Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Targeting and Modulation of the Natriuretic Peptide System in Covid-19: A Single or Double-Edged Effect?

Author(s): Hayder M. Al-kuraishy, Ali I. Al-Gareeb, Athanasios Alexiou* and Gaber El-Saber Batiha*

Volume 23, Issue 5, 2022

Published on: 20 August, 2022

Page: [321 - 334] Pages: 14

DOI: 10.2174/1389203723666220628114928

Price: $65

conference banner
Abstract

Natriuretic peptide system (NPS) is a group of peptide hormones or paracrine factors, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and natriuretic peptide precursor C (NPC), that are structurally related. The physiological effects of NPS include natriuresis, increased glomerular filtration rate, inhibition release of renin, vasopressin, and aldosterone, sympathetic inhibition, vasodilatations, and prevents cardiac hypertrophy and remodeling. ANP has immunological effects, as it is produced locally from immune cells; it regulates innate and adaptive immune responses. Metabolism and degradation of ANP are achieved by neutral endopeptidase (NEP), also known as neprilysin. Coronavirus disease 2019 (Covid-19) pandemic may lead to acute lung injury (ALI) and/or respiratory distress syndrome (ARDS). The underlying causes of inflammatory and immunological disorders in patients with severe Covid-19 are connected to the immune over-stimulation with the subsequent release of pro-inflammatory cytokines. Covid-19 severity is linked with high ANP serum levels regardless of acute cardiac injury. Inflammatory stimuli appear to be linked with the release of NPs, which anti-inflammatory effects prevent the development of ALI/ARDS in Covid-19. Therefore, neprilysin inhibitors like sacubitril increase endogenous NPs and may reduce the risk of ALI in Covid-19 due to the potentiation of endogenous anti-inflammatory effects of NPs. However, sacubitril increases gastrin-releasing peptide, cathepsin G and release of pro-inflammatory cytokines that are inactivated by neprilysin.

In conclusion, NPs and neprilysin have cardio-pulmonary protective effects against Covid-19-induced ALI/ARDS. Neprilysin inhibitor sacubitril has dual protective and harmful effects regarding metabolizing vasoactive peptides by neprilysin. These findings require potential reevaluation of the effect of neprilysin inhibitors in managing Covid-19.

Keywords: Covid-19, sacubitril, neprilysin, natriuretic peptide system, anti-inflammatory effects, acute lung injury, respiratory distress syndrome.

Graphical Abstract
[1]
Abuzaanona, A.; Lanfear, D. Pharmacogenomics of the natriuretic peptide system in heart failure. Curr. Heart Fail. Rep., 2017, 14(6), 536-542.
[http://dx.doi.org/10.1007/s11897-017-0365-5] [PMID: 29075957]
[2]
Suffee, N.; Moore-Morris, T.; Farahmand, P.; Rücker-Martin, C.; Dilanian, G.; Fradet, M.; Sawaki, D.; Derumeaux, G.; LePrince, P.; Clément, K.; Dugail, I.; Puceat, M.; Hatem, S.N. Atrial natriuretic peptide regulates adipose tissue accumulation in adult atria. Proc. Natl. Acad. Sci. USA, 2017, 114(5), E771-E780.
[http://dx.doi.org/10.1073/pnas.1610968114] [PMID: 28096344]
[3]
Ichiki, T.; Burnett, J.C., Jr Atrial natriuretic pep-tide-Old but new therapeutic in cardiovascular diseas-es. Circ. J., 2017, 81(7), 913-919.
[http://dx.doi.org/10.1253/circj.CJ-17-0499] [PMID: 28552863]
[4]
Fu, S.; Ping, P.; Zhu, Q.; Ye, P.; Luo, L. Brain na-triuretic peptide and its biochemical, analytical, and clinical issues in heart failure: A narrative review. Front. Physiol., 2018, 9, 692.
[http://dx.doi.org/10.3389/fphys.2018.00692] [PMID: 29922182]
[5]
Liu, C.; Sun, W.; Zhuo, G.; Zhang, Z. Impacts of mac-rophage colony-stimulating factor (M-CSF) on the ex-pression of natriuretic peptide precursor type C (NPPC) and regulation of meiotic resumption. Gynecol. Endocrinol., 2019, 35(4), 320-323.
[http://dx.doi.org/10.1080/09513590.2018.1532989] [PMID: 30767584]
[6]
Dietz, J.R. Mechanisms of atrial natriuretic peptide secretion from the atrium. Cardiovasc. Res., 2005, 68(1), 8-17.
[http://dx.doi.org/10.1016/j.cardiores.2005.06.008] [PMID: 15993390]
[7]
Yamada, H.; Doi, K.; Tsukamoto, T.; Kiyomoto, H.; Yam-ashita, K.; Yanagita, M.; Terada, Y.; Mori, K. Low-dose atrial natriuretic peptide for prevention or treatment of acute kidney injury: A systematic review and meta-analysis. Crit. Care, 2019, 23(1), 41.
[http://dx.doi.org/10.1186/s13054-019-2330-z] [PMID: 30744687]
[8]
Cannone, V.; Cabassi, A.; Volpi, R.; Burnett, J.C. Atrial natriuretic peptide: A molecular target of nov-el therapeutic approaches to cardio-metabolic disease. Int. J. Mol. Sci., 2019, 20(13), 3265.
[http://dx.doi.org/10.3390/ijms20133265] [PMID: 31269783]
[9]
Idzikowska, K.; Zielińska, M. Midregional pro-atrial natriuretic peptide, an important member of the natri-uretic peptide family: Potential role in diagnosis and prognosis of cardiovascular disease. J. Int. Med. Res., 2018, 46(8), 3017-3029.
[http://dx.doi.org/10.1177/0300060518786907] [PMID: 30027789]
[10]
Vollmar, A.M. The role of atrial natriuretic peptide in the immune system. Peptides, 2005, 26(6), 1086-1094.
[http://dx.doi.org/10.1016/j.peptides.2004.08.034] [PMID: 15911076]
[11]
Potter, L.R. Natriuretic peptide metabolism, clearance and degradation. FEBS J., 2011, 278(11), 1808-1817.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08082.x] [PMID: 21375692]
[12]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusty, N.; Cruz-Martins, N.; El-Saber Batiha, G. Sequential doxycy-cline and colchicine combination therapy in Covid-19: The salutary effects. Pulm. Pharmacol. Ther., 2021, 67, 102008.
[http://dx.doi.org/10.1016/j.pupt.2021.102008] [PMID: 33727066]
[13]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alblihed, M.; Cruz-Martins, N.; Batiha, G.E. COVID-19 and risk of acute ischemic stroke and acute lung injury in patients with type ii diabetes mellitus: The antiinflammatory role of metformin. Front. Med. (Lausanne), 2021, 8, 644295.
[http://dx.doi.org/10.3389/fmed.2021.644295] [PMID: 33718411]
[14]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Almulaiky, Y.Q.; Cruz-Martins, N.; El-Saber Batiha, G. Role of leuko-triene pathway and montelukast in pulmonary and ex-trapulmonary manifestations of Covid-19: The enigmatic entity. Eur. J. Pharmacol., 2021, 904, 174196.
[http://dx.doi.org/10.1016/j.ejphar.2021.174196] [PMID: 34004207]
[15]
Lugnier, C.; Al-Kuraishy, H.M.; Rousseau, E. PDE4 in-hibition as a therapeutic strategy for improvement of pulmonary dysfunctions in Covid-19 and cigarette smok-ing. Biochem. Pharmacol., 2021, 185, 114431-114438.
[http://dx.doi.org/10.1016/j.bcp.2021.114431] [PMID: 33515531]
[16]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alblihed, M.; Guerreiro, S.G.; Cruz-Martins, N.; Batiha, G.E. COVID-19 in relation to hyperglycemia and diabetes mellitus. Front. Cardiovasc. Med., 2021, 8, 644095.
[http://dx.doi.org/10.3389/fcvm.2021.644095] [PMID: 34124187]
[17]
Al-Kuraishy, H.M.; Hussien, N.R.; Al-Naimi, M.S.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; Lungnier, C. Renin–Angiotensin system and fibrinolytic pathway in COVID-19: One-way skepticism. Biomed. Biotechnol. Res. J., 2020, 4(5), 33. [BBRJ].
[18]
Al-Kuraishy, H.M.; Al-Niemi, M.S.; Hussain, N.R.; Al-Gareeb, A.I.; Al-Harchan, N.A.; Al-Kurashi, A.H. The Potential Role of Renin Angiotensin System (RAS) and Dipeptidyl Peptidase-4 (DPP-4) in COVID-19: Navigating the Uncharted. In: Selected Chapters From The Reninangiotensin System; Kibel, A., Ed.; IntechOpen: London, 2020; pp. 151-165.
[http://dx.doi.org/10.5772/intechopen.92837]
[19]
Onohuean, H.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qus-ti, S.; Alshammari, E.M.; Batiha, G.E. Covid-19 and development of heart failure: Mystery and truth. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(10), 2013-2021.
[http://dx.doi.org/10.1007/s00210-021-02147-6] [PMID: 34480616]
[20]
Zhang, F.X.; Liu, X.J.; Gong, L.Q.; Yao, J.R.; Li, K.C.; Li, Z.Y.; Lin, L.B.; Lu, Y.J.; Xiao, H.S.; Bao, L.; Zhang, X.H.; Zhang, X. Inhibition of inflammatory pain by activating B-type natriuretic peptide signal pathway in nociceptive sensory neurons. J. Neurosci., 2010, 30(32), 10927-10938.
[http://dx.doi.org/10.1523/JNEUROSCI.0657-10.2010] [PMID: 20702721]
[21]
Fish-Trotter, H.; Ferguson, J.F.; Patel, N.; Arora, P.; Allen, N.B.; Bachmann, K.N.; Daniels, L.B.; Reil-ly, M.P.; Lima, J.A.C.; Wang, T.J.; Gupta, D.K. In-flammation and circulating natriuretic peptide levels. Circ Heart Fail, 2020, 13(7), e006570.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.119.006570] [PMID: 32507024]
[22]
Mohapatra, S.S. Role of natriuretic peptide signaling in modulating asthma and inflammation. Can. J. Physiol. Pharmacol., 2007, 85(7), 754-759.
[http://dx.doi.org/10.1139/Y07-066] [PMID: 17823639]
[23]
Kiemer, A.K.; Vollmar, A.M. The atrial natriuretic peptide regulates the production of inflammatory medi-ators in macrophages. Ann. Rheum. Dis., 2001, 60(Suppl. 3), iii68-iii70.
[PMID: 11890659]
[24]
Moro, C.; Klimcáková, E.; Lolmède, K.; Berlan, M.; Lafontan, M.; Stich, V.; Bouloumié, A.; Galitzky, J.; Arner, P.; Langin, D. Atrial natriuretic peptide in-hibits the production of adipokines and cytokines linked to inflammation and insulin resistance in human subcutaneous adipose tissue. Diabetologia, 2007, 50(5), 1038-1047.
[http://dx.doi.org/10.1007/s00125-007-0614-3] [PMID: 17318625]
[25]
Vaz Pérez, A.; Doehner, W.; von Haehling, S.; Schmidt, H.; Zimmermann, A.V.; Volk, H.D.; Anker, S.D.; Rauch-haus, M. The relationship between tumor necrosis fac-tor-α, brain natriuretic peptide and atrial natriu-retic peptide in patients with chronic heart failure. Int. J. Cardiol., 2010, 141(1), 39-43.
[http://dx.doi.org/10.1016/j.ijcard.2008.11.146] [PMID: 19155075]
[26]
Najenson, A.C.; Courreges, A.P.; Perazzo, J.C.; Rubio, M.F.; Vatta, M.S.; Bianciotti, L.G. Atrial natriuretic peptide reduces inflammation and enhances apoptosis in rat acute pancreatitis. Acta Physiol. (Oxf.), 2018, 222(3), e12992.
[http://dx.doi.org/10.1111/apha.12992] [PMID: 29117461]
[27]
Rosón, M.I.; Toblli, J.E.; Della Penna, S.L.; Gor-zalczany, S.; Pandolfo, M.; Cavallero, S.; Fernández, B.E. Renal protective role of atrial natriuretic pep-tide in acute sodium overload-induced inflammatory response. Am. J. Nephrol., 2006, 26(6), 590-601.
[http://dx.doi.org/10.1159/000098148] [PMID: 17183188]
[28]
Mezzasoma, L.; Antognelli, C.; Talesa, V.N. Atrial natriuretic peptide down-regulates LPS/ATP-mediated IL-1β release by inhibiting NF-kB, NLRP3 inflammasome and caspase-1 activation in THP-1 cells. Immunol. Res., 2016, 64(1), 303-312.
[http://dx.doi.org/10.1007/s12026-015-8751-0] [PMID: 26616294]
[29]
Zhang, C.; Pan, S.; Aisha, A.; Abudoukelimu, M.; Tang, L.; Ling, Y. Recombinant human brain natriuretic pep-tide regulates PI3K/AKT/mTOR pathway through lncRNA EGOT to attenuate hypoxia-induced injury in H9c2 car-diomyocytes. Biochem. Biophys. Res. Commun., 2018, 503(3), 1186-1193.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.023] [PMID: 30031611]
[30]
Nojiri, T.; Hosoda, H.; Tokudome, T.; Miura, K.; Ishi-kane, S.; Kimura, T.; Shintani, Y.; Inoue, M.; Sawa-bata, N.; Miyazato, M.; Okumura, M.; Kangawa, K. Atri-al natriuretic peptide inhibits lipopolysaccharide-induced acute lung injury. Pulm. Pharmacol. Ther., 2014, 29(1), 24-30.
[http://dx.doi.org/10.1016/j.pupt.2014.01.003] [PMID: 24462877]
[31]
Song, Z.; Zhao, X.; Gao, Y.; Liu, M.; Hou, M.; Jin, H.; Cui, Y. Recombinant human brain natriuretic pep-tide ameliorates trauma-induced acute lung injury via inhibiting JAK/STAT signaling pathway in rats. J. Trauma Acute Care Surg., 2015, 78(5), 980-987.
[http://dx.doi.org/10.1097/TA.0000000000000602] [PMID: 25909419]
[32]
Kimura, T.; Nojiri, T.; Hosoda, H.; Ishikane, S.; Shin-tani, Y.; Inoue, M.; Miyazato, M.; Okumura, M.; Kangawa, K. C-type natriuretic peptide attenuates lipopolysaccha-ride-induced acute lung injury in mice. J. Surg. Res., 2015, 194(2), 631-637.
[33]
Xing, J.; Moldobaeva, N.; Birukova, A.A. Atrial natri-uretic peptide protects against Staphylococcus aureus-induced lung injury and endothelial barrier dysfunc-tion. J. Appl. Physiol., 2011, 110(1), 213-224.
[http://dx.doi.org/10.1152/japplphysiol.00284.2010] [PMID: 21051573]
[34]
Cao, X.; Xia, H.Y.; Zhang, T.; Qi, L.C.; Zhang, B.Y.; Cui, R.; Chen, X.; Zhao, Y.R.; Li, X.Q. Protective effect of lyophilized recombinant human brain natriu-retic peptide on renal ischemia/reperfusion injury in mice. Genet. Mol. Res., 2015, 14(4), 13300-13311.
[http://dx.doi.org/10.4238/2015.October.26.26] [PMID: 26535643]
[35]
Prat, C.; Lacoma, A.; Dominguez, J.; Papassotiriou, J.; Morgenthaler, N.G.; Andreo, F.; Tudela, P.; Ruiz-Manzano, J.; Ausina, V. Midregional pro-atrial natriu-retic peptide as a prognostic marker in pneumonia. J. Infect., 2007, 55(5), 400-407.
[http://dx.doi.org/10.1016/j.jinf.2007.07.018] [PMID: 17825918]
[36]
Berg, T.; Zdunek, D.; Stalke, J.; Dupke, S.; Baumgart-en, A.; Carganico, A.; Hess, G. N-terminal pro-B-type natriuretic peptide (NT-proBNP) in HIV-1 infected in-dividuals on HAART. Eur. J. Med. Res., 2007, 12(4), 152-160.
[PMID: 17509959]
[37]
Antonelli, A.; Ferri, C.; Ferrari, S.M.; Marchi, S.; De Bortoli, N.; Sansonno, D.; Chiavacci, C.; Ferranni-ni, E.; Fallahi, P. N-terminal pro-brain natriuretic peptide and tumor necrosis factor-α both are in-creased in patients with Hepatitis C. J. Interferon Cytokine Res., 2010, 30(5), 359-363.
[http://dx.doi.org/10.1089/jir.2009.0059] [PMID: 20187770]
[38]
MJ AG. Prognostic value of pro-adrenomedullin and NT-proBNP in patients referred from the emergency depart-ment with influenza syndrome. Emergencias. Revista de la Sociedad Espanola de Medicina de Emergencias., 2019, 31(3), 180-184.
[39]
Elikowski, W.; Małek-Elikowska, M.; Lisiecka, M.; Trypuć, Z.; Mozer-Lisewska, I. Takotsubo cardiomyopa-thy triggered by influenza B. Pol. Merkuriusz Lek., 2018, 45(266), 67-70.
[PMID: 30240371]
[40]
Shivanthan, M.C.; Navinan, M.R.; Constantine, G.R.; Rajapakse, S. Cardiac involvement in dengue infection. J. Infect. Dev. Ctries., 2015, 9(4), 338-346.
[http://dx.doi.org/10.3855/jidc.6200] [PMID: 25881521]
[41]
Sule, A.A.; Tai, D.Y.; Yue, K.N.; Chadachan, V.; Ng, K. Significantly raised brain natriuretic peptide in a young patient with dengue fever without heart and re-nal failure. Crit. Care Shock, 2007, 10(3), 111-114.
[42]
Rodriguez-Gonzalez, M.; Benavente-Fernandez, I. Cas-tellano-Martinez, A.; Lechuga-Sancho, A.M.; Lubian-Lopez, S.P. NT-proBNP plasma levels as biomarkers for pulmonary hypertension in healthy infants with respir-atory syncytial virus infection. Biomarkers Med., 2019, 13(8), 605-618.
[http://dx.doi.org/10.2217/bmm-2018-0348] [PMID: 31157543]
[43]
Rodriguez-Gonzalez, M.; Perez-Reviriego, A.A.; Castel-lano-Martinez, A.; Lubian-Lopez, S.; Benavente-Fernandez, I. Left ventricular dysfunction and plas-matic NT-proBNP are associated with adverse evolution in respiratory syncytial virus bronchiolitis. Diagnostics (Basel), 2019, 9(3), 85.
[http://dx.doi.org/10.3390/diagnostics9030085] [PMID: 31357664]
[44]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Niemi, M.S.; Aljowaie, R.M.; Almutairi, S.M.; Alexiou, A.; Batiha, G.E. The prospective effect of allopurinol on the oxi-dative stress index and endothelial dysfunction in covid-19. Inflammation, 2022, 1-7.
[http://dx.doi.org/10.1007/s10753-022-01648-7] [PMID: 35199285]
[45]
Gardner, D.G.; Chen, S.; Glenn, D.J.; Grigsby, C.L. Molecular biology of the natriuretic peptide system: Implications for physiology and hypertension. Hypertension, 2007, 49(3), 419-426.
[http://dx.doi.org/10.1161/01.HYP.0000258532.07418.fa] [PMID: 17283251]
[46]
Rydén, M.; Bäckdahl, J.; Petrus, P.; Thorell, A.; Gao, H.; Coue, M.; Langin, D.; Moro, C.; Arner, P. Impaired atrial natriuretic peptide-mediated lipolysis in obe-sity. Int. J. Obes., 2016, 40(4), 714-720.
[http://dx.doi.org/10.1038/ijo.2015.222] [PMID: 26499437]
[47]
Peña, J.E.; Rascón-Pacheco, R.A.; Ascencio-Montiel, I.J.; González-Figueroa, E.; Fernández-Gárate, J.E.; Medina-Gómez, O.S.; Borja-Bustamante, P.; Santillán-Oropeza, J.A.; Borja-Aburto, V.H. Hypertension, diabe-tes and obesity, major risk factors for death in pa-tients with COVID-19 in Mexico. Arch. Med. Res., 2021, 52(4), 443-449.
[http://dx.doi.org/10.1016/j.arcmed.2020.12.002] [PMID: 33380361]
[48]
Batiha, G.E.; Gari, A.; Elshony, N.; Shaheen, H.M.; Abubakar, M.B.; Adeyemi, S.B.; Al-Kuraishy, H.M. Hy-pertension and its management in COVID-19 patients: The assorted view. Inter. J. Cardiol. Cardiovasc. Risk Prev., 2021, 11, 200121.
[http://dx.doi.org/10.1016/j.ijcrp.2021.200121] [PMID: 34806090]
[49]
Caro-Codón, J.; Rey, J.R.; Buño, A.; Iniesta, A.M.; Rosillo, S.O.; Castrejon-Castrejon, S.; Rodriguez-Sotelo, L.; Martinez, L.A.; Marco, I.; Merino, C.; Martin-Polo, L.; Garcia-Veas, J.M.; Martinez-Cossiani, M.; Gonzalez-Valle, L.; Herrero, A.; López-de-Sa, E.; Merino, J.L. Characterization of NT-proBNP in a large cohort of COVID-19 patients. Eur. J. Heart Fail., 2021, 23(3), 456-464.
[http://dx.doi.org/10.1002/ejhf.2095] [PMID: 33421281]
[50]
Mitaka, C.; Hirata, Y.; Nagura, T.; Tsunoda, Y.; Itoh, M.; Amaha, K. Increased plasma concentrations of brain natriuretic peptide in patients with acute lung inju-ry. J. Crit. Care, 1997, 12(2), 66-71.
[http://dx.doi.org/10.1016/S0883-9441(97)90003-4] [PMID: 9165414]
[51]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; El-Saber Batiha, G. The possible role of ursolic acid in Covid-19: A real game changer. Clin. Nutr. ESPEN, 2022, 47, 414-417.
[http://dx.doi.org/10.1016/j.clnesp.2021.12.030] [PMID: 35063236]
[52]
Cepkova, M.; Kapur, V.; Ren, X.; Quinn, T.; Zhuo, H.; Foster, E.; Matthay, M.A.; Liu, K.D. Clinical signifi-cance of elevated B-type natriuretic peptide in pa-tients with acute lung injury with or without right ventricular dilatation: An observational cohort study. Ann. Intensive Care, 2011, 1(1), 18.
[http://dx.doi.org/10.1186/2110-5820-1-18] [PMID: 21906356]
[53]
Trpkov, C.; MacMullan, P.; Feuchter, P.; Kachra, R.; Heydari, B.; Merchant, N.; Bristow, M.S.; White, J.A. Rapid response to cytokine storm inhibition using ana-kinra in a patient with COVID-19 myocarditis. CJC Open, 2021, 3(2), 210-213.
[54]
Selçuk, M.; Keskin, M.; Çınar, T.; Günay, N.; Doğan, S.; Çiçek, V.; Kılıç, Ş.; Asal, S.; Yavuz, S.; Keser, N.; Orhan, A.L. Prognostic significance of N-Terminal Pro-BNP in patients with COVID-19 pneumonia without previous history of heart failure. J. Cardiovasc. Thorac. Res., 2021, 13(2), 141-145.
[http://dx.doi.org/10.34172/jcvtr.2021.26] [PMID: 34326968]
[55]
Kaufmann, C.C.; Ahmed, A.; Kassem, M.; Freynhofer, M.K.; Jäger, B.; Aicher, G.; Equiluz-Bruck, S.; Spiel, A.O.; Funk, G.C.; Gschwantler, M.; Fasching, P.; Wojta, J.; Huber, K. Mid-regional pro-atrial natriu-retic peptide independently predicts short-term mor-tality in COVID-19. Eur. J. Clin. Invest., 2021, 51(5), e13531.
[http://dx.doi.org/10.1111/eci.13531] [PMID: 33657664]
[56]
Cui, K.; Huang, W.; Fan, J.; Lei, H. Midregional pro-atrial natriuretic peptide is a superior biomarker to N-terminal pro-B-type natriuretic peptide in the diag-nosis of heart failure patients with preserved ejec-tion fraction. Medicine (Baltimore), 2018, 97(36), e12277.
[http://dx.doi.org/10.1097/MD.0000000000012277] [PMID: 30200170]
[57]
Yagmur, E.; Sckaer, J.H.; Koek, G.H.; Weiskirchen, R.; Trautwein, C.; Koch, A.; Tacke, F. Elevated MR-proANP plasma concentrations are associated with sepsis and predict mortality in critically ill patients. J. Transl. Med., 2019, 17(1), 415.
[http://dx.doi.org/10.1186/s12967-019-02165-2] [PMID: 31830996]
[58]
Kazory, A.; Ronco, C.; McCullough, P.A. SARS-CoV-2 (COVID-19) and intravascular volume management strategies in the critically ill. In: Baylor University Medical Center Proceedings; Taylor & Francis; , 2020; 33, pp. (3)370-375.
[59]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alsham-mari, E.M.; Gyebi, G.A.; Batiha, G.E. Covid-19-induced dysautonomia: A menace of sympathetic storm. ASN Neuro, 2021, 13, 17590914211057635.
[http://dx.doi.org/10.1177/17590914211057635] [PMID: 34755562]
[60]
Bojkova, D.; Wagner, J.U.G.; Shumliakivska, M.; Aslan, G.S.; Saleem, U.; Hansen, A.; Luxán, G.; Günther, S.; Pham, M.D.; Krishnan, J.; Harter, P.N.; Ermel, U.H.; Frangakis, A.S.; Milting, H.; Zeiher, A.M.; Klingel, K.; Cinatl, J.; Dendorfer, A.; Eschenhagen, T.; Tschöpe, C.; Ciesek, S.; Dimmeler, S. SARS-CoV-2 in-fects and induces cytotoxic effects in human cardiomy-ocytes. Cardiovasc. Res., 2020, 116(14), 2207-2215.
[http://dx.doi.org/10.1093/cvr/cvaa267] [PMID: 32966582]
[61]
Zhang, K.; Wiedemann, S.; Dschietzig, M.; Cremers, M.M.; Augstein, A.; Poitz, D.M.; Quick, S.; Pfluecke, C.; Heinzel, F.R.; Pieske, B.; Adams, V.; Linke, A.; Strasser, R.H.; Heidrich, F.M. The infarction zone rather than the noninfarcted remodeling zone overex-presses angiotensin II receptor type 1 and is the main source of ventricular atrial natriuretic peptide. Cardiovasc. Pathol., 2020, 44, 107160.
[http://dx.doi.org/10.1016/j.carpath.2019.107160] [PMID: 31759320]
[62]
U R. A.; Verma, K. Pulmonary edema in COVID19-A neural hypothesis. ACS Chem. Neurosci., 2020, 11(14), 2048-2050.
[http://dx.doi.org/10.1021/acschemneuro.0c00370] [PMID: 32614178]
[63]
Ryan, R.M.; Paintlia, M.K.; Newton, D.A.; Baatz, J.E. Stimulation of Natriuretic Peptide Receptor-C (NPR-C) Induces a HypoxiaInducible Factor 1 (HIF-1)-Mediated Response in Alveolar Type II Cells. InC108. BPD AND OTHER CONGENITAL LUNG DISEASE 2018 (May);, A6115-A6115. (American Thoracic Society.].
[64]
Watanabe, K.; Jesmin, S.; Takeda, T.; Shiraki, T.; Sengoku, Y. Influence of altitude training on brain natriuretic peptide and atrial natriuretic peptide in Japanese collegiate swimmers. Int. J. Sport. Exc. Health. Res., 2019, 3, 14-18.
[http://dx.doi.org/10.31254/sportmed.3104]
[65]
Farhangrazi, Z.S.; Moghimi, S.M. Elevated circulating endothelin-1 as a potential biomarker for high-risk COVID-19 severity. Precis. Nanomed., 2020, 3, 622-628.
[http://dx.doi.org/10.33218/001c.13525]
[66]
Ma, K.K.; Ogawa, T.; de Bold, A.J. Selective upregula-tion of cardiac brain natriuretic peptide at the tran-scriptional and translational levels by pro-inflammatory cytokines and by conditioned medium de-rived from mixed lymphocyte reactions via p38 MAP ki-nase. J. Mol. Cell. Cardiol., 2004, 36(4), 505-513.
[http://dx.doi.org/10.1016/j.yjmcc.2004.01.001] [PMID: 15081310]
[67]
Ross, R.; Conti, P. COVID-19 induced by SARS-CoV-2 causes Kawasaki-like disease in children: Role of pro-inflammatory and anti-inflammatory cytokines. J. Biol. Regul. Homeost. Agents, 2020, 34(3), 767-773.
[PMID: 32476380]
[68]
Luchner, A.; Schunkert, H. Interactions between the sympathetic nervous system and the cardiac natriuretic peptide system. Cardiovasc. Res., 2004, 63(3), 443-449.
[http://dx.doi.org/10.1016/j.cardiores.2004.05.004] [PMID: 15276469]
[69]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Mostafa-Hedeab, G.; Kasozi, K.I.; Zirintunda, G.; Aslam, A.; Al-lahyani, M.; Welburn, S.C.; Batiha, G.E. Effects of β-blockers on the sympathetic and cytokines storms in covid-19. Front. Immunol., 2021, 12, 749291.
[http://dx.doi.org/10.3389/fimmu.2021.749291] [PMID: 34867978]
[70]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alsham-mari, E.M.; Atanu, F.O.; Batiha, G.E. Arginine vaso-pressin and pathophysiology of COVID-19: An innovative perspective. Biomed. Pharmacother., 2021, 143, 112193.
[http://dx.doi.org/10.1016/j.biopha.2021.112193] [PMID: 34543987]
[71]
Giustino, G.; Croft, L.B.; Oates, C.P.; Rahman, K.; Lerakis, S.; Reddy, V.Y.; Goldman, M. Takotsubo cardi-omyopathy in COVID-19. J. Am. Coll. Cardiol., 2020, 76(5), 628-629.
[http://dx.doi.org/10.1016/j.jacc.2020.05.068] [PMID: 32517962]
[72]
Ladetzki-Baehs, K.; Keller, M.; Kiemer, A.K.; Koch, E.; Zahler, S.; Wendel, A.; Vollmar, A.M. Atrial na-triuretic peptide, a regulator of nuclear factor-kappaB activation in vivo. Endocrinology, 2007, 148(1), 332-336.
[http://dx.doi.org/10.1210/en.2006-0935] [PMID: 17008392]
[73]
Hemmat, N.; Asadzadeh, Z.; Ahangar, N.K.; Alemohammad, H.; Najafzadeh, B.; Derakhshani, A.; Baghbanzadeh, A.; Baghi, H.B.; Javadrashid, D.; Najafi, S.; Ar Gouilh, M.; Baradaran, B. The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV. Arch. Virol., 2021, 166(3), 675-696.
[http://dx.doi.org/10.1007/s00705-021-04958-7] [PMID: 33462671]
[74]
Mitaka, C.; Kudo, T.; Haraguchi, G.; Tomita, M. Cardi-ovascular and renal effects of carperitide and nesiritide in cardiovascular surgery patients: A sys-tematic review and meta-analysis. Crit. Care, 2011, 15(5), R258.
[http://dx.doi.org/10.1186/cc10519] [PMID: 22032777]
[75]
Li, K.P.; Zhang, H.Y.; Xu, X.D. Ming-Yang; Li, T.J.; Song, S.T. Recombinant human brain natriuretic peptide attenuates myocardial ischemia-Reperfusion injury by inhibiting CD4+ T cell proliferation via PI3K/AKT/mTOR pathway activation. Cardiovasc. Ther., 2020, 2020, 1389312.
[http://dx.doi.org/10.1155/2020/1389312] [PMID: 32788926]
[76]
Xu, D.; Ma, M.; Xu, Y.; Su, Y.; Ong, S.B.; Hu, X.; Chai, M.; Zhao, M.; Li, H.; Chen, Y.; Xu, X. Single-cell transcriptome analysis indicates new potential regulation mechanism of ACE2 and NPs signaling among heart failure patients infected with SARS-CoV-2. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.30.20081257]
[77]
Volpe, M. Natriuretic peptides and cardio-renal dis-ease. Int. J. Cardiol., 2014, 176(3), 630-639.
[http://dx.doi.org/10.1016/j.ijcard.2014.08.032] [PMID: 25213572]
[78]
Nougué, H.; Pezel, T.; Picard, F.; Sadoune, M.; Arri-go, M.; Beauvais, F.; Launay, J.M.; Cohen-Solal, A.; Vodovar, N.; Logeart, D. Effects of sacubi-tril/valsartan on neprilysin targets and the metabo-lism of natriuretic peptides in chronic heart failure: A mechanistic clinical study. Eur. J. Heart Fail., 2019, 21(5), 598-605.
[http://dx.doi.org/10.1002/ejhf.1342] [PMID: 30520545]
[79]
Chen, W.; Werner, F.; Illerhaus, A.; Knopp, T.; Völk-er, K.; Potapenko, T.; Hofmann, U.; Frantz, S.; Baba, H.A.; Rösch, M.; Zernecke, A.; Karbach, S.; Wenzel, P.; Kuhn, M. Stabilization of perivascular mast cells by endothelial CNP (C-Type Natriuretic Peptide). Arterioscler. Thromb. Vasc. Biol., 2020, 40(3), 682-696.
[http://dx.doi.org/10.1161/ATVBAHA.119.313702] [PMID: 31893950]
[80]
Vitiello, A.; La Porta, R.; Ferrara, F. Sacubitril, valsartan and SARS-CoV-2. BMJ Evid. Based Med., 2020. bmjebm-2020- 111497
[PMID: 32719054]
[81]
Moubarak, M.; Kasozi, K.I.; Hetta, H.F.; Shaheen, H.M.; Rauf, A.; Al-Kuraishy, H.M.; Qusti, S.; Alsham-mari, E.M.; Ayikobua, E.T.; Ssempijja, F.; Afodun, A.M.; Kenganzi, R.; Usman, I.M.; Ochieng, J.J.; Osu-wat, L.O.; Matama, K.; Al-Gareeb, A.I.; Kairania, E.; Musenero, M.; Welburn, S.C.; Batiha, G.E. The rise of SARS-CoV-2 variants and the role of convalescent plas-ma therapy for management of infections. Life (Basel), 2021, 11(8), 734.
[http://dx.doi.org/10.3390/life11080734] [PMID: 34440478]
[82]
Gu, J.; Noe, A.; Chandra, P.; Al-Fayoumi, S.; Li-gueros-Saylan, M.; Sarangapani, R.; Maahs, S.; Ksander, G.; Rigel, D.F.; Jeng, A.Y.; Lin, T.H.; Zheng, W.; Dole, W.P. Pharmacokinetics and pharmacody-namics of LCZ696, a novel dual-acting angiotensin re-ceptor-neprilysin inhibitor (ARNi). J. Clin. Pharmacol., 2010, 50(4), 401-414.
[http://dx.doi.org/10.1177/0091270009343932] [PMID: 19934029]
[83]
Ge, Q.; Zhao, L.; Liu, C.; Ren, X.; Yu, Y.H.; Pan, C.; Hu, Z. LCZ696, an angiotensin receptor-neprilysin in-hibitor, improves cardiac hypertrophy and fibrosis and cardiac lymphatic remodeling in transverse aortic con-striction model mice. BioMed Res. Int., 2020, 2020, 7256862.
[http://dx.doi.org/10.1155/2020/7256862] [PMID: 32420365]
[84]
Cozier, G.E.; Arendse, L.B.; Schwager, S.L.; Sturrock, E.D.; Acharya, K.R. Molecular basis for multiple omapatrilat binding sites within the ACE C-domain: Implications for drug design. J. Med. Chem., 2018, 61(22), 10141-10154.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01309] [PMID: 30372620]
[85]
Ugan, R.A.; Un, H.; Gurbuz, M.A.; Kaya, G.; Kahraman-lar, A.; Aksakalli-Magden, Z.B.; Halici, Z.; Cadirci, E. Possible contribution of the neprilysin/ACE pathway to sepsis in mice. Life Sci., 2020, 258, 118177.
[http://dx.doi.org/10.1016/j.lfs.2020.118177] [PMID: 32738364]
[86]
Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; Wang, Q.; Zhou, H.; Yan, J.; Qi, J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4), 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[87]
Ishii, M.; Kaikita, K.; Sato, K.; Sueta, D.; Fujisue, K.; Arima, Y.; Oimatsu, Y.; Mitsuse, T.; Onoue, Y.; Araki, S.; Yamamuro, M.; Nakamura, T.; Izumiya, Y.; Yamamoto, E.; Kojima, S.; Kim-Mitsuyama, S.; Ogawa, H.; Tsujita, K. Cardioprotective effects of LCZ696 (sacubitril/valsartan) after experimental acute myo-cardial infarction. JACC Basic Transl. Sci., 2017, 2(6), 655-668.
[http://dx.doi.org/10.1016/j.jacbts.2017.08.001] [PMID: 30062181]
[88]
Escobales, N.; Nuñez, R.E.; Javadov, S. Mitochondrial angiotensin receptors and cardioprotective pathways. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(6), H1426-H1438.
[http://dx.doi.org/10.1152/ajpheart.00772.2018] [PMID: 30978131]
[89]
Vardeny, O.; Claggett, B.; Kachadourian, J.; Pearson, S.M.; Desai, A.S.; Packer, M.; Rouleau, J.; Zile, M.R.; Swedberg, K.; Lefkowitz, M.; Shi, V.; McMurray, J.J.V.; Solomon, S.D. Incidence, predictors, and out-comes associated with hypotensive episodes among heart failure patients receiving sacubitril/valsartan or enalapril: The PARADIGM-HF Trial (Prospective compari-son of angiotensin receptor neprilysin inhibitor with angiotensin-converting enzyme inhibitor to determine impact on global mortality and morbidity in heart failure). Circ Heart Fail, 2018, 11(4), e004745.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.117.004745] [PMID: 29643067]
[90]
Desai, A.S.; Vardeny, O.; Claggett, B.; McMurray, J.J.; Packer, M.; Swedberg, K.; Rouleau, J.L.; Zile, M.R.; Lefkowitz, M.; Shi, V.; Solomon, S.D. Reduced risk of hyperkalemia during treatment of heart failure with mineralocorticoid receptor antagonists by use of sacubitril/valsartan compared with enalapril: A sec-ondary analysis of the PARADIGM-HF trial. JAMA Cardiol., 2017, 2(1), 79-85.
[http://dx.doi.org/10.1001/jamacardio.2016.4733] [PMID: 27842179]
[91]
Hashimoto, S.; Amaya, F.; Oh-Hashi, K.; Kiuchi, K.; Hashimoto, S. Expression of neutral endopeptidase ac-tivity during clinical and experimental acute lung injury. Respir. Res., 2010, 11(1), 164.
[http://dx.doi.org/10.1186/1465-9921-11-164] [PMID: 21114838]
[92]
Carpenter, T.C.; Stenmark, K.R. Hypoxia decreases lung neprilysin expression and increases pulmonary vascular leak. Am. J. Physiol. Lung Cell. Mol. Physiol., 2001, 281(4), L941-L948.
[http://dx.doi.org/10.1152/ajplung.2001.281.4.L941] [PMID: 11557598]
[93]
Zolfaghari Emameh, R.; Falak, R.; Bahreini, E. Appli-cation of system biology to explore the association of neprilysin, angiotensin-converting enzyme 2 (ACE2), and carbonic anhydrase (CA) in pathogenesis of SARS-CoV-2. Biol. Proced. Online, 2020, 22(1), 11.
[http://dx.doi.org/10.1186/s12575-020-00124-6] [PMID: 32572334]
[94]
Mohammed El Tabaa, M.; Mohammed El Tabaa, M. Targeting Neprilysin (NEP) pathways: A potential new hope to defeat COVID-19 ghost. Biochem. Pharmacol., 2020, 178, 114057.
[http://dx.doi.org/10.1016/j.bcp.2020.114057] [PMID: 32470547]
[95]
Kaloudi, A.; Lymperis, E.; Kanellopoulos, P.; Waser, B.; de Jong, M.; Krenning, E.P.; Reubi, J.C.; Nock, B.A.; Maina, T. Localization of 99mTc-GRP analogs in GRPR-expressing tumors: Effects of peptide length and neprilysin inhibition on biological responses. Pharmaceuticals (Basel), 2019, 12(1), 42.
[http://dx.doi.org/10.3390/ph12010042] [PMID: 30897789]
[96]
Skidgel, R.A.; Erdös, E.G. Angiotensin converting en-zyme (ACE) and neprilysin hydrolyze neuropeptides: A brief history, the beginning and follow-ups to early studies. Peptides, 2004, 25(3), 521-525.
[http://dx.doi.org/10.1016/j.peptides.2003.12.010] [PMID: 15134871]
[97]
Wick, M.J.; Buesing, E.J.; Wehling, C.A.; Loomis, Z.L.; Cool, C.D.; Zamora, M.R.; Miller, Y.E.; Colgan, S.P.; Hersh, L.B.; Voelkel, N.F.; Dempsey, E.C. De-creased neprilysin and pulmonary vascular remodeling in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2011, 183(3), 330-340.
[http://dx.doi.org/10.1164/rccm.201002-0154OC] [PMID: 20813891]
[98]
El Tabaa, M.M.; El Tabaa, M.M. New putative insights into neprilysin (NEP)-dependent pharmacotherapeutic role of roflumilast in treating COVID-19. Eur. J. Pharmacol., 2020, 889, 173615.
[http://dx.doi.org/10.1016/j.ejphar.2020.173615] [PMID: 33011243]
[99]
S, S.L.J.; v, R. Scope of adjuvant therapy using roflumilast, a PDE-4 inhibitor against COVID-19. Pulm. Pharmacol. Ther., 2021, 66, 101978.
[http://dx.doi.org/10.1016/j.pupt.2020.101978] [PMID: 33259924]
[100]
Shah, C.A. Can roflumilast become steroid-sparing al-ternative in the treatment of COVID-19? Med. Hypotheses, 2020, 144, 110246.
[http://dx.doi.org/10.1016/j.mehy.2020.110246] [PMID: 33254551]
[101]
Ancion, A.; Tridetti, J.; Nguyen Trung, M.L.; Oury, C.; Lancellotti, P. A review of the role of bradykinin and nitric oxide in the cardioprotective action of angiotensin-converting enzyme inhibitors: Focus on perindopril. Cardiol. Ther., 2019, 8(2), 179-191.
[http://dx.doi.org/10.1007/s40119-019-00150-w] [PMID: 31578675]
[102]
Tsuruda, T.; Kato, J.; Kuwasako, K.; Kitamura, K. Adrenomedullin: Continuing to explore cardioprotec-tion. Peptides, 2019, 111, 47-54.
[http://dx.doi.org/10.1016/j.peptides.2018.03.012] [PMID: 29577955]
[103]
Hong, H.S.; Kim, S.; Lee, S.; Woo, J.S.; Lee, K.H.; Cheng, X.W.; Son, Y.; Kim, W. Substance-P prevents cardiac ischemia-reperfusion injury by modulating stem cell mobilization and causing early suppression of injury-mediated inflammation. Cell. Physiol. Biochem., 2019, 52(1), 40-56.
[PMID: 30790504]
[104]
Ureche, C.; Tapoi, L.; Volovat, S.; Voroneanu, L.; Kanbay, M.; Covic, A. Cardioprotective apelin effects and the cardiac-renal axis: Review of existing science and potential therapeutic applications of synthetic and native regulated apelin. J. Hum. Hypertens., 2019, 33(6), 429-435.
[http://dx.doi.org/10.1038/s41371-019-0163-5] [PMID: 30659278]
[105]
Wang, S.C.; Wang, Y.F. Cardiovascular protective prop-erties of oxytocin against COVID-19. Life Sci., 2021, 270, 119130.
[http://dx.doi.org/10.1016/j.lfs.2021.119130] [PMID: 33513400]
[106]
Belančić, A.; Kresović, A.; Troskot Dijan, M. Gluca-gon-like peptide-1 receptor agonists in the era of COVID-19: Friend or foe? Clin. Obes., 2021, 11(2), e12439.
[http://dx.doi.org/10.1111/cob.12439] [PMID: 33423388]
[107]
Supuran, C.T. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin. Ther. Pat., 2018, 28(10), 709-712.
[http://dx.doi.org/10.1080/13543776.2018.1523897] [PMID: 30217119]
[108]
Xu, F.; Gao, J.; Munkhsaikhan, U.; Li, N.; Gu, Q.; Pierre, J.F.; Starlard-Davenport, A.; Towbin, J.A.; Cui, Y.; Purevjav, E.; Lu, L. The genetic dissection of Ace2 expression variation in the heart of murine genetic reference population. Front. Cardiovasc. Med., 2020, 7, 582949.
[http://dx.doi.org/10.3389/fcvm.2020.582949] [PMID: 33330645]
[109]
Giudicessi, J.R.; Roden, D.M.; Wilde, A.A.M.; Acker-man, M.J. Genetic susceptibility for COVID-19-associated sudden cardiac death in African Americans. Heart Rhythm, 2020, 17(9), 1487-1492.
[http://dx.doi.org/10.1016/j.hrthm.2020.04.045] [PMID: 32380288]
[110]
Chakrabarty, A.; Liao, Z.; Mu, Y.; Smith, P.G. Inflam-matory renin-angiotensin system disruption attenuates sensory hyperinnervation and mechanical hypersensitiv-ity in a rat model of provoked vestibulodynia. J. Pain, 2018, 19(3), 264-277.
[http://dx.doi.org/10.1016/j.jpain.2017.10.006] [PMID: 29155208]
[111]
Deniz, S.; Uysal, T.K.; Capasso, C.; Supuran, C.T.; Ozensoy Guler, O. Is carbonic anhydrase inhibition useful as a complementary therapy of Covid-19 infec-tion? J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1230-1235.
[http://dx.doi.org/10.1080/14756366.2021.1924165] [PMID: 34074197]
[112]
Courreges, A.P.; Najenson, A.C.; Vatta, M.S.; Bian-ciotti, L.G. Atrial natriuretic peptide attenuates endoplasmic reticulum stress in experimental acute pancreatitis. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(2), 485-493.
[http://dx.doi.org/10.1016/j.bbadis.2018.12.004] [PMID: 30529145]
[113]
Choi, M.R.; Fernández, B.E. Protective renal effects of atrial natriuretic peptide: Where are we now? Front. Physiol., 2021, 12, 680213.
[http://dx.doi.org/10.3389/fphys.2021.680213] [PMID: 34135773]
[114]
Li, X.; Peng, H.; Wu, J.; Xu, Y. Brain natriuretic peptide-regulated expression of inflammatory cytokines in lipopolysaccharide (LPS)-activated macrophages via NF-κB and mitogen activated protein kinase (MAPK) pathways. Med. Sci. Monit., 2018, 24, 3119-3126.
[http://dx.doi.org/10.12659/MSM.905580] [PMID: 29754152]
[115]
Moyes, A.J.; Hobbs, A.J. C-type natriuretic peptide: A multifaceted paracrine regulator in the heart and vas-culature. Int. J. Mol. Sci., 2019, 20(9), 2281.
[http://dx.doi.org/10.3390/ijms20092281] [PMID: 31072047]
[116]
Osterbur, K.; Yu, D.H.; DeClue, A.E. Interleukin-1β, tumour necrosis factor-α and lipopolysaccharide in-duce C-type natriuretic peptide from canine aortic endothelial cells. Res. Vet. Sci., 2013, 94(3), 478-483.
[http://dx.doi.org/10.1016/j.rvsc.2012.10.002] [PMID: 23141169]
[117]
McMurray, J.J.; Packer, M.; Solomon, S.D. Neprilysin inhibition for heart failure. N. Engl. J. Med., 2014, 371(24), 2336-2337.
[PMID: 25494275]
[118]
Miners, J.S.; Barua, N.; Kehoe, P.G.; Gill, S.; Love, S. Aβ-degrading enzymes: Potential for treatment of Alzheimer disease. J. Neuropathol. Exp. Neurol., 2011, 70(11), 944-959.
[http://dx.doi.org/10.1097/NEN.0b013e3182345e46] [PMID: 22002425]
[119]
Guo, X.; Tang, P.; Liu, P.; Liu, Y.; Hou, C.; Li, R. Meta-analysis of the association between two nepri-lysin gene polymorphisms and Alzheimer’s disease. J. Neurol. Sci., 2014, 346(1-2), 6-10.
[http://dx.doi.org/10.1016/j.jns.2014.07.064] [PMID: 25125048]
[120]
Dempsey, E.C.; Wick, M.J.; Karoor, V.; Barr, E.J.; Tallman, D.W.; Wehling, C.A.; Walchak, S.J.; Laudi, S.; Le, M.; Oka, M.; Majka, S.; Cool, C.D.; Fagan, K.A.; Klemm, D.J.; Hersh, L.B.; Gerard, N.P.; Gerard, C.; Miller, Y.E. Neprilysin null mice develop exagger-ated pulmonary vascular remodeling in response to chronic hypoxia. Am. J. Pathol., 2009, 174(3), 782-796.
[http://dx.doi.org/10.2353/ajpath.2009.080345] [PMID: 19234135]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy