Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Meta-Analysis

Comparative Analysis of the Pre- and Post-Medication Effects of Antipsychotic Agents on the Blood-Based Oxidative Stress Biomarkers in Patients with Schizophrenia: A Meta-Analysis

Author(s): Mi Yang*, Chunzhi Wang, Guocheng Zhao, Di Kong, Liju Liu, Shuai Yuan, Wei Chen, Can Feng and Zezhi Li*

Volume 21, Issue 2, 2023

Published on: 15 November, 2022

Page: [340 - 352] Pages: 13

DOI: 10.2174/1570159X20666220706101021

Price: $65

conference banner
Abstract

Objective: Studies have shown that oxidative stress (OS) is related to the pathophysiology of schizophrenia (SCZ), but whether antipsychotics can induce OS has not been investigated well. Moreover, antipsychotics have differential effects on the OS level modulation, i.e., different types of antipsychotics have different effects on the cellular antioxidants or pro-oxidants.

Methods: We followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines and investigated the OS indicators including both enzymatic and nonenzymatic markers, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA), glutathione (GSH), vitamin C, etc., of SCZ patients at baseline and follow-up of mono-medication.

Results: Twenty studies met the inclusion criteria, with a total of 1162 patients enrolled at baseline, and 1105 patients completed the follow-up. OS markers were changed after a period of antipsychotic treatment in SCZ patients. The GPx activity and MDA level decreased in the whole blood (P<0.05), also the serum MDA level decreased (P<0.05). For the first-episode SCZ patients, the activity of GPx and the level of MDA decreased, while the level of vitamin C increased (all P<0.05). The levels of MDA in patients receiving atypical antipsychotics decreased (P<0.05), while the level of GSH in patients with typical antipsychotics decreased (P=0.05).

Conclusion: Antipsychotic medication may cause changes in the levels of OS markers in different blood samples of SCZ patients. However, the available studies might not be sufficient to reveal the underlying facts accurately due to the poor quality of experimental designs in the published literature.

Keywords: Schizophrenia, antipsychotics, oxidative stress, antioxidants, typical antipsychotics, atypical antipsychotic.

Graphical Abstract
[1]
Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet, 2016, 388(10039), 86-97.
[http://dx.doi.org/10.1016/S0140-6736(15)01121-6] [PMID: 26777917]
[2]
Hardingham, G.E.; Do, K.Q. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat. Rev. Neurosci., 2016, 17(2), 125-134.
[http://dx.doi.org/10.1038/nrn.2015.19] [PMID: 26763624]
[3]
El Khoueiry, C.; Cabungcal, J.H.; Rovó, Z.; Fournier, M.; Do, K.Q.; Steullet, P. Developmental oxidative stress leads to T-type Ca2+ channel hypofunction in thalamic reticular nucleus of mouse models pertinent to schizophrenia. Mol. Psychiatry, 2022, 27(4), 2042-2051.
[http://dx.doi.org/10.1038/s41380-021-01425-2] [PMID: 35079122]
[4]
Ermakov, E.A.; Dmitrieva, E.M.; Parshukova, D.A.; Kazantseva, D.V.; Vasilieva, A.R.; Smirnova, L.P. Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxid. Med. Cell. Longev., 2021, 2021, 8881770.
[http://dx.doi.org/10.1155/2021/8881770] [PMID: 33552387]
[5]
Mahadik, S.P.; Pillai, A.; Joshi, S.; Foster, A. Prevention of oxidative stress-mediated neuropathology and improved clinical outcome by adjunctive use of a combination of antioxidants and omega-3 fatty acids in schizophrenia. Int. Rev. Psychiatry, 2006, 18(2), 119-131.
[http://dx.doi.org/10.1080/09540260600581993] [PMID: 16777666]
[6]
Bryll, A.; Skrzypek, J. Krzyściak, W.; Szelągowska, M.; Śmierciak, N.; Kozicz, T.; Popiela, T. Oxidative-antioxidant imbalance and impaired glucose metabolism in schizophrenia. Biomolecules, 2020, 10(3), E384.
[http://dx.doi.org/10.3390/biom10030384] [PMID: 32121669]
[7]
Albayrak, Y.; Ünsal, C.; Beyazyüz, M.; Ünal, A. Kuloğlu, M. Reduced total antioxidant level and increased oxidative stress in patients with deficit schizophrenia: A preliminary study. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 45, 144-149.
[http://dx.doi.org/10.1016/j.pnpbp.2013.04.020] [PMID: 23657077]
[8]
Fedorova, M.; Bollineni, R.C.; Hoffmann, R. Protein carbonylation as a major hallmark of oxidative damage: Update of analytical strategies. Mass Spectrom. Rev., 2014, 33(2), 79-97.
[http://dx.doi.org/10.1002/mas.21381] [PMID: 23832618]
[9]
Dietrich-Muszalska, A.; Kontek, B. Lipid peroxidation in patients with schizophrenia. Psychiatry Clin. Neurosci., 2010, 64(5), 469-475.
[http://dx.doi.org/10.1111/j.1440-1819.2010.02132.x] [PMID: 20923426]
[10]
Mueller, T.M.; Meador-Woodruff, J.H. Post-translational protein modifications in schizophrenia. NPJ Schizophr., 2020, 6(1), 5.
[http://dx.doi.org/10.1038/s41537-020-0093-9] [PMID: 32123175]
[11]
González-Blanco, L.; García-Portilla, M.P.; García-Álvarez, L.; de la Fuente-Tomás, L.; Iglesias García, C.; Sáiz, P.A.; Rodríguez-González, S.; Coto-Montes, A.; Bobes, J. Oxidative stress biomarkers and clinical dimensions in first 10 years of schizophrenia. Rev. Psiquiatr. Salud Ment., 2018, 11(3), 130-140.
[http://dx.doi.org/10.1016/j.rpsmen.2018.03.001] [PMID: 29691142]
[12]
Morera-Fumero, A.L.; Díaz-Mesa, E.; Abreu-Gonzalez, P.; Fernandez-Lopez, L.; Cejas-Mendez, M.D. Low levels of serum total antioxidant capacity and presence at admission and absence at discharge of a day/night change as a marker of acute paranoid schizophrenia relapse. Psychiatry Res., 2017, 249, 200-205.
[http://dx.doi.org/10.1016/j.psychres.2017.01.043] [PMID: 28126575]
[13]
Nucifora, L.G.; Tanaka, T.; Hayes, L.N.; Kim, M.; Lee, B.J.; Matsuda, T.; Nucifora, F.C., Jr; Sedlak, T.; Mojtabai, R.; Eaton, W.; Sawa, A. Reduction of plasma glutathione in psychosis associated with schizophrenia and bipolar disorder in translational psychiatry. Transl. Psychiatry, 2017, 7(8), e1215.
[http://dx.doi.org/10.1038/tp.2017.178] [PMID: 28892069]
[14]
Güneş M.; Camkurt, M.A.; Bulut, M.; Demir, S.; İbiloğlu, A.O.; Kaya, M.C.; Atlı A.; Kaplan, İ.; Sir, A. Evaluation of paraoxonase, arylesterase and malondialdehyde levels in schizophrenia patients taking typical, atypical and combined antipsychotic treatment. Clin. Psychopharmacol. Neurosci., 2016, 14(4), 345-350.
[http://dx.doi.org/10.9758/cpn.2016.14.4.345] [PMID: 27776386]
[15]
An, H.; Du, X.; Huang, X.; Qi, L.; Jia, Q.; Yin, G.; Xiao, C.; Huang, X.F.; Ning, Y.; Cassidy, R.M.; Wang, L.; Soares, J.C.; Zhang, X.Y. Obesity, altered oxidative stress, and clinical correlates in chronic schizophrenia patients. Transl. Psychiatry, 2018, 8(1), 258.
[http://dx.doi.org/10.1038/s41398-018-0303-7] [PMID: 30498208]
[16]
Flatow, J.; Buckley, P.; Miller, B.J. Meta-analysis of oxidative stress in schizophrenia. Biol. Psychiatry, 2013, 74(6), 400-409.
[http://dx.doi.org/10.1016/j.biopsych.2013.03.018] [PMID: 23683390]
[17]
Carocci, A.; Catalano, A.; Sinicropi, M.S.; Genchi, G. Oxidative stress and neurodegeneration: The involvement of iron. Biometals, 2018, 31(5), 715-735.
[http://dx.doi.org/10.1007/s10534-018-0126-2] [PMID: 30014355]
[18]
Lin, C.H.; Lane, H.Y. Early identification and intervention of schizophrenia: Insight from hypotheses of glutamate dysfunction and oxidative stress. Front. Psychiatry, 2019, 10, 93.
[http://dx.doi.org/10.3389/fpsyt.2019.00093] [PMID: 30873052]
[19]
Yao, J.K.; Leonard, S.; Reddy, R.D. Increased nitric oxide radicals in postmortem brain from patients with schizophrenia. Schizophr. Bull., 2004, 30(4), 923-934.
[http://dx.doi.org/10.1093/oxfordjournals.schbul.a007142] [PMID: 15954198]
[20]
Maas, D.A.; Vallès, A.; Martens, G.J.M. Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl. Psychiatry, 2017, 7(7), e1171.
[http://dx.doi.org/10.1038/tp.2017.138] [PMID: 28934193]
[21]
Mhillaj, E.; Morgese, M.G.; Trabace, L. Early life and oxidative stress in psychiatric disorders: What can we learn from animal models? Curr. Pharm. Des., 2015, 21(11), 1396-1403.
[http://dx.doi.org/10.2174/1381612821666150105122422] [PMID: 25564390]
[22]
Juchnowicz, D.; Dzikowski, M.; Rog, J.; Waszkiewicz, N.; Zalewska, A.; Maciejczyk, M. Karakuła-Juchnowicz, H. Oxidative stress biomarkers as a predictor of stage illness and clinical course of schizophrenia. Front. Psychiatry, 2021, 12, 728986.
[http://dx.doi.org/10.3389/fpsyt.2021.728986] [PMID: 34867519]
[23]
Juchnowicz, D.; Dzikowski, M.; Rog, J.; Waszkiewicz, N. Karakuła, K.H.; Zalewska, A.; Maciejczyk, M.; Karakula-Juchnowicz, H. Pro/antioxidant state as a potential biomarker of schizophrenia. J. Clin. Med., 2021, 10(18), 4156.
[http://dx.doi.org/10.3390/jcm10184156] [PMID: 34575267]
[24]
Chestnykh, D.A.; Amato, D.; Kornhuber, J.; Müller, C.P. Pharmacotherapy of schizophrenia: Mechanisms of antipsychotic accumulation, therapeutic action and failure. Behav. Brain Res., 2021, 403, 113144.
[http://dx.doi.org/10.1016/j.bbr.2021.113144] [PMID: 33515642]
[25]
Maher, A.R.; Maglione, M.; Bagley, S.; Suttorp, M.; Hu, J.H.; Ewing, B.; Wang, Z.; Timmer, M.; Sultzer, D.; Shekelle, P.G. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: A systematic review and meta-analysis. JAMA, 2011, 306(12), 1359-1369.
[http://dx.doi.org/10.1001/jama.2011.1360] [PMID: 21954480]
[26]
Lally, J.; MacCabe, J.H. Antipsychotic medication in schizophrenia: A review. Br. Med. Bull., 2015, 114(1), 169-179.
[http://dx.doi.org/10.1093/bmb/ldv017] [PMID: 25957394]
[27]
Dazzan, P.; Morgan, K.D.; Orr, K.; Hutchinson, G.; Chitnis, X.; Suckling, J.; Fearon, P.; McGuire, P.K.; Mallett, R.M.; Jones, P.B.; Leff, J.; Murray, R.M. Different effects of typical and atypical antipsychotics on grey matter in first episode psychosis: The AESOP study. Neuropsychopharmacology, 2005, 30(4), 765-774.
[http://dx.doi.org/10.1038/sj.npp.1300603] [PMID: 15702141]
[28]
Brinholi, F.F.; Farias, C.C.; Bonifácio, K.L.; Higachi, L.; Casagrande, R.; Moreira, E.G.; Barbosa, D.S. Clozapine and olanzapine are better antioxidants than haloperidol, quetiapine, risperidone and ziprasidone in in vitro models. Biomed. Pharmacother., 2016, 81, 411-415.
[http://dx.doi.org/10.1016/j.biopha.2016.02.047] [PMID: 27261620]
[29]
Bai, Z.L.; Li, X.S.; Chen, G.Y.; Du, Y.; Wei, Z.X.; Chen, X.; Zheng, G.E.; Deng, W.; Cheng, Y. Serum oxidative stress marker levels in unmedicated and medicated patients with schizophrenia. J. Mol. Neurosci., 2018, 66(3), 428-436.
[http://dx.doi.org/10.1007/s12031-018-1165-4] [PMID: 30298298]
[30]
Zhang, X.Y.; Zhou, D.F.; Su, J.M.; Zhang, P.Y. The effect of extract of ginkgo biloba added to haloperidol on superoxide dismutase in inpatients with chronic schizophrenia. J. Clin. Psychopharmacol., 2001, 21(1), 85-88.
[http://dx.doi.org/10.1097/00004714-200102000-00015] [PMID: 11199954]
[31]
Martins-de-Souza, D.; Harris, L.W.; Guest, P.C.; Bahn, S. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid. Redox Signal., 2011, 15(7), 2067-2079.
[http://dx.doi.org/10.1089/ars.2010.3459] [PMID: 20673161]
[32]
Vidal, P.M.; Pacheco, R. The cross-talk between the dopaminergic and the immune system involved in schizophrenia. Front. Pharmacol., 2020, 11, 394.
[http://dx.doi.org/10.3389/fphar.2020.00394] [PMID: 32296337]
[33]
Evans, D.R.; Parikh, V.V.; Khan, M.M.; Coussons, C.; Buckley, P.F.; Mahadik, S.P. Red blood cell membrane essential fatty acid metabolism in early psychotic patients following antipsychotic drug treatment. Prostaglandins Leukot. Essent. Fatty Acids, 2003, 69(6), 393-399.
[http://dx.doi.org/10.1016/j.plefa.2003.08.010] [PMID: 14623492]
[34]
Li, X.R.; Xiu, M.H.; Guan, X.N.; Wang, Y.C.; Wang, J.; Leung, E.; Zhang, X.Y. Altered antioxidant defenses in drug-naive first episode patients with schizophrenia are associated with poor treatment response to risperidone: 12-week results from a prospective longitudinal study. Neurotherapeutics, 2021, 18(2), 1316-1324.
[http://dx.doi.org/10.1007/s13311-021-01036-3] [PMID: 33791970]
[35]
Chien, Y.L.; Hwu, H.G.; Hwang, T.J.; Hsieh, M.H.; Liu, C.C.; Lin-Shiau, S.Y.; Liu, C.M. Clinical implications of oxidative stress in schizophrenia: Acute relapse and chronic stable phase. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 99, 109868.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109868] [PMID: 31954755]
[36]
Tsai, M.C.; Liou, C.W.; Lin, T.K.; Lin, I.M.; Huang, T.L. Changes in oxidative stress markers in patients with schizophrenia: The effect of antipsychotic drugs. Psychiatry Res., 2013, 209(3), 284-290.
[http://dx.doi.org/10.1016/j.psychres.2013.01.023] [PMID: 23497820]
[37]
Zhang, X.Y.; Zhou, D.F.; Shen, Y.C.; Zhang, P.Y.; Zhang, W.F.; Liang, J.; Chen, D.C.; Xiu, M.H.; Kosten, T.A.; Kosten, T.R. Effects of risperidone and haloperidol on superoxide dismutase and nitric oxide in schizophrenia. Neuropharmacology, 2012, 62(5-6), 1928-1934.
[http://dx.doi.org/10.1016/j.neuropharm.2011.12.014] [PMID: 22227558]
[38]
Bošković M.; Vovk, T.; Koprivšek, J.; Plesničar, B.K.; Grabnar, I. Vitamin E and essential polyunsaturated fatty acids supplementation in schizophrenia patients treated with haloperidol. Nutr. Neurosci., 2016, 19(4), 156-161.
[http://dx.doi.org/10.1179/1476830514Y.0000000139] [PMID: 25056532]
[39]
Zerin Khan, F.; Sultana, S.P.; Akhter, N.; Mosaddek, A.S.M. Effect of olanzapine and risperidone on oxidative stress in schizophrenia patients. Int. Biol. Biomed. J., 2018, 4(2), 89-97.
[40]
Sarandol, A.; Kirli, S.; Akkaya, C.; Altin, A.; Demirci, M.; Sarandol, E. Oxidative-antioxidative systems and their relation with serum S100 B levels in patients with schizophrenia: Effects of short term antipsychotic treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(6), 1164-1169.
[http://dx.doi.org/10.1016/j.pnpbp.2007.03.008] [PMID: 17459548]
[41]
Ivanova, S.A.; Smirnova, L.P.; Shchigoreva, Y.G.; Semke, A.V.; Bokhan, N.A. Serum glutathione in patients with schizophrenia in dynamics of antipsychotic therapy. Bull. Exp. Biol. Med., 2015, 160(2), 283-285.
[http://dx.doi.org/10.1007/s10517-015-3151-y] [PMID: 26621271]
[42]
Sarandol, A.; Sarandol, E.; Acikgoz, H.E.; Eker, S.S.; Akkaya, C.; Dirican, M. First-episode psychosis is associated with oxidative stress: Effects of short-term antipsychotic treatment. Psychiatry Clin. Neurosci., 2015, 69(11), 699-707.
[http://dx.doi.org/10.1111/pcn.12333] [PMID: 26172069]
[43]
Lu, Z.; Wen, T.; Wang, Y.; Kan, W.; Xun, G. Peripheral non-enzymatic antioxidants in patients with schizophrenia: A case-control study. BMC Psychiatry, 2020, 20(1), 241.
[http://dx.doi.org/10.1186/s12888-020-02635-8] [PMID: 32414343]
[44]
Huang, T.L.; Liou, C.W.; Lin, T.K. Serum thiobarbituric acid-reactive substances and free thiol levels in schizophrenia patients: Effects of antipsychotic drugs. Psychiatry Res., 2010, 177(1-2), 18-21.
[http://dx.doi.org/10.1016/j.psychres.2009.01.017] [PMID: 20381168]
[45]
Goh, X.X.; Tang, P.Y.; Tee, S.F. Effects of antipsychotics on antioxidant defence system in patients with schizophrenia: A meta-analysis. Psychiatry Res., 2022, 309, 114429.
[http://dx.doi.org/10.1016/j.psychres.2022.114429] [PMID: 35150976]
[46]
Goh, X.X.; Tang, P.Y.; Tee, S.F. Blood-based oxidation markers in medicated and unmedicated schizophrenia patients: A meta-analysis. Asian J. Psychiatr., 2022, 67, 102932.
[http://dx.doi.org/10.1016/j.ajp.2021.102932] [PMID: 34839098]
[47]
Pillai, A.; Parikh, V.; Terry, A.V., Jr; Mahadik, S.P. Long-term antipsychotic treatments and crossover studies in rats: Differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J. Psychiatr. Res., 2007, 41(5), 372-386.
[http://dx.doi.org/10.1016/j.jpsychires.2006.01.011] [PMID: 16564057]
[48]
Parikh, V.; Khan, M.M.; Mahadik, S.P. Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J. Psychiatr. Res., 2003, 37(1), 43-51.
[http://dx.doi.org/10.1016/S0022-3956(02)00048-1] [PMID: 12482469]
[49]
Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev., 2015, 4(1), 1.
[http://dx.doi.org/10.1186/2046-4053-4-1] [PMID: 25554246]
[50]
Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res., 2018, 27(6), 1785-1805.
[http://dx.doi.org/10.1177/0962280216669183] [PMID: 27683581]
[51]
Cai, S.; Zhou, J.; Pan, J. Estimating the sample mean and standard deviation from order statistics and sample size in meta-analysis. Stat. Methods Med. Res., 2021, 30(12), 2701-2719.
[http://dx.doi.org/10.1177/09622802211047348] [PMID: 34668458]
[52]
Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol., 2014, 14(1), 135.
[http://dx.doi.org/10.1186/1471-2288-14-135] [PMID: 25524443]
[53]
Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997, 315(7109), 629-634.
[http://dx.doi.org/10.1136/bmj.315.7109.629] [PMID: 9310563]
[54]
Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics, 1994, 50(4), 1088-1101.
[http://dx.doi.org/10.2307/2533446] [PMID: 7786990]
[55]
Zincir, S.; Zincir, S.B.; Doruk, A.; Erdem, M.; Celik, C.; Ak, M.; Garip, B.; Yükselir, C. Karaahmetoğlu, B. Asymmetric dimethylarginine (ADMA) and treatment response relationship in male patients with first-episode schizophrenia: A controlled study. Psychiatry Res., 2014, 220(1-2), 76-80.
[http://dx.doi.org/10.1016/j.psychres.2014.07.013] [PMID: 25095755]
[56]
Bas, A.; Gultekin, G.; Incir, S.; Bas, T.O.; Emul, M.; Duran, A. Level of serum thioredoxin and correlation with neurocognitive functions in patients with schizophrenia using clozapine and other atypical antipsychotics. Psychiatry Res., 2017, 247, 84-89.
[http://dx.doi.org/10.1016/j.psychres.2016.11.021] [PMID: 27871032]
[57]
Dakhale, G.; Khanzode, S.; Khanzode, S.; Saoji, A.; Khobragade, L.; Turankar, A. Oxidative damage and schizophrenia: the potential benefit by atypical antipsychotics. Neuropsychobiology, 2004, 49(4), 205-209.
[http://dx.doi.org/10.1159/000077368] [PMID: 15154399]
[58]
Chittiprol, S.; Venkatasubramanian, G.; Neelakantachar, N.; Babu, S.V.; Reddy, N.A.; Shetty, K.T.; Gangadhar, B.N. Oxidative stress and neopterin abnormalities in schizophrenia: A longitudinal study. J. Psychiatr. Res., 2010, 44(5), 310-313.
[http://dx.doi.org/10.1016/j.jpsychires.2009.09.002] [PMID: 19850302]
[59]
Al-Chalabi, B.M.; Thanoon, I.A.; Ahmed, F.A. Potential effect of olanzapine on total antioxidant status and lipid peroxidation in schizophrenic patients. Neuropsychobiology, 2009, 59(1), 8-11.
[http://dx.doi.org/10.1159/000202823] [PMID: 19221442]
[60]
Dakhale, G.N.; Khanzode, S.D.; Khanzode, S.S.; Saoji, A. Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology (Berl.), 2005, 182(4), 494-498.
[http://dx.doi.org/10.1007/s00213-005-0117-1] [PMID: 16133138]
[61]
Wu, Z.; Liu, Q.; Zhang, Y.; Guan, X.; Xiu, M.; Zhang, X. Superoxide dismutase, BDNF, and cognitive improvement in drug-naive first-episode patients with schizophrenia: A 12-week longitudinal study. Int. J. Neuropsychopharmacol., 2022, 25(2), 128-135.
[http://dx.doi.org/10.1093/ijnp/pyab065] [PMID: 34622272]
[62]
Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 2021, 20(9), 689-709.
[http://dx.doi.org/10.1038/s41573-021-00233-1] [PMID: 34194012]
[63]
Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci., 2018, 63(1), 68-78.
[http://dx.doi.org/10.1016/j.advms.2017.05.005] [PMID: 28822266]
[64]
Demirci-Çekiç, S.; Özkan, G.; Avan, A.N.; Uzunboy, S. Çapanoğlu, E.; Apak, R. Biomarkers of oxidative stress and antioxidant defense. J. Pharm. Biomed. Anal., 2022, 209, 114477.
[http://dx.doi.org/10.1016/j.jpba.2021.114477] [PMID: 34920302]
[65]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[66]
Mahadik, S.P.; Mukherjee, S. Free radical pathology and antioxidant defense in schizophrenia: A review. Schizophr. Res., 1996, 19(1), 1-17.
[http://dx.doi.org/10.1016/0920-9964(95)00049-6] [PMID: 9147491]
[67]
Que, E.L.; Domaille, D.W.; Chang, C.J. Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chem. Rev., 2008, 108(5), 1517-1549.
[http://dx.doi.org/10.1021/cr078203u] [PMID: 18426241]
[68]
Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol., 2018, 15, 490-503.
[http://dx.doi.org/10.1016/j.redox.2018.01.008] [PMID: 29413961]
[69]
Emiliani, F.E.; Sedlak, T.W.; Sawa, A. Oxidative stress and schizophrenia: Recent breakthroughs from an old story. Curr. Opin. Psychiatry, 2014, 27(3), 185-190.
[http://dx.doi.org/10.1097/YCO.0000000000000054] [PMID: 24613987]
[70]
Zhu, S.; Zhao, L.; Fan, Y.; Lv, Q.; Wu, K.; Lang, X.; Li, Z.; Yi, Z.; Geng, D. Interaction between TNF-α and oxidative stress status in first-episode drug-naïve schizophrenia. Psychoneuroendocrinology, 2020, 114, 104595.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104595] [PMID: 32036201]
[71]
Ribaudo, G.; Bortoli, M.; Pavan, C.; Zagotto, G.; Orian, L. Antioxidant potential of psychotropic drugs: From clinical evidence to in vitro and in vivo assessment and toward a new challenge for in silico molecular design. Antioxidants, 2020, 9(8), E714.
[http://dx.doi.org/10.3390/antiox9080714] [PMID: 32781750]
[72]
Janero, D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med., 1990, 9(6), 515-540.
[http://dx.doi.org/10.1016/0891-5849(90)90131-2] [PMID: 2079232]
[73]
Zhu, M.; Liu, Z.; Guo, Y.; Sultana, M.S.; Wu, K.; Lang, X.; Lv, Q.; Huang, X.; Yi, Z.; Li, Z. Sex difference in the interrelationship between TNF-α and oxidative stress status in first-episode drug-naïve schizophrenia. J. Neuroinflammation, 2021, 18(1), 202.
[http://dx.doi.org/10.1186/s12974-021-02261-5] [PMID: 34526062]
[74]
Mas-Bargues, C.; Escrivá, C.; Dromant, M.; Borrás, C.; Viña, J. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch. Biochem. Biophys., 2021, 709, 108941.
[http://dx.doi.org/10.1016/j.abb.2021.108941] [PMID: 34097903]
[75]
Morera, A.L.; Intxausti, A.; Abreu-Gonzalez, P. Winter/summer seasonal changes in malondialdehyde formation as a source of variance in oxidative stress schizophrenia research. World J. Biol. Psychiatry, 2009, 10(4 Pt 2), 576-580.
[http://dx.doi.org/10.1080/15622970801901802] [PMID: 18609445]
[76]
Miyamoto, Y.; Koh, Y.H.; Park, Y.S.; Fujiwara, N.; Sakiyama, H.; Misonou, Y.; Ookawara, T.; Suzuki, K.; Honke, K.; Taniguchi, N. Oxidative stress caused by inactivation of glutathione peroxidase and adaptive responses. Biol. Chem., 2003, 384(4), 567-574.
[http://dx.doi.org/10.1515/BC.2003.064] [PMID: 12751786]
[77]
Brigelius-Flohé, R.; Flohé, L. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid. Redox Signal., 2020, 33(7), 498-516.
[http://dx.doi.org/10.1089/ars.2019.7905] [PMID: 31822117]
[78]
Cardoso, B.R.; Hare, D.J.; Bush, A.I.; Roberts, B.R. Glutathione peroxidase 4: A new player in neurodegeneration? Mol. Psychiatry, 2017, 22(3), 328-335.
[http://dx.doi.org/10.1038/mp.2016.196] [PMID: 27777421]
[79]
Rosa, A.C.; Corsi, D.; Cavi, N.; Bruni, N.; Dosio, F. Superoxide dismutase administration: A review of proposed human uses. Molecules, 2021, 26(7), 1844.
[http://dx.doi.org/10.3390/molecules26071844] [PMID: 33805942]
[80]
Kodydková, J.; Vávrová, L.; Kocík, M.; Žák, A. Human catalase, its polymorphisms, regulation and changes of its activity in different diseases. Folia Biol. (Praha), 2014, 60(4), 153-167.
[PMID: 25152049]
[81]
Kumar, A. Khushboo; Pandey, R.; Sharma, B. Modulation of superoxide dismutase activity by mercury, lead, and arsenic. Biol. Trace Elem. Res., 2020, 196(2), 654-661.
[http://dx.doi.org/10.1007/s12011-019-01957-3] [PMID: 31925741]
[82]
Alvarez, B.; Demicheli, V.; Durán, R.; Trujillo, M.; Cerveñansky, C.; Freeman, B.A.; Radi, R. Inactivation of human Cu,Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical. Free Radic. Biol. Med., 2004, 37(6), 813-822.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.06.006] [PMID: 15304256]
[83]
Palaniyappan, L.; Park, M.T.M.; Jeon, P.; Limongi, R.; Yang, K.; Sawa, A.; Théberge, J. Is there a glutathione centered redox dysregulation subtype of schizophrenia? Antioxidants, 2021, 10(11), 1703.
[http://dx.doi.org/10.3390/antiox10111703] [PMID: 34829575]
[84]
Kannan, R.; Kuhlenkamp, J.F.; Jeandidier, E.; Trinh, H.; Ookhtens, M.; Kaplowitz, N. Evidence for carrier-mediated transport of glutathione across the blood-brain barrier in the rat. J. Clin. Invest., 1990, 85(6), 2009-2013.
[http://dx.doi.org/10.1172/JCI114666] [PMID: 1971830]
[85]
Guidara, W.; Messedi, M.; Naifar, M.; Maalej, M.; Grayaa, S.; Omri, S.; Ben Thabet, J.; Maalej, M.; Charfi, N.; Ayadi, F. Predictive value of oxidative stress biomarkers in drug free patients with schizophrenia and schizo-affective disorder. Psychiatry Res., 2020, 293, 113467.
[http://dx.doi.org/10.1016/j.psychres.2020.113467] [PMID: 33198042]
[86]
El-Ansary, A.; Bjørklund, G.; Chirumbolo, S.; Alnakhli, O.M. Predictive value of selected biomarkers related to metabolism and oxidative stress in children with autism spectrum disorder. Metab. Brain Dis., 2017, 32(4), 1209-1221.
[http://dx.doi.org/10.1007/s11011-017-0029-x] [PMID: 28497358]
[87]
Möller, M.; Du Preez, J.L.; Emsley, R.; Harvey, B.H. Isolation rearing-induced deficits in sensorimotor gating and social interaction in rats are related to cortico-striatal oxidative stress, and reversed by sub-chronic clozapine administration. Eur. Neuropsychopharmacol., 2011, 21(6), 471-483.
[http://dx.doi.org/10.1016/j.euroneuro.2010.09.006] [PMID: 20965701]
[88]
Caruso, G.; Grasso, M.; Fidilio, A.; Tascedda, F.; Drago, F.; Caraci, F. Antioxidant properties of second-generation antipsychotics: Focus on microglia. Pharmaceuticals (Basel), 2020, 13(12), E457.
[http://dx.doi.org/10.3390/ph13120457] [PMID: 33322693]
[89]
Heiser, P.; Sommer, O.; Schmidt, A.J.; Clement, H.W.; Hoinkes, A.; Hopt, U.T.; Schulz, E.; Krieg, J.C.; Dobschütz, E. Effects of antipsychotics and vitamin C on the formation of reactive oxygen species. J. Psychopharmacol., 2010, 24(10), 1499-1504.
[http://dx.doi.org/10.1177/0269881109102538] [PMID: 19282419]
[90]
Trevizol, F.; Benvegnú, D.M.; Barcelos, R.C.; Pase, C.S.; Segat, H.J.; Dias, V.T.; Dolci, G.S.; Boufleur, N.; Reckziegel, P.; Bürger, M.E. Comparative study between two animal models of extrapyramidal movement disorders: Prevention and reversion by pecan nut shell aqueous extract. Behav. Brain Res., 2011, 221(1), 13-18.
[http://dx.doi.org/10.1016/j.bbr.2011.02.026] [PMID: 21356248]
[91]
Thakur, K.S.; Prakash, A.; Bisht, R.; Bansal, P.K. Beneficial effect of candesartan and lisinopril against haloperidol-induced tardive dyskinesia in rat. J. Renin Angiotensin Aldosterone Syst., 2015, 16(4), 917-929.
[http://dx.doi.org/10.1177/1470320313515038] [PMID: 24464858]
[92]
Ficarra, S.; Russo, A.; Barreca, D.; Giunta, E.; Galtieri, A.; Tellone, E. Short-term effects of chlorpromazine on oxidative stress in erythrocyte functionality: Activation of metabolism and membrane perturbation. Oxid. Med. Cell. Longev., 2016, 2016, 2394130.
[http://dx.doi.org/10.1155/2016/2394130] [PMID: 27579150]
[93]
Tendilla-Beltrán, H.; Sanchez-Islas, N.D.C.; Marina-Ramos, M.; Leza, J.C.; Flores, G. The prefrontal cortex as a target for atypical antipsychotics in schizophrenia, lessons of neurodevelopmental animal models. Prog. Neurobiol., 2021, 199, 101967.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101967] [PMID: 33271238]
[94]
Noto, C.; Ota, V.K.; Gouvea, E.S.; Rizzo, L.B.; Spindola, L.M.; Honda, P.H.; Cordeiro, Q.; Belangero, S.I.; Bressan, R.A.; Gadelha, A.; Maes, M.; Brietzke, E. Effects of risperidone on cytokine profile in drug-naïve first-episode psychosis. Int. J. Neuropsychopharmacol., 2014, 18(4), pyu042.
[http://dx.doi.org/10.1093/ijnp/pyu042] [PMID: 25522386]
[95]
Casquero-Veiga, M.; García-García, D.; MacDowell, K.S.; Pérez-Caballero, L.; Torres-Sánchez, S.; Fraguas, D.; Berrocoso, E.; Leza, J.C.; Arango, C.; Desco, M.; Soto-Montenegro, M.L. Risperidone administered during adolescence induced metabolic, anatomical and inflammatory/oxidative changes in adult brain: A PET and MRI study in the maternal immune stimulation animal model. Eur. Neuropsychopharmacol., 2019, 29(7), 880-896.
[http://dx.doi.org/10.1016/j.euroneuro.2019.05.002] [PMID: 31229322]
[96]
Stojković T.; Radonjić N.V.; Velimirović M.; Jevtić G.; Popović V.; Doknić M.; Petronijević N.D. Risperidone reverses phencyclidine induced decrease in glutathione levels and alterations of antioxidant defense in rat brain. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 39(1), 192-199.
[http://dx.doi.org/10.1016/j.pnpbp.2012.06.013] [PMID: 22735395]
[97]
Dias, K.C.F.; de Almeida, J.C.; Vasconcelos, L.C.; Patrocínio, M.L.V.; Barbosa, T.M.; Ximenes, N.C.; Leitão, A.P.A.; Louchard, B.O.; Pimenta, A.T.A.; Pinto, F.D.C.L.; Leal, L.K.A.M.; Honório, Junior, J.E.R.; Vasconcelos, S.M.M. Standardized extract of Erythrina velutina Willd. attenuates schizophrenia-Like behaviours and oxidative parameters in experimental animal models. J. Pharm. Pharmacol., 2019, 71(3), 379-389.
[http://dx.doi.org/10.1111/jphp.13039] [PMID: 30456833]
[98]
Zhang, X.Y.; Tan, Y.L.; Cao, L.Y.; Wu, G.Y.; Xu, Q.; Shen, Y.; Zhou, D.F. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr. Res., 2006, 81(2-3), 291-300.
[http://dx.doi.org/10.1016/j.schres.2005.10.011] [PMID: 16309894]
[99]
Nguyen, T.T.; Eyler, L.T.; Jeste, D.V. Systemic biomarkers of accelerated aging in schizophrenia: A critical review and future directions. Schizophr. Bull., 2018, 44(2), 398-408.
[http://dx.doi.org/10.1093/schbul/sbx069] [PMID: 29462455]
[100]
Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; Hussain, A.; Haque, S.; Reshi, M.S. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells, 2022, 11(3), 552.
[http://dx.doi.org/10.3390/cells11030552] [PMID: 35159361]
[101]
Pazvantoglu, O.; Selek, S.; Okay, I.T.; Sengul, C.; Karabekiroglu, K.; Dilbaz, N.; Erel, O. Oxidative mechanisms in schizophrenia and their relationship with illness subtype and symptom profile. Psychiatry Clin. Neurosci., 2009, 63(5), 693-700.
[http://dx.doi.org/10.1111/j.1440-1819.2009.02015.x] [PMID: 19788631]
[102]
Goh, X.X.; Tang, P.Y.; Tee, S.F. 8-Hydroxy-2′-deoxyguanosine and reactive oxygen species as biomarkers of oxidative stress in mental illnesses: A meta-analysis. Psychiatry Investig., 2021, 18(7), 603-618.
[http://dx.doi.org/10.30773/pi.2020.0417] [PMID: 34340273]
[103]
An, L.; Li, S.; Murdoch, J.B.; Araneta, M.F.; Johnson, C.; Shen, J. Detection of glutamate, glutamine, and glutathione by radiofrequency suppression and echo time optimization at 7 tesla. Magn. Reson. Med., 2015, 73(2), 451-458.
[http://dx.doi.org/10.1002/mrm.25150] [PMID: 24585452]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy