Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Addition of Mercury Causes Quenching of NIR Fluorescence Emission Spectra of a Photoactivatable PAiRFP1 Protein

Author(s): Fakhrul Hassan*, Faez Iqbal Khan, Feng Juan, Abbas Khan and Dakun Lai

Volume 23, Issue 5, 2022

Published on: 22 July, 2022

Page: [347 - 355] Pages: 9

DOI: 10.2174/1389203723666220620162926

Price: $65

conference banner
Abstract

Background: Biliverdin (BV) containing far-red light photoactivatable near-infrared fluorescent protein (NIR-FP) named PAiRFP1 has been developed by directed molecular evolution from one bathy bacteriophytochrome of Agrobacterium tumefaciens C58 called Agp2 or AtBphP2. Usually, the fluorescence intensity of the NIR emission spectra of PAiRFP1 tends to increase upon repeated excitation by far-red light.

Objective: This study aimed at exploring the role of PAiRFP1 and its mutants, such as V386A, V480A, and Y498H, as NIR biosensors for the detection of Hg2+ ions in the buffer solutions.

Methods: In this study, we used PCR-based site-directed reverse mutagenesis, fluorescence spectroscopy, and molecular modeling approaches on PAiRFP1 and its mutants.

Results: It was found that PAiRFP1 and its mutants experienced strong quenching of NIR fluorescence emission spectra upon the addition of different concentrations (0-3μM) of mercuric chloride (HgCl2).

Conclusion: We hypothesized that PAiRFP1 and its variants have some potential to be used as NIR biosensors for the in vitro detection of Hg2+ ions in biological media. Moreover, we also hypothesized that PAiRFP1 would be the best tool to use as a NIR biosensor to detect Hg2+ ions in living organisms because of its higher signal-to-noise (SNR) ratio than other infra-red fluorescent proteins.

Keywords: PAiRFP1, photoactivation, NIR biosensor, molecular evolution, fluorescence emission, protein modeling.

Graphical Abstract
[1]
Chen, C.; Wang, R.; Guo, L.; Fu, N.; Dong, H.; Yuan, Y. A squaraine-based colorimetric and “turn on” fluorescent sensor for selective detection of Hg2+ in an aqueous medium. Org. Lett., 2011, 13(5), 1162-1165.
[http://dx.doi.org/10.1021/ol200024g] [PMID: 21306133]
[2]
Guo, Y.; Wang, Z.; Qu, W.; Shao, H.; Jiang, X. Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens. Bioelectron., 2011, 26(10), 4064-4069.
[http://dx.doi.org/10.1016/j.bios.2011.03.033] [PMID: 21543219]
[3]
Darbha, G.K.; Singh, A.K.; Rai, U.S.; Yu, E.; Yu, H.; Chandra Ray, P. Selective detection of mercury (II) ion using nonlinear optical prop-erties of gold nanoparticles. J. Am. Chem. Soc., 2008, 130(25), 8038-8043.
[http://dx.doi.org/10.1021/ja801412b] [PMID: 18517205]
[4]
Nolan, E.M.; Lippard, S.J.A. “turn-on” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc., 2003, 125(47), 14270-14271.
[http://dx.doi.org/10.1021/ja037995g] [PMID: 14624563]
[5]
Kumar, M.; Zhang, P. Highly sensitive and selective label-free optical detection of mercuric ions using photon upconverting nanoparticles. Biosens. Bioelectron., 2010, 25(11), 2431-2435.
[http://dx.doi.org/10.1016/j.bios.2010.03.038] [PMID: 20456935]
[6]
Wang, M.; Zhang, Y.; Feng, W-Y.; Guan, M.; Wang, B.; Shi, J-W.; Zhu, M-T.; Li, B.; Zhao, Y-L.; Chai, Z-F. Determination of mercury in fish by isotope dilution inductively coupled plasma-mass spectrometry. Chin. J. Anal. Chem., 2007, 35(7), 945-948.
[http://dx.doi.org/10.1016/S1872-2040(07)60062-0]
[7]
Clarkson, T.W.; Magos, L.; Myers, G.J. The toxicology of mercury--current exposures and clinical manifestations. N. Engl. J. Med., 2003, 349(18), 1731-1737.
[http://dx.doi.org/10.1056/NEJMra022471] [PMID: 14585942]
[8]
Clarkson, T.W.; Magos, L.; Myers, G.J. Human exposure to mercury: The three modern dilemmas. J. Trace Elem. Exp. Med., 2003, 16(4), 321-343.
[http://dx.doi.org/10.1002/jtra.10050]
[9]
Fujimura, M.; Usuki, F. Differing effects of toxicants (methylmercury, inorganic mercury, lead, amyloid β, and rotenone) on cultured rat cerebrocortical neurons: Differential expression of rho proteins associated with neurotoxicity. Toxicol. Sci., 2012, 126(2), 506-514.
[10]
Rush, T.; Liu, X.; Lobner, D. Synergistic toxicity of the environmental neurotoxins methylmercury and β-N-methylamino-L-alanine. Neuroreport, 2012, 23(4), 216-219.
[http://dx.doi.org/10.1097/WNR.0b013e32834fe6d6] [PMID: 22314682]
[11]
Von Burg, R. Inorganic mercury. J. Appl. Toxicol., 1995, 15(6), 483-493.
[http://dx.doi.org/10.1002/jat.2550150610] [PMID: 8603936]
[12]
Nolan, E.M.; Lippard, S.J. Tools and tactics for the optical detection of mercuric ion. Chem. Rev., 2008, 108(9), 3443-3480.
[http://dx.doi.org/10.1021/cr068000q] [PMID: 18652512]
[13]
Domaille, D.W.; Que, E.L.; Chang, C.J. Synthetic fluorescent sensors for studying the cell biology of metals. Nat. Chem. Biol., 2008, 4(3), 168-175.
[http://dx.doi.org/10.1038/nchembio.69] [PMID: 18277978]
[14]
Zhao, Y.; Zhong, Z. Tuning the sensitivity of a foldamer-based mercury sensor by its folding energy. J. Am. Chem. Soc., 2006, 128(31), 9988-9989.
[http://dx.doi.org/10.1021/ja062001i] [PMID: 16881608]
[15]
Cheng, X.; Li, S.; Jia, H.; Zhong, A.; Zhong, C.; Feng, J.; Qin, J.; Li, Z. Fluorescent and colorimetric probes for mercury(II): Tunable struc-tures of electron donor and π-conjugated bridge. Chemistry, 2012, 18(6), 1691-1699.
[http://dx.doi.org/10.1002/chem.201102376] [PMID: 22223588]
[16]
Yang, Y-K.; Yook, K-J.; Tae, J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J. Am. Chem. Soc., 2005, 127(48), 16760-16761.
[http://dx.doi.org/10.1021/ja054855t] [PMID: 16316202]
[17]
Hassan, F.; Khan, F.I.; Song, H.; Lai, D.; Juan, F. Effects of reverse genetic mutations on the spectral and photochemical behavior of a photoactivatable fluorescent protein PAiRFP1. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 228, 117807.
[http://dx.doi.org/10.1016/j.saa.2019.117807] [PMID: 31806482]
[18]
Khan, F.I.; Hassan, F.; Anwer, R.; Juan, F.; Lai, D. Comparative analysis of bacteriophytochrome Agp2 and its engineered photoactivata-ble NIR fluorescent proteins PAiRFP1 and PAiRFP2. Biomolecules, 2020, 10(9), E1286.
[http://dx.doi.org/10.3390/biom10091286] [PMID: 32906690]
[19]
Takala, H.; Björling, A.; Linna, M.; Westenhoff, S.; Ihalainen, J.A. Light-induced changes in the dimerization interface of bacteriophyto-chromes. J. Biol. Chem., 2015, 290(26), 16383-16392.
[http://dx.doi.org/10.1074/jbc.M115.650127] [PMID: 25971964]
[20]
Takala, H.; Lehtivuori, H.K.; Berntsson, O.; Hughes, A.; Nanekar, R.; Niebling, S.; Panman, M.; Henry, L.; Menzel, A.; Westenhoff, S.; Ihalainen, J.A. On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome. J. Biol. Chem., 2018, 293(21), 8161-8172.
[http://dx.doi.org/10.1074/jbc.RA118.001794] [PMID: 29622676]
[21]
Weissleder, R.; Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med., 2003, 9(1), 123-128.
[http://dx.doi.org/10.1038/nm0103-123] [PMID: 12514725]
[22]
Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol., 2001, 19(4), 316-317.
[http://dx.doi.org/10.1038/86684] [PMID: 11283581]
[23]
Richie, C.T.; Whitaker, L.R.; Whitaker, K.W.; Necarsulmer, J.; Baldwin, H.A.; Zhang, Y.; Fortuno, L.; Hinkle, J.J.; Koivula, P.; Henderson, M.J.; Sun, W.; Wang, K.; Smith, J.C.; Pickel, J.; Ji, N.; Hope, B.T.; Harvey, B.K. Near-infrared fluorescent protein iRFP713 as a reporter protein for optogenetic vectors, a transgenic Cre-reporter rat, and other neuronal studies. J. Neurosci. Methods, 2017, 284, 1-14.
[http://dx.doi.org/10.1016/j.jneumeth.2017.03.020] [PMID: 28380331]
[24]
Wang, K.; Sun, W.; Richie, C.T.; Harvey, B.K.; Betzig, E.; Ji, N. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun., 2015, 6(1), 7276-7282.
[http://dx.doi.org/10.1038/ncomms8276] [PMID: 26073070]
[25]
Fyk-Kolodziej, B.; Hellmer, C.B.; Ichinose, T. Marking cells with infrared fluorescent proteins to preserve photoresponsiveness in the retina. Biotechniques, 2014, 57(5), 245-253.
[http://dx.doi.org/10.2144/000114228] [PMID: 25391913]
[26]
Wang, Y.; Zhou, M.; Wang, X.; Qin, G.; Weintraub, N.L.; Tang, Y. Assessing in vitro stem-cell function and tracking engraftment of stem cells in ischaemic hearts by using novel iRFP gene labelling. J. Cell. Mol. Med., 2014, 18(9), 1889-1894.
[http://dx.doi.org/10.1111/jcmm.12321] [PMID: 24912616]
[27]
Agollah, G.D.; Wu, G.; Sevick-Muraca, E.M.; Kwon, S. In vivo lymphatic imaging of a human inflammatory breast cancer model. J. Cancer, 2014, 5(9), 774-783.
[http://dx.doi.org/10.7150/jca.9835] [PMID: 25368678]
[28]
Hock, A.K.; Cheung, E.C.; Humpton, T.J.; Monteverde, T.; Paulus-Hock, V.; Lee, P.; McGhee, E.; Scopelliti, A.; Murphy, D.J.; Strathdee, D.; Blyth, K.; Vousden, K.H. Development of an inducible mouse model of iRFP713 to track recombinase activity and tumour develop-ment in vivo. Sci. Rep., 2017, 7(1), 1837.
[http://dx.doi.org/10.1038/s41598-017-01741-0] [PMID: 28500323]
[29]
Krumholz, A.; Shcherbakova, D.M.; Xia, J.; Wang, L.V.; Verkhusha, V.V. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci. Rep., 2014, 4(1), 3939.
[http://dx.doi.org/10.1038/srep03939] [PMID: 24487319]
[30]
Honda, M.; Yogosawa, S.; Kamada, M.; Kamata, Y.; Kimura, T.; Koike, Y.; Harada, T.; Takahashi, H.; Egawa, S.; Yoshida, K. A novel near-infrared fluorescent protein, iRFP720, facilitates transcriptional profiling of prostate cancer bone metastasis in mice. Anticancer Res., 2017, 37(6), 3009-3013.
[PMID: 28551639]
[31]
Filonov, G.S.; Piatkevich, K.D.; Ting, L-M.; Zhang, J.; Kim, K.; Verkhusha, V.V. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol., 2011, 29(8), 757-761.
[http://dx.doi.org/10.1038/nbt.1918] [PMID: 21765402]
[32]
Piatkevich, K.D.; Subach, F.V.; Verkhusha, V.V. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacte-rial phytochrome. Nat. Commun., 2013, 4, 2153-2153.
[http://dx.doi.org/10.1038/ncomms3153] [PMID: 23842578]
[33]
Gu, Z.; Zhao, M.; Sheng, Y.; Bentolila, L.A.; Tang, Y. Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal. Chem., 2011, 83(6), 2324-2329.
[http://dx.doi.org/10.1021/ac103236g] [PMID: 21323346]
[34]
Shu, X.; Royant, A.; Lin, M.Z.; Aguilera, T.A.; Lev-Ram, V.; Steinbach, P.A.; Tsien, R.Y. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science, 2009, 324(5928), 804-807.
[http://dx.doi.org/10.1126/science.1168683] [PMID: 19423828]
[35]
Yu, D.; Gustafson, W.C.; Han, C.; Lafaye, C.; Noirclerc-Savoye, M.; Ge, W-P.; Thayer, D.A.; Huang, H.; Kornberg, T.B.; Royant, A.; Jan, L.Y.; Jan, Y.N.; Weiss, W.A.; Shu, X. An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Nat. Commun., 2014, 5(1), 3626-3632.
[http://dx.doi.org/10.1038/ncomms4626] [PMID: 24832154]
[36]
Davis, S.J.; Vener, A.V.; Vierstra, R.D. Bacteriophytochromes: Phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science, 1999, 286(5449), 2517-2520.
[http://dx.doi.org/10.1126/science.286.5449.2517] [PMID: 10617469]
[37]
Segall-Shapiro, T.H.; Nguyen, P.Q.; Dos Santos, E.D.; Subedi, S.; Judd, J.; Suh, J.; Silberg, J.J. Mesophilic and hyperthermophilic adenyl-ate kinases differ in their tolerance to random fragmentation. J. Mol. Biol., 2011, 406(1), 135-148.
[http://dx.doi.org/10.1016/j.jmb.2010.11.057] [PMID: 21145325]
[38]
Nobles, C.L.; Clark, J.R.; Green, S.I.; Maresso, A.W. A dual component heme biosensor that integrates heme transport and synthesis in bacteria. J. Microbiol. Methods, 2015, 118, 7-17.
[http://dx.doi.org/10.1016/j.mimet.2015.07.011] [PMID: 26253803]
[39]
Schmidt, A.; Sauthof, L.; Szczepek, M.; Lopez, M.F.; Escobar, F.V.; Qureshi, B.M.; Michael, N.; Buhrke, D.; Stevens, T.; Kwiatkowski, D.; von Stetten, D.; Mroginski, M.A.; Krauß, N.; Lamparter, T.; Hildebrandt, P.; Scheerer, P. Structural snapshot of a bacterial phyto-chrome in its functional intermediate state. Nat. Commun., 2018, 9(1), 4912-4917.
[http://dx.doi.org/10.1038/s41467-018-07392-7] [PMID: 30464203]
[40]
Rumyantsev, K.A.; Shcherbakova, D.M.; Zakharova, N.I.; Emelyanov, A.V.; Turoverov, K.K.; Verkhusha, V.V. Minimal domain of bac-terial phytochrome required for chromophore binding and fluorescence. Sci. Rep., 2015, 5(1), 18348.
[http://dx.doi.org/10.1038/srep18348] [PMID: 26679720]
[41]
Khan, F.I.; Song, H.; Hassan, F.; Tian, J.; Tang, L.; Lai, D.; Juan, F. Impact of amino acid substitutions on the behavior of a photoactivata-ble near infrared fluorescent protein PAiRFP1. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 253, 119572.
[http://dx.doi.org/10.1016/j.saa.2021.119572] [PMID: 33631627]
[42]
Khan, F.I.; Gupta, P.; Roy, S.; Azum, N.; Alamry, K.A.; Asiri, A.M.; Lai, D.; Hassan, M.I. Mechanistic insights into the urea-induced de-naturation of human sphingosine kinase 1. Int. J. Biol. Macromol., 2020, 161, 1496-1505.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.280] [PMID: 32771517]
[43]
Khan, F.I.; Hassan, F.; Ali, H.; Lai, D. Mechanism of pH-induced conformational changes in MurE ligase obtained from Salmonella enter-ica serovar Typhi. J. Biomol. Struct. Dyn., 2020, 1-8.
[PMID: 32141393]
[44]
Khan, F.I.; Lai, D.; Anwer, R.; Azim, I.; Khan, M.K.A. Identifying novel sphingosine kinase 1 inhibitors as therapeutics against breast cancer. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 172-186.
[http://dx.doi.org/10.1080/14756366.2019.1692828] [PMID: 31752564]
[45]
Khan, F.I.; Govender, A.; Permaul, K.; Singh, S.; Bisetty, K. Thermostable chitinase II from Thermomyces lanuginosus SSBP: Cloning, structure prediction and molecular dynamics simulations. J. Theor. Biol., 2015, 374, 107-114.
[http://dx.doi.org/10.1016/j.jtbi.2015.03.035] [PMID: 25861869]
[46]
Khan, F.I.; Wei, D.Q.; Gu, K.R.; Hassan, M.I.; Tabrez, S. Current updates on computer aided protein modeling and designing. Int. J. Biol. Macromol., 2016, 85, 48-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.072] [PMID: 26730484]
[47]
Khan, F.I.; Lobb, K.A.; Lai, D. The molecular basis of the effect of temperature on the structure and function of SARS-CoV-2 spike pro-tein. Front. Mol. Biosci., 2022, 9, 794960.
[http://dx.doi.org/10.3389/fmolb.2022.794960] [PMID: 35463957]
[48]
Khan, F.I.; Hassan, F.; Lai, D. In silico studies on psilocybin drug derivatives against SARS-CoV-2 and cytokine storm of human interleu-kin-6 receptor. Front. Immunol., 2022, 12, 794780.
[http://dx.doi.org/10.3389/fimmu.2021.794780] [PMID: 35095870]
[49]
Khan, F.I.; Kang, T.; Ali, H.; Lai, D. Remdesivir strongly binds to RNA-dependent RNA polymerase, membrane protein, and main prote-ase of SARS-CoV-2: Indication from molecular modeling and simulations. Front. Pharmacol., 2021, 12, 710778.
[http://dx.doi.org/10.3389/fphar.2021.710778] [PMID: 34305617]
[50]
Ali, F.; Manzoor, U.; Khan, F.I.; Lai, D.; Khan, M.K.A.; Chandrashekharaiah, K.S.; Singh, L.R.; Dar, T.A. Effect of polyol osmolytes on the structure-function integrity and aggregation propensity of catalase: A comprehensive study based on spectroscopic and molecular dy-namic simulation measurements. Int. J. Biol. Macromol., 2022, 209, 198-210.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.04.013]
[51]
Khan, F.I.; Rehman, M.T.; Sameena, F.; Hussain, T.; AlAjmi, M.F.; Lai, D.; Khan, M. K.A. nvestigating the binding mechanism of topiramate with bovine serum albumin using spectroscopic and computational methods J. Mol. Recog., 2022, e2958.
[52]
Lagarias, J.C.; Rapoport, H. Chromopeptides from phytochrome. The structure and linkage of the PR form of the phytochrome chromo-phore. J. Am. Chem. Soc., 1980, 102(14), 4821-4828.
[http://dx.doi.org/10.1021/ja00534a042]
[53]
Quail, P.H. Phytochrome photosensory signalling networks. Nat. Rev. Mol. Cell Biol., 2002, 3(2), 85-93.
[http://dx.doi.org/10.1038/nrm728] [PMID: 11836510]
[54]
Yang, Y.; Linke, M.; von Haimberger, T.; Hahn, J.; Matute, R.; González, L.; Schmieder, P.; Heyne, K. Real-time tracking of phyto-chrome’s orientational changes during Pr photoisomerization. J. Am. Chem. Soc., 2012, 134(3), 1408-1411.
[http://dx.doi.org/10.1021/ja209413d] [PMID: 22229806]
[55]
Rohmer, T.; Strauss, H.; Hughes, J.; de Groot, H.; Gärtner, W.; Schmieder, P.; Matysik, J. 15N MAS NMR studies of cph1 phytochrome: Chromophore dynamics and intramolecular signal transduction. J. Phys. Chem. B, 2006, 110(41), 20580-20585.
[http://dx.doi.org/10.1021/jp062454+] [PMID: 17034247]
[56]
Strauss, H.M.; Hughes, J.; Schmieder, P. Heteronuclear solution-state NMR studies of the chromophore in cyanobacterial phytochrome Cph1. Biochemistry, 2005, 44(23), 8244-8250.
[http://dx.doi.org/10.1021/bi050457r] [PMID: 15938613]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy