Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Physical Instabilities of Therapeutic Monoclonal Antibodies: A Critical Review

Author(s): Arpit Arun K. Bana, Priti Mehta* and Khushboo Ashok Kumar Ramnani

Volume 19, Issue 6, 2022

Published on: 23 August, 2022

Article ID: e240622206367 Pages: 11

DOI: 10.2174/1570163819666220624092622

Price: $65

Abstract

The proteinaceous nature of monoclonal antibodies (mAbs) makes them highly sensitive to various physical and chemical conditions, thus leading to instabilities that are classified as physical and chemical instabilities. In this review, we are discussing in detail the physical instability of mAbs because a large number of articles previously published solely focus on the chemical aspect of the instability with little coverage on the physical side. The physical instabilities of mAbs are classified into denaturation and aggregation (precipitation, visible and subvisible particles). The mechanism involved in their formation is discussed in the article, along with the pathways correlating the denaturation of mAb or the formation of aggregates to immunogenicity. Further equations like Gibbs-Helmholtz involved in detecting and quantifying denaturation are discussed, along with various factors causing the denaturation. Moreover, questions related to aggregation like the types of aggregates and the pathway involved in their formation are answered in this article. Factors influencing the physical stability of the mAbs by causing denaturation or formation of aggregates involving the structure of the protein, concentration of mAbs, pH of the protein and the formulations, excipients involved in the formulations, salts added to the formulations, storage temperature, light and UV radiation exposure and processing factors are mentioned in this article. Finally, the analytical approaches used for detecting and quantifying the physical instability of mAbs at all levels of structural conformation like far and near UV, infrared spectroscopy, capillary electrophoresis, LC-MS, microflow imagining, circular dichroism and peptide mapping are discussed.

Keywords: Protein structure, processing factors, denaturation, aggregation, immunogenicity, analytical techniques.

Graphical Abstract
[1]
Le Basle, Y.; Chennell, P.; Tokhadze, N.; Astier, A.; Sautou, V. Physicochemical stability of monoclonal antibodies: A review. J. Pharm. Sci., 2020, 109(1), 169-190.
[http://dx.doi.org/10.1016/j.xphs.2019.08.009] [PMID: 31465737]
[2]
Jeong, S.H. Analytical methods and formulation factors to enhance protein stability in solution. Arch. Pharm. Res., 2012, 35(11), 1871-1886.
[http://dx.doi.org/10.1007/s12272-012-1103-x] [PMID: 23212628]
[3]
Lazar, KL; Patapoff, TW; Sharma, VK Cold denaturation of monoclonal antibodies. MAbs, 2010, 2(1), 42-52.
[http://dx.doi.org/10.4161/mabs.2.1.10787]
[4]
Zapadka, K.L.; Becher, F.J.; Gomes Dos Santos, A.L.; Jackson, S.E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus, 2017, 7(6), 20170030.
[http://dx.doi.org/10.1098/rsfs.2017.0030] [PMID: 29147559]
[5]
Roberts, C.J. Protein aggregation and its impact on product quality. Curr. Opin. Biotechnol., 2014, 30, 211-217.
[http://dx.doi.org/10.1016/j.copbio.2014.08.001] [PMID: 25173826]
[6]
Li, W.; Prabakaran, P.; Chen, W.; Zhu, Z.; Feng, Y.; Dimitrov, D.S. Antibody aggregation: insights from sequence and structure. Antibodies, 2016 Sep 5;5(3), 19.
[7]
Fukuda, J.; Iwura, T.; Yanagihara, S.; Kano, K. Factors to govern soluble and insoluble aggregate-formation in monoclonal antibodies. Anal. Sci., 2015, 31(12), 1233-1240.
[http://dx.doi.org/10.2116/analsci.31.1233] [PMID: 26656811]
[8]
Ross, P.L.; Wolfe, J.L. Physical and chemical stability of antibody drug conjugates: Current status. J. Pharm. Sci., 2016, 105(2), 391-397.
[http://dx.doi.org/10.1016/j.xphs.2015.11.037] [PMID: 26869406]
[9]
Wang, W. Protein aggregation and its inhibition in biopharmaceutics. Int. J. Pharm., 2005, 289(1-2), 1-30.
[http://dx.doi.org/10.1016/j.ijpharm.2004.11.014] [PMID: 15652195]
[10]
Wang, W.; Nema, S.; Teagarden, D. Protein aggregation--pathways and influencing factors. Int. J. Pharm., 2010, 390(2), 89-99.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.025] [PMID: 20188160]
[11]
Uchiyama, S. Liquid formulation for antibody drugs. Biochimica et Biophysica Acta (BBA)-. Biochim. Biophys. Acta. Proteins Proteomics, 2014, 1844(11), 2041-2052.
[http://dx.doi.org/10.1016/j.bbapap.2014.07.016]
[12]
Schermeyer, MT; Wöll, AK; Kokke, B.; Eppink, M.; Hubbuch, J. Characterization of highly concentrated antibody solution-A toolbox for the description of protein long-term solution stability. MAbs, 2017, 9(7), 1169-1185.
[http://dx.doi.org/10.1080/19420862.2017.1338222]
[13]
Mahler, H.C.; Friess, W.; Grauschopf, U.; Kiese, S. Protein aggregation: Pathways, induction factors and analysis. J. Pharm. Sci., 2009, 98(9), 2909-2934.
[http://dx.doi.org/10.1002/jps.21566] [PMID: 18823031]
[14]
Harn, N.; Allan, C.; Oliver, C.; Middaugh, C.R. Highly concentrated monoclonal antibody solutions: Direct analysis of physical structure and thermal stability. J. Pharm. Sci., 2007, 96(3), 532-546.
[http://dx.doi.org/10.1002/jps.20753] [PMID: 17083094]
[15]
Usami, A.; Ohtsu, A.; Takahama, S.; Fujii, T. The effect of pH, hydrogen peroxide and temperature on the stability of human monoclonal antibody. J. Pharm. Biomed. Anal., 1996, 14(8-10), 1133-1140.
[http://dx.doi.org/10.1016/S0731-7085(96)01721-9] [PMID: 8818025]
[16]
Lu, X.; Nobrega, RP; Lynaugh, H.; Jain, T.; Barlow, K.; Boland, T.; Sivasubramanian, A.; Vásquez, M.; Xu, Y. Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. MAbs, 2019, 11(1), 45-57.
[http://dx.doi.org/10.1080/19420862.2018.1548233]
[17]
Vlasak, J.; Ionescu, R. Fragmentation of monoclonal antibodies. MAbs, 2011, 3(3), 253-263.
[http://dx.doi.org/10.4161/mabs.3.3.15608]
[18]
Sreedhara, A.; Glover, Z.K.; Piros, N.; Xiao, N.; Patel, A.; Kabakoff, B. Stability of IgG1 monoclonal antibodies in intravenous infusion bags under clinical in-use conditions. J. Pharm. Sci., 2012, 101(1), 21-30.
[http://dx.doi.org/10.1002/jps.22739] [PMID: 21905032]
[19]
Ricci, M.S.; Frazier, M.; Moore, J.; Cromwell, M.; Galush, W.J.; Patel, A.R.; Adler, M.; Altenburger, U.; Grauschopf, U.; Goldbach, P.; Fast, J.L.; Krämer, I.; Mahler, H.C. In-use physicochemical and microbiological stability of biological parenteral products. Am. J. Health Syst. Pharm., 2015, 72(5), 396-407.
[http://dx.doi.org/10.2146/ajhp140098] [PMID: 25694415]
[20]
Luo, S.; Zhang, B. Dextrose-mediated aggregation of therapeutic monoclonal antibodies in human plasma: Implication of isoelectric precipitation of complement proteins. MAbs, 2015, 7(6), 1094-1103.
[http://dx.doi.org/10.1080/19420862.2015.1087636]
[21]
Agarkhed, M.; O’Dell, C.; Hsieh, M.C.; Zhang, J.; Goldstein, J.; Srivastava, A. Effect of surfactants on mechanical, thermal, and photostability of a monoclonal antibody. AAPS PharmSciTech, 2018, 19(1), 79-92.
[http://dx.doi.org/10.1208/s12249-017-0845-7] [PMID: 28770529]
[22]
Singh, S.M.; Bandi, S.; Jones, D.N.M.; Mallela, K.M.G. Effect of Polysorbate 20 and Polysorbate 80 on the higher-order structure of a monoclonal antibody and its fab and fc fragments probed using 2D nuclear magnetic resonance spectroscopy. J. Pharm. Sci., 2017, 106(12), 3486-3498.
[http://dx.doi.org/10.1016/j.xphs.2017.08.011] [PMID: 28843351]
[23]
Lahlou, A.; Blanchet, B.; Carvalho, M.; Paul, M.; Astier, A. Mechanically-induced aggregation of the monoclonal antibody cetuximab. Annales Pharmaceutiques Francaises, 2009, 67(5), 340-352.
[http://dx.doi.org/10.1016/j.pharma.2009.05.008]
[24]
Serno, T.; Härtl, E.; Besheer, A.; Miller, R.; Winter, G. The role of polysorbate 80 and HPβCD at the air-water interface of IgG solutions. Pharm. Res., 2013, 30(1), 117-130.
[http://dx.doi.org/10.1007/s11095-012-0854-x] [PMID: 22910890]
[25]
Sudrik, C.M.; Cloutier, T.; Mody, N.; Sathish, H.A.; Trout, B.L. Understanding the role of preferential exclusion of sugars and polyols from native state IgG1 monoclonal antibodies and its effect on aggregation and reversible self-association. Pharm. Res., 2019, 36(8), 109.
[http://dx.doi.org/10.1007/s11095-019-2642-3] [PMID: 31127417]
[26]
Fischer, S.; Hoernschemeyer, J.; Mahler, H.C. Glycation during storage and administration of monoclonal antibody formulations. Eur. J. Pharm. Biopharm., 2008, 70(1), 42-50.
[http://dx.doi.org/10.1016/j.ejpb.2008.04.021] [PMID: 18583113]
[27]
Maity, H.; O’Dell, C.; Srivastava, A.; Goldstein, J. Effects of arginine on photostability and thermal stability of IgG1 monoclonal antibodies. Curr. Pharm. Biotechnol., 2009, 10(8), 761-766.
[http://dx.doi.org/10.2174/138920109789978711] [PMID: 19939215]
[28]
Hung, J.J.; Dear, B.J.; Dinin, A.K.; Borwankar, A.U.; Mehta, S.K.; Truskett, T.T.; Johnston, K.P. Improving viscosity and stability of a highly concentrated monoclonal antibody solution with concentrated proline. Pharm. Res., 2018, 35(7), 133.
[http://dx.doi.org/10.1007/s11095-018-2398-1] [PMID: 29713822]
[29]
Hagan, J.B.; Wasserman, R.L.; Baggish, J.S.; Spycher, M.O.; Berger, M.; Shashi, V.; Lohrmann, E.; Sullivan, K.E. Safety of L-proline as a stabilizer for immunoglobulin products. Expert Rev. Clin. Immunol., 2012, 8(2), 169-178.
[http://dx.doi.org/10.1586/eci.11.97] [PMID: 22288455]
[30]
Shire, S. Monoclonal antibodies: Meeting the challenges in manufacturing, formulation, delivery and stability of final drug product; Woodhead Publishing, 2015.
[31]
Zhang, A.; Singh, S.K.; Shirts, M.R.; Kumar, S.; Fernandez, E.J. Distinct aggregation mechanisms of monoclonal antibody under thermal and freeze-thaw stresses revealed by hydrogen exchange. Pharm. Res., 2012, 29(1), 236-250.
[http://dx.doi.org/10.1007/s11095-011-0538-y] [PMID: 21805212]
[32]
Lei, M.; Quan, C.; Wang, Y.J.; Kao, Y.H.; Schöneich, C. Light-induced covalent buffer adducts to histidine in a model protein. Pharm. Res., 2018, 35(3), 67.
[http://dx.doi.org/10.1007/s11095-017-2339-4] [PMID: 29464419]
[33]
Kerwin, B.A.; Remmele, R.L., Jr Protect from light: Photodegradation and protein biologics. J. Pharm. Sci., 2007, 96(6), 1468-1479.
[http://dx.doi.org/10.1002/jps.20815] [PMID: 17230445]
[34]
Sreedhara, A.; Yin, J.; Joyce, M.; Lau, K.; Wecksler, A.T.; Deperalta, G.; Yi, L.; John Wang, Y.; Kabakoff, B.; Kishore, R.S. Effect of ambient light on IgG1 monoclonal antibodies during drug product processing and development. Eur. J. Pharm. Biopharm., 2016, 100, 38-46.
[http://dx.doi.org/10.1016/j.ejpb.2015.12.003] [PMID: 26707077]
[35]
Luis, L.M.; Hu, Y.; Zamiri, C.; Sreedhara, A. Determination of the acceptable ambient light exposure during drug product manufacturing for long-term stability of monoclonal antibodies. PDA J. Pharm. Sci. Technol., 2018, 72(4), 393-403.
[http://dx.doi.org/10.5731/pdajpst.2018.008581] [PMID: 29853610]
[36]
Singh, S.R.; Zhang, J.; O’Dell, C.; Hsieh, M.C.; Goldstein, J.; Liu, J.; Srivastava, A. Effect of polysorbate 80 quality on photostability of a monoclonal antibody. AAPS PharmSciTech, 2012, 13(2), 422-430.
[http://dx.doi.org/10.1208/s12249-012-9759-6] [PMID: 22362139]
[37]
Kishore, R.S.; Pappenberger, A.; Dauphin, I.B.; Ross, A.; Buergi, B.; Staempfli, A.; Mahler, H.C. Degradation of polysorbates 20 and 80: Studies on thermal autoxidation and hydrolysis. J. Pharm. Sci., 2011, 100(2), 721-731.
[http://dx.doi.org/10.1002/jps.22290] [PMID: 20803573]
[38]
Borisov, O.V.; Ji, J.A.; Wang, Y.J. Oxidative degradation of polysorbate surfactants studied by liquid chromatography–mass spectrometry. J. Pharm. Sci., 2015, 104(3), 1005-1018.
[http://dx.doi.org/10.1002/jps.24314]
[39]
Agbogbo, F.K.; Ecker, D.M.; Farrand, A.; Han, K.; Khoury, A.; Martin, A.; McCool, J.; Rasche, U.; Rau, T.D.; Schmidt, D.; Sha, M.; Treuheit, N. Current perspectives on biosimilars. J. Ind. Microbiol. Biotechnol., 2019, 46(9-10), 1297-1311.
[http://dx.doi.org/10.1007/s10295-019-02216-z] [PMID: 31317293]
[40]
Ranjbar, B.; Gill, P. Circular dichroism techniques: Biomolecular and nanostructural analyses- a review. Chem. Biol. Drug Des., 2009, 74(2), 101-120.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00847.x] [PMID: 19566697]
[41]
Kirchhoff, C.F.; Wang, X.M.; Conlon, H.D.; Anderson, S.; Ryan, A.M.; Bose, A. Biosimilars: Key regulatory considerations and similarity assessment tools. Biotechnol. Bioeng., 2017, 114(12), 2696-2705.
[http://dx.doi.org/10.1002/bit.26438] [PMID: 28842986]
[42]
Yang, H.; Yang, S.; Kong, J.; Dong, A.; Yu, S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc., 2015, 10(3), 382-396.
[http://dx.doi.org/10.1038/nprot.2015.024] [PMID: 25654756]
[43]
Arbogast, L.W.; Delaglio, F.; Schiel, J.E.; Marino, J.P. Multivariate analysis of two-dimensional 1H, 13C methyl NMR spectra of monoclonal antibody therapeutics to facilitate assessment of higher order structure. Anal. Chem., 2017, 89(21), 11839-11845.
[http://dx.doi.org/10.1021/acs.analchem.7b03571] [PMID: 28937210]
[44]
Ladokhin, A.S.; Jayasinghe, S.; White, S.H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal. Biochem., 2000, 285(2), 235-245.
[http://dx.doi.org/10.1006/abio.2000.4773] [PMID: 11017708]
[45]
Houde, D.; Berkowitz, S.A.; Engen, J.R. The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J. Pharm. Sci., 2011, 100(6), 2071-2086.
[http://dx.doi.org/10.1002/jps.22432] [PMID: 21491437]
[46]
Warne, N.W. Development of high concentration protein biopharmaceuticals: The use of platform approaches in formulation development. Eur. J. Pharm. Biopharm., 2011, 78(2), 208-212.
[http://dx.doi.org/10.1016/j.ejpb.2011.03.004] [PMID: 21406226]
[47]
Weinberg, W.C.; Frazier-Jessen, M.R.; Wu, W.J.; Weir, A.; Hartsough, M.; Keegan, P.; Fuchs, C. Development and regulation of monoclonal antibody products: Challenges and opportunities. Cancer Metastasis Rev., 2005, 24(4), 569-584.
[http://dx.doi.org/10.1007/s10555-005-6196-y] [PMID: 16408162]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy