Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Nanogel Development and its Application in Transdermal Drug Delivery System

Author(s): Sachin S. Gaikwad*, Nisarga V. Akalade and Kishor S. Salunkhe

Volume 12, Issue 2, 2022

Published on: 12 September, 2022

Page: [126 - 136] Pages: 11

DOI: 10.2174/2468187312666220630152606

Price: $65

Abstract

Background: Nanogels are hydrophilic polymer networks that range in size from 20 to 200 nanometers. Polymer is used to make nanogels, which can be obtained from natural or manufactured sources. Nanogels can deliver peptides, antigens, carbohydrates, oligonucleotides, proteins, and genes, among other things. These nanogels also provide inorganic materials, such as silver nanoparticles and quantum dots. Both solid and liquid nanogels have the same properties. These nanogels penetrate the stratum corneum more effectively than conventional gels. Dermatology and cosmetology have both experimented with nanoscale technology.

Objective: The medication can penetrate the stratum corneum through a variety of routes. One of the ways lipids can infiltrate the skin membrane is through the transcellular route. Cream, gel, ointment, lotion, thin-film, and foams are among the topical preparations used. Nanogels are categorised into two types: those that respond to stimuli and those that cross-link. For the manufacture of nanogels, numerous polymers of synthetic, natural, or semisynthetic origin are commonly employed. Nanoprecipitation, emulsion polymerization, and dispersion polymerization are all ways to make these nanogels. These nanogels are rarely released by diffusion mechanism employing the Fick’s law.

Conclusion: The nano gel is a new advanced technology that allows to improve drug molecule penetration in the stratum corneum. If poorly soluble and permeable medications are administered through this nanogel technology, their solubility and permeability will be improved.

Keywords: Skin anatomy, polymer, nanoparticles, penetration pathway, drug delivery system, nano gel.

Graphical Abstract
[1]
Martínez, A.M.; Benito, M.; Pérez, E.; Blanco, M.D. Recent advances of folate-targeted anticancer therapies and diagnostics: Current status and future prospectives. In: In: Nanostructures for Cancer Therapy; , 2017; pp. 329-50.
[2]
Kasa, P.; Farran, B.; Raju, G. Are Nanocarriers Effective SR. Are nanocarriers effective for the diagnosis and treatment of pancreatic cancer?In: Breaking Tolerance to Pancreatic Cancer Unresponsiveness to Chemotherapy; Elsevier, 2019, p. 159.
[3]
Yadav, H.K.; Al Halabi, N.A.; Alsalloum, G.A. Nanogels as novel drug delivery systems-a review. J. Pharm. Pharmacogn. Res., 2017, 1(5), 1-8.
[4]
a N, Jahangir Alam M, Kumar N. Nanogels: A mini-review of a future perspective novel drug delivery system. Int. J. Adv. Res. (Indore), 2020, 8(6), 1081-1092.
[http://dx.doi.org/10.21474/IJAR01/11191]
[5]
Chellappan, D.K.; Yee, N.J.; Kaur, A.J.S.B.J. Formulation and characterization of glibenclamide and quercetin-loaded chitosan nanogels targeting skin permeation. Ther. Deliv., 2019, 10(5), 281-293.
[http://dx.doi.org/10.4155/tde-2019-0019] [PMID: 31094299]
[6]
Talele, S.; Nikam, P.; Ghosh, B.; Deore, C.; Jaybhave, A.; Jadhav, A. A research article on nanogel as topical promising drug delivery for diclofenac sodium. Ind J Pharm Educ, 2017, 51(4), S580-S587.
[http://dx.doi.org/10.5530/ijper.51.4s.86]
[7]
Shah, P.P.; Desai, P.R.; Patel, A.R.; Singh, M.S. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials, 2012, 33(5), 1607-1617.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.011] [PMID: 22118820]
[8]
Eroglu, I.; Gultekinoglu, M.; Bayram, C. Gel network comprising UV crosslinked PLGA-b-PEG-MA nanoparticles for ibuprofen topical delivery. Pharm. Dev. Technol., 2019, 24(9), 1144-1154.
[http://dx.doi.org/10.1080/10837450.2019.1643880] [PMID: 31298072]
[9]
Supe, S.; Takudage, P. Methods for evaluating penetration of drug into the skin: A review. Skin Res. Technol., 2021, 27(3), 299-308.
[10]
Ibrahim, A.A.E.; Bagherani, N.; Smoller, B.; Bagherani, N.; Reyes-Barron, C. Anatomy and organization of human skin. In: Rook’s Textbook of Dermatology, Seventh Edition; Tony, B.; Stephen, B.; Neil, C.; Christopher, G., Eds.; Blackwell Science Ltd: London, 2004; pp. 45-128.
[11]
Gilaberte, Y.; Prieto-Torres, L.; Pastushenko, I.; Juarranz, Á. Anatomy and function of the skin. In: In: Nanoscience in Dermatology; Elsevier, 2016; pp. 1-14.
[http://dx.doi.org/10.1016/B978-0-12-802926-8.00001-X]
[12]
Kolarsick, P.A.J.; Kolarsick, M.A.; Goodwin, C. Anatomy and physiology of the skin. J. Dermatol. Nurses Assoc., 2011, 3(4), 203-213.
[http://dx.doi.org/10.1097/JDN.0b013e3182274a98]
[13]
Venus, M.; Waterman, J.; McNab, I. Basic physiology of the skin. Surgery, 2010, 28(10), 469-472.
[14]
Bani, K.S.; Bhardwaj, K. Topical drug delivery therapeutics, drug absorption and penetration enhancement techniques. J. Drug Deliv. Ther., 2021, 11(4), 95-19.
[http://dx.doi.org/10.22270/jddt.v11i4.4864]
[15]
Kim, B.; Cho, H-E.; Moon, S.H. Transdermal delivery systems in cosmetics. Biomed. Dermatol., 2020, 4(1), 1-12.
[http://dx.doi.org/10.1186/s41702-019-0053-z]
[16]
Hwa, C.; Bauer, E.A.; Cohen, D.E. 2011; Skin biology. Dermatol. Ther., 2012, 24(5), 464-470.
[http://dx.doi.org/10.1111/j.1529-8019.2012.01460.x]
[17]
Parhi, R.; Mandru, A. Enhancement of skin permeability with thermal ablation techniques: Concept to commercial products. Drug Deliv. Transl. Res., 2021, 11(3), 817-841.
[http://dx.doi.org/10.1007/s13346-020-00823-3] [PMID: 32696221]
[18]
Nafisi, S.; Maibach, H.I. Skin penetration of nanoparticles; Emerging Nanotechnologies in Immunology. The Design, Applications and Toxicology of Nanopharmaceuticals and Nanovaccines, 2018, pp. 47-88.
[http://dx.doi.org/10.1016/B978-0-323-40016-9.00003-8]
[19]
Kahraman, E.; Güngör, S.; Özsoy, Y. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther. Deliv., 2017, 8(11), 967-985.
[http://dx.doi.org/10.4155/tde-2017-0075] [PMID: 29061106]
[20]
Vats, S.; Saxena, C.; Easwari, T.S.; Shukla, V.K. Emulsion based gel technique: Novel approach for enhancing topical drug delivery of hydrophobic drugs. IJPRS, 2014, 3, 649-660.
[21]
Mishra, A.; Panola, R.; Vyas, B.; Marothia, D.; Kansara, H. Topical antibiotics and semisolid dosage forms. Int J Pharm Erud, 2014, 4, 33-54.
[22]
Kumari, P; Agrawal, D; Kumar Sharma, A; Khandelwal, M; Aman, S. An recent advancement in topical dosage forms: A review. IJCPR, 2021, 13(1), 1-08.
[23]
Sahu, T.; Patel, T.; Sahu, S.; Gidwani, B. Skin cream as topical drug delivery system: A review. JPBS, 2016, 4(5), 149-154.
[24]
Kaur, M.; Sudhakar, K.; Mishra, V. Fabrication and biomedical potential of nanogels: An overview. Int. J. Polym. Mater., 2019, 68(6), 287-296.
[http://dx.doi.org/10.1080/00914037.2018.1445629]
[25]
Noreen, S.; Pervaiz, F.; Shoukat, H.; Ijaz, S. An updated review of novel nanogels as versatile nano-platforms for biomedical and pharmaceutical applications. Global Pharm Sci Rev, 2021, VI(I), 17-26.
[http://dx.doi.org/10.31703/gpsr.2021(VI-I).03]
[26]
Patil, P.B.; Datir, S.K.; Saudagar, R.B. A review on topical gels as drug delivery system. J. Drug Deliv. Ther., 2019, 9(3-s), 989-994.
[27]
Rathod, H.; Mehta, D.; Author, C.; Rathod, H.J.; Mehta, D.P. A review on pharmaceutical gel. Int. J. Pharma Sci., 2015, 1(1), 33-47.
[28]
Li, Y.; Maciel, D.; Rodrigues, J.; Shi, X.; Tomás, H. Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem. Rev., 2015, 115(16), 8564-8608.
[http://dx.doi.org/10.1021/cr500131f] [PMID: 26259712]
[29]
Kumari, L.; Badwaik, H.R. Polysaccharide-based nanogels for drug and gene delivery. In: Polysaccharide Carriers for Drug Delivery; Sabyasachi, M.; Sougata, J., Eds.; Elsevier Science, 2019; pp. 497-557.
[30]
El-Feky, G.S.; El-Banna, S.T.; El-Bahy, G.S.; Abdelrazek, E.M.; Kamal, M. Alginate coated chitosan nanogel for the controlled topical delivery of silver sulfadiazine. Carbohydr. Polym., 2017, 177, 194-202.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.104] [PMID: 28962758]
[31]
Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res., 2020, 24(1), 12.
[http://dx.doi.org/10.1186/s40824-020-00190-7] [PMID: 32537239]
[32]
Zhang, Z.; Tsai, P.C.; Ramezanli, T.; Michniak-Kohn, B.B. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5(3), 205-218.
[http://dx.doi.org/10.1002/wnan.1211] [PMID: 23386536]
[33]
Farooq, U.; Rasul, A.; Sher, M. Development, characterization and evaluation of anti-fungal activity of miconazole based nanogel prepared from biodegradable polymer. Pak. J. Pharm. Sci., 2020, 33(1(Special)), 449-457.
[PMID: 32173643]
[34]
Zhang, L.; Xu, J.; Wen, Q.; Ni, C. Preparation of xanthan gum nanogels and their pH/redox responsiveness in controlled release. J. Appl. Polym. Sci., 2019, 136(36), 47921.
[http://dx.doi.org/10.1002/app.47921]
[35]
Chiriac, A.P.; Ghilan, A.; Neamtu, I.; Nita, L.E.; Rusu, A.G.; Chiriac, V.M. Advancement in the biomedical applications of the (nano) gel structures based on particular polysaccharides. Macromol. Biosci., 2019, 19(9), e1900187.
[http://dx.doi.org/10.1002/mabi.201900187] [PMID: 31373753]
[36]
Jain, S.; Ancheria, R.K.; Shrivastava, S.; Soni, S.L.; Sharma, M. An overview of nanogel-novel drug delivery system. Ajprd, 2019, 7(2), 47-55.
[http://dx.doi.org/10.22270/ajprd.v7i2.482]
[37]
Badri, W.; Miladi, K.; Nazari, Q.A.; Greige-Gerges, H.; Fessi, H.; Elaissari, A. Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges and prospects. Int. J. Pharm., 2016, 515(1-2), 757-773.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.002] [PMID: 27829170]
[38]
Oh, J.K.; Drumright, R.; Siegwart, D.J.; Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci., 2008, 33(4), 448-477.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.01.002]
[39]
Pamfil, D.; Vasile, C. Nanogels of natural polymers.In: Polymer gels. Singapore. Pte Ltd: Springer Nature, 2018; 4, pp. 71-110.
[http://dx.doi.org/10.1007/978-981-10-6080-9_4]
[40]
Chouhan, C.; Rajput, R.P.S.; Sahu, R.; Verma, P.; Sahu, S. An updated review on nanoparticle based approach for nanogel drug delivery system. J. Drug Deliv. Ther., 2020, 9(5-s), 254-266.
[http://dx.doi.org/10.22270/jddt.v10i5-s.4465]
[41]
Ahmed, S.; Alhareth, K.; Mignet, N. Advancement in nanogel formulations provides controlled drug release. Int. J. Pharm., 2020, 584, 119435.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119435] [PMID: 32439585]
[42]
Suhail, M.; Rosenholm, J.M.; Minhas, M.U. Nanogels as drug-delivery systems: A comprehensive overview. Ther. Deliv., 2019, 10(11), 697-717.
[http://dx.doi.org/10.4155/tde-2019-0010] [PMID: 31789106]
[43]
Omar, S.; al Rahman, F.; Elnima, E.; Salaheldin, O.; Hussein, O.; Salaheldin, O. Phytochemical and antimicrobial screening of stem bark and leaves extracts from Ficus sycomorus. WJPMR, 2017, 3(11), 234-239.
[44]
Kendre, P.N.; Satav, T.S. Current trends and concepts in the design and development of nanogel carrier systems. Polym. Bull., 2019, 76(3), 1595-1617.
[http://dx.doi.org/10.1007/s00289-018-2430-y]
[45]
Sharma, A.; Garg, T.; Aman, A. Nanogel-an advanced drug delivery tool: Current and future. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 165-177.
[http://dx.doi.org/10.3109/21691401.2014.930745] [PMID: 25053442]
[46]
Alam, M.S.; Algahtani, M.S.; Ahmad, J. Formulation design and evaluation of aceclofenac nanogel for topical application. Ther. Deliv., 2020, 11(12), 767-778.
[http://dx.doi.org/10.4155/tde-2020-0076] [PMID: 33225842]
[47]
Gupta, A.; Mishra, A.K.; Singh, A.K. Formulation and evaluation of topical gel of diclofenac sodium using different polymers. Drug Invent Today, 2010, 2(5), 250-253.
[48]
Kesharwani, D.; Mishra, S.; Paul, S.D.; Paliwal, R.; Satapathy, T. The functional nanogel: An exalted carrier system. J. Drug Deliv. Ther., 2019, 9(2-s), 570-582.
[49]
Zarekar, N.S.; Lingayat, V.J.; Pande, Vv. Nanogel as a novel platform for smart drug delivery system. Nanosci Nanotechnol Res, 2017, 4(1), 25-31.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy