of novel heterodimeric, multiple ligands targeting cholinesterases and amyloid beta. Molecules, 2016, 21(4), 410.
[http://dx.doi.org/10.3390/molecules21040410] [PMID: 27023510]
[90]
Lolak, N.; Akocak, S.; Türkeş, C.; Taslimi, P.; Işık, M.; Beydemir, Ş.; Gülçin, İ.; Durgun, M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg. Chem., 2020, 100, 103897.
[http://dx.doi.org/10.1016/j.bioorg.2020.103897] [PMID: 32413628]
[91]
AlFadly, E.D.; Elzahhar, P.A.; Tramarin, A.; Elkazaz, S.; Shaltout, H.; Abu-Serie, M.M.; Janockova, J.; Soukup, O.; Ghareeb, D.A.; El-Yazbi, A.F.; Rafeh, R.W.; Bakkar, N.Z.; Kobeissy, F.; Iriepa, I.; Moraleda, I.; Saudi, M.N.S.; Bartolini, M.; Belal, A.S.F. Tackling neuroinflammation and cholinergic deficit in Alzheimer’s disease: Multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase. Eur. J. Med. Chem., 2019, 167, 161-186.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.012] [PMID: 30771604]
[92]
Mehrabi, F.; Pourshojaei, Y.; Moradi, A.; Sharifzadeh, M.; Khosravani, L.; Sabourian, R.; Rahmani-Nezhad, S.; Mohammadi-Khanaposhtani, M.; Mahdavi, M.; Asadipour, A.; Rahimi, H. R.; Moghimi, S.; Foroumadi, A. Design, synthesis, molecular modeling and anticholinesterase activity of benzylidene-benzofuran-3-ones containing cyclic amine side chain. Fut. Med. Chem., 2017, 9(7), 659-671.
[93]
Li, J.C.; Zhang, J.; Rodrigues, M.C.; Ding, D.J.; Longo, J.P.F.; Azevedo, R.B.; Muehlmann, L.A.; Jiang, C.S. Synthesis and evaluation of novel 1,2,3-triazole-based acetylcholinesterase inhibitors with neuroprotective activity. Bioorg. Med. Chem. Lett., 2016, 26(16), 3881-3885.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.017] [PMID: 27426301]
[94]
Srivastava, P.; Tripathi, P.N.; Sharma, P.; Rai, S.N.; Singh, S.P.; Srivastava, R.K.; Shankar, S.; Shrivastava, S.K. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur. J. Med. Chem., 2019, 163, 116-135.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.049] [PMID: 30503937]
[95]
Kurt, B.Z.; Gazioglu, I.; Dag, A.; Salmas, R.E.; Kayık, G.; Durdagi, S.; Sonmez, F. Synthesis, anticholinesterase activity and molecular modeling study of novel carbamate-substituted thymol/carvacrol derivatives. Bioorg. Med. Chem., 2017, 25(4), 1352-1363.
[http://dx.doi.org/10.1016/j.bmc.2016.12.037] [PMID: 28089589]
[96]
Shrivastava, S.K.; Sinha, S.K.; Srivastava, P.; Tripathi, P.N.; Sharma, P.; Tripathi, M.K.; Tripathi, A.; Choubey, P.K.; Waiker, D.K.; Aggarwal, L.M.; Dixit, M.; Kheruka, S.C.; Gambhir, S.; Shankar, S.; Srivastava, R.K.; Shankar, S.; Srivastava, R.K. Design and development of novel p-aminobenzoic acid derivatives as potential cholinesterase inhibitors for the treatment of Alzheimer’s disease. Bioorg. Chem., 2019, 82, 211-223.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.009] [PMID: 30326403]
[97]
Karaman, N.; Sıcak, Y.; Taşkın-Tok, T.; Öztürk, M.; Karaküçük-İyidoğan, A.; Dikmen, M.; Koçyiğit-Kaymakçıoğlu, B.; Oruç-Emre, E.E. New piperidine-hydrazone derivatives: Synthesis, biological evaluations and molecular docking studies as AChE and BChE inhibitors. Eur. J. Med. Chem., 2016, 124, 270-283.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.037] [PMID: 27592396]
[98]
Si, W.; Zhang, T.; Zhang, L.; Mei, X.; Dong, M.; Zhang, K.; Ning, J. Design, synthesis and bioactivity of novel phthalimide derivatives as acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(9), 2380-2382.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.052] [PMID: 27017111]
[99]
Lee, S.; Barron, M.G.A. A mechanism-based 3D-QSAR approach for classification and prediction of acetylcholinesterase inhibitory potency of organophosphate and carbamate analogs. J. Comput. Aided Mol. Des., 2016, 30(4), 347-363.
[http://dx.doi.org/10.1007/s10822-016-9910-7] [PMID: 27055524]
[100]
Dgachi, Y.; Ismaili, L.; Knez, D.; Benchekroun, M.; Martin, H.; Szałaj, N.; Wehle, S.; Bautista-Aguilera, O.M.; Luzet, V.; Bonnet, A.; Malawska, B.; Gobec, S.; Chioua, M.; Decker, M.; Chabchoub, F.; Marco-Contelles, J. Synthesis and biological assessment of racemic benzochromenopyrimidinimines as antioxidant, cholinesterase, and Aβ1-42 aggregation inhibitors for Alzheimer’s disease therapy. ChemMedChem, 2016, 11(12), 1318-1327.
[http://dx.doi.org/10.1002/cmdc.201500539] [PMID: 26804623]
[101]
Mermer, A.; Demirbaş, N.; Şirin, Y.; Uslu, H.; Özdemir, Z.; Demirbaş, A. Conventional and microwave prompted synthesis, antioxidant, anticholinesterase activity screening and molecular docking studies of new quinolone-triazole hybrids. Bioorg. Chem., 2018, 78, 236-248.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.017] [PMID: 29614435]
[102]
Pudlo, M.; Luzet, V.; Ismaïli, L.; Tomassoli, I.; Iutzeler, A.; Refouvelet, B. Quinolone-benzylpiperidine derivatives as novel acetylcholinesterase inhibitor and antioxidant hybrids for Alzheimer disease. Bioorg. Med. Chem., 2014, 22(8), 2496-2507.
[http://dx.doi.org/10.1016/j.bmc.2014.02.046] [PMID: 24657052]
[103]
Detsi, A.; Bouloumbasi, D.; Prousis, K.C.; Koufaki, M.; Athanasellis, G.; Melagraki, G.; Afantitis, A.; Igglessi-Markopoulou, O.; Kontogiorgis, C.; Hadjipavlou-Litina, D.J. Design and synthesis of novel quinolinone-3-aminoamides and their α-lipoic acid adducts as antioxidant and anti-inflammatory agents. J. Med. Chem., 2007, 50(10), 2450-2458.
[http://dx.doi.org/10.1021/jm061173n] [PMID: 17444626]
[104]
Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem., 2012, 55(22), 10282-10286.
[http://dx.doi.org/10.1021/jm300871x] [PMID: 23035744]
[105]
Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem., 2003, 278(42), 41141-41147.
[http://dx.doi.org/10.1074/jbc.M210241200] [PMID: 12869558]
[106]
Biessels, G.J.; Deary, I.J.; Ryan, C.M. Cognition and diabetes: A lifespan perspective. Lancet Neurol., 2008, 7(2), 184-190.
[http://dx.doi.org/10.1016/S1474-4422(08)70021-8] [PMID: 18207116]
[107]
Messier, C.; Gagnon, M. Cognitive decline associated with dementia and type 2 diabetes: The interplay of risk factors. Diabetologia, 2009, 52(12), 2471-2474.
[http://dx.doi.org/10.1007/s00125-009-1533-2] [PMID: 19779694]
[108]
Haan, M.N. Therapy Insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease. Nat. Clin. Pract. Neurol., 2006, 2(3), 159-166.
[http://dx.doi.org/10.1038/ncpneuro0124] [PMID: 16932542]
[109]
Qiu, W.Q.; Folstein, M.F. Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: Review and hypothesis. Neurobiol. Aging, 2006, 27(2), 190-198.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.01.004] [PMID: 16399206]
[110]
Rizvi, S.M.D.; Shaikh, S.; Naaz, D.; Shakil, S.; Ahmad, A.; Haneef, M.; Abuzenadah, A.M. Kinetics and molecular docking study of an anti-diabetic drug glimepiride as acetylcholinesterase inhibitor: Implication for Alzheimer’s disease-diabetes dual therapy. Neurochem. Res., 2016, 41(6), 1475-1482.
[http://dx.doi.org/10.1007/s11064-016-1859-3] [PMID: 26886763]
[111]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[112]
Dias, M.V.B.; Ely, F.; Palma, M.S.; de Azevedo, W.F., Jr; Basso, L.A.; Santos, D.S. Chorismate synthase: An attractive target for drug development against orphan diseases. Curr. Drug Targets, 2007, 8(3), 437-444.
[http://dx.doi.org/10.2174/138945007780058924] [PMID: 17348836]
[113]
Filgueira de Azevedo, W., Jr; dos Santos, G.C.; dos Santos, D.M.; Olivieri, J.R.; Canduri, F.; Silva, R.G.; Basso, L.A.; Renard, G.; da Fonseca, I.O.; Mendes, M.A.; Palma, M.S.; Santos, D.S. Docking and small angle X-ray scattering studies of purine nucleoside phosphorylase. Biochem. Biophys. Res. Commun., 2003, 309(4), 923-928.
[http://dx.doi.org/10.1016/j.bbrc.2003.08.093] [PMID: 13679062]
[114]
Krüger, A.; Gonçalves, V.M.; Wrenger, C.; Kronenberger, T. ADME profiling in drug discovery and a new path paved on silica. Drug Discov. Dev., 2019, 2019, 86174.
[115]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[116]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714-3717.
[http://dx.doi.org/10.1021/jm000942e] [PMID: 11020286]
[117]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[118]
Veber, D.F.; Johnson, S.R.; Cheng, H-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[119]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[120]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy