Review Article

DYRK1A抑制剂和治疗阿尔茨海默病的前景

卷 30, 期 6, 2023

发表于: 29 August, 2022

页: [669 - 688] 页: 20

弟呕挨: 10.2174/0929867329666220620162018

价格: $65

conference banner
摘要

背景:阿尔茨海默病(AD)是一种慢性神经退行性疾病,也是痴呆症的最常见形式,尤其是在老年人中。由于预期寿命的增加,近年来,受这种疾病影响的人数出现了过度增长,给卫生系统造成了严重问题。近年来,研究已经加强,以寻找新的治疗方法,防止疾病的进展。从这个意义上说,最近的研究表明,位于染色体21q22.2上并在唐氏综合征(DS)中过表达的双特异性酪氨酸磷酸化调节激酶1A (DYRK1A)基因可能在DS和AD的发育性脑障碍和早发性神经退行性变、神经元丢失和痴呆中发挥重要作用。抑制DYRK1A可能有助于阻止其过表达的表型效应,因此,是预防年龄相关神经退行性变的潜在治疗策略,包括阿尔茨海默型病理 目的:在这篇综述中,我们探讨了DYRK1A抑制剂作为潜在的抗ad药物的贡献。 方法:在2014年至今的文献中进行检索,以编译包含DYRK1A的IC50值的体外数据集。此外,我们进行了基于体外和硅片数据的构效关系研究。 结果:分子建模和酶动力学研究表明,DYRK1A可能通过其蛋白水解过程,降低其激酶特异性,促进AD病理发展。结论:进一步评估DYRK1A抑制剂可能有助于AD的新治疗方法。

关键词: 阿尔茨海默病,神经退行性变,蛋白激酶,酶动力学,DYRK1A抑制剂,分子对接。

[1]
Ahuja, L.G.; Taylor, S.S.; Kornev, A.P. Tuning the “violin” of protein kinases: The role of dynamics-based allostery. IUBMB Life, 2019, 71(6), 685-696.
[http://dx.doi.org/10.1002/iub.2057] [PMID: 31063633]
[2]
Govoni, S.; Amadio, M.; Battaini, F.; Pascale, A. Senescence of the brain: Focus on cognitive kinases. Curr. Pharm. Des., 2010, 16(6), 660-671.
[http://dx.doi.org/10.2174/138161210790883732] [PMID: 20388076]
[3]
Borodinova, A.A.; Zuzina, A.B.; Balaban, P.M. Role of atypical protein kinases in maintenance of long-term memory and synaptic plasticity. Biochemistry (Mosc.), 2017, 82(3), 243-256.
[http://dx.doi.org/10.1134/S0006297917030026] [PMID: 28320265]
[4]
van der Zee, E.A. Synapses, spines and kinases in mammalian learning and memory, and the impact of aging. Neurosci. Biobehav. Rev., 2015, 50, 77-85.
[http://dx.doi.org/10.1016/j.neubiorev.2014.06.012] [PMID: 24998408]
[5]
Kim, N.; Chen, D.; Zhou, X.Z.; Lee, T.H. Death-associated protein kinase 1 phosphorylation in neuronal cell death and neurodegenerative disease. Int. J. Mol. Sci., 2019, 20, 3131.
[6]
Nygaard, H.B. Targeting Fyn Kinase in Alzheimer’s Disease. Biol. Psychiatry, 2018, 83(4), 369-376.
[http://dx.doi.org/10.1016/j.biopsych.2017.06.004] [PMID: 28709498]
[7]
Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron, 2015, 85(2), 257-273.
[http://dx.doi.org/10.1016/j.neuron.2014.12.007] [PMID: 25611507]
[8]
Arbones, M.L.; Thomazeau, A.; Nakano-Kobayashi, A.; Hagiwara, M.; Delabar, J.M. DYRK1A and cognition: A lifelong relationship. Pharmacol. Ther., 2019, 194, 199-221.
[http://dx.doi.org/10.1016/j.pharmthera.2018.09.010] [PMID: 30268771]
[9]
Feki, A.; Hibaoui, Y. DYRK1A protein, a promising therapeutic target to improve cognitive deficits in down syndrome. Brain Sci., 2018, 8(10), 8.
[http://dx.doi.org/10.3390/brainsci8100187] [PMID: 30332747]
[10]
Becker, W.; Joost, H.G. Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Prog. Nucleic Acid Res. Mol. Biol., 1999, 62, 1-17.
[PMID: 9932450]
[11]
Arranz, J.; Balducci, E.; Arató, K.; Sánchez-Elexpuru, G.; Najas, S.; Parras, A.; Rebollo, E.; Pijuan, I.; Erb, I.; Verde, G.; Sahun, I.; Barallobre, M.J.; Lucas, J.J.; Sánchez, M.P.; de la Luna, S.; Arbonés, M.L. Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiol. Dis., 2019, 127, 210-222.
[http://dx.doi.org/10.1016/j.nbd.2019.02.022] [PMID: 30831192]
[12]
Shaikh, M.N.; Tejedor, F.J. Mnb/Dyrk1A orchestrates a transcriptional network at the transition from self-renewing neurogenic progenitors to postmitotic neuronal precursors. J. Neurogenet., 2018, 32(1), 37-50.
[http://dx.doi.org/10.1080/01677063.2018.1438427] [PMID: 29495936]
[13]
Yin, X.; Jin, N.; Shi, J.; Zhang, Y.; Wu, Y.; Gong, C.X.; Iqbal, K.; Liu, F. Dyrk1A overexpression leads to increase of 3R-tau expression and cognitive deficits in Ts65Dn Down syndrome mice. Sci. Rep., 2017, 7(1), 619.
[http://dx.doi.org/10.1038/s41598-017-00682-y] [PMID: 28377597]
[14]
Fructuoso, M.; Gu, Y.C.; Kassis, N.; de Lagran, M.M.; Dierssen, M.; Janel, N. Ethanol-induced changes in brain of transgenic mice overexpressing DYRK1A. Mol. Neurobiol., 2020, 57(7), 3195-3205.
[http://dx.doi.org/10.1007/s12035-020-01967-6] [PMID: 32504418]
[15]
Li, W.; Pozzo-Miller, L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J. Neurosci. Res., 2020, 98(11), 2130-2147.
[http://dx.doi.org/10.1002/jnr.24560] [PMID: 31758607]
[16]
Quiñones-Lombraña, A.; Blanco, J.G. Comparative analysis of the DYRK1A-SRSF6-TNNT2 pathway in myocardial tissue from individuals with and without Down syndrome. Exp. Mol. Pathol., 2019, 110, 104268.
[http://dx.doi.org/10.1016/j.yexmp.2019.104268] [PMID: 31201803]
[17]
Kargbo, R.B. Selective DYRK1A inhibitor for the treatment of neurodegenerative diseases: Alzheimer, Parkinson, Huntington, and Down Syndrome. ACS Med. Chem. Lett., 2020, 11(10), 1795-1796.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00346] [PMID: 33062155]
[18]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[19]
Hodson, R. Alzheimer’s disease. Nature, 2018, 559(7715), S1.
[http://dx.doi.org/10.1038/d41586-018-05717-6] [PMID: 30046078]
[20]
An, Y.; Varma, V.R.; Varma, S.; Casanova, R.; Dammer, E.; Pletnikova, O.; Chia, C.W.; Egan, J.M.; Ferrucci, L.; Troncoso, J.; Levey, A.I.; Lah, J.; Seyfried, N.T.; Legido-Quigley, C.; O’Brien, R.; Thambisetty, M. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement., 2018, 14(3), 318-329.
[http://dx.doi.org/10.1016/j.jalz.2017.09.011] [PMID: 29055815]
[21]
McDade, E.; Bateman, R.J. Stop Alzheimer’s before it starts. Nature, 2017, 547(7662), 153-155.
[http://dx.doi.org/10.1038/547153a] [PMID: 28703214]
[22]
Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine, 2019, 14, 5541-5554.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[23]
Gallardo, G.; Holtzman, D.M. Amyloid-β and tau at the crossroads of Alzheimer’s disease. In: Advances in Experimental Medicine and Biology; Springer, 2019; Vol. 1184, pp. 187-203.
[24]
Martinez, A.; Castro, A. Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs, 2006, 15(1), 1-12.
[http://dx.doi.org/10.1517/13543784.15.1.1] [PMID: 16370929]
[25]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[26]
Chen, X.Q.; Mobley, W.C. Exploring the pathogenesis of Alzheimer disease in basal forebrain cholinergic neurons: Converging insights from alternative hypotheses. Front. Neurosci., 2019, 13, 446.
[http://dx.doi.org/10.3389/fnins.2019.00446] [PMID: 31133787]
[27]
Stanciu, G.D.; Luca, A.; Rusu, R.N.; Bild, V.; Beschea Chiriac, S.I.; Solcan, C.; Bild, W.; Ababei, D.C. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules, 2019, 10(1), 40.
[http://dx.doi.org/10.3390/biom10010040] [PMID: 31888102]
[28]
Jouanne, M.; Rault, S.; Voisin-Chiret, A.S. Tau protein aggregation in Alzheimer’s disease: An attractive target for the development of novel therapeutic agents. Eur. J. Med. Chem., 2017, 139, 153-167.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.070] [PMID: 28800454]
[29]
Ferrer, I.; Barrachina, M.; Puig, B.; Martínez de Lagrán, M.; Martí, E.; Avila, J.; Dierssen, M. Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiol. Dis., 2005, 20(2), 392-400.
[http://dx.doi.org/10.1016/j.nbd.2005.03.020] [PMID: 16242644]
[30]
Kozlov, S.; Afonin, A.; Evsyukov, I.; Bondarenko, A. Alzheimer’s disease: As it was in the beginning. Rev. Neurosci., 2017, 28(8), 825-843.
[http://dx.doi.org/10.1515/revneuro-2017-0006] [PMID: 28704198]
[31]
Hampel, H.; Caraci, F.; Cuello, A.C.; Caruso, G.; Nisticò, R.; Corbo, M.; Baldacci, F.; Toschi, N.; Garaci, F.; Chiesa, P.A.; Verdooner, S.R.; Akman-Anderson, L.; Hernández, F.; Ávila, J.; Emanuele, E.; Valenzuela, P.L.; Lucía, A.; Watling, M.; Imbimbo, B.P.; Vergallo, A.; Lista, S. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front. Immunol., 2020, 11, 456.
[http://dx.doi.org/10.3389/fimmu.2020.00456] [PMID: 32296418]
[32]
Colonna, M.; Brioschi, S. Neuroinflammation and neurodegeneration in human brain at single-cell resolution. Nat. Rev. Immunol., 2020, 20(2), 81-82.
[http://dx.doi.org/10.1038/s41577-019-0262-0] [PMID: 31844328]
[33]
Webers, A.; Heneka, M.T.; Gleeson, P.A. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol. Cell Biol., 2020, 98(1), 28-41.
[http://dx.doi.org/10.1111/imcb.12301] [PMID: 31654430]
[34]
Minter, M.R.; Taylor, J.M.; Crack, P.J. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J. Neurochem., 2016, 136(3), 457-474.
[http://dx.doi.org/10.1111/jnc.13411] [PMID: 26509334]
[35]
Castellano, J.M.; Kim, J.; Stewart, F.R.; Jiang, H.; DeMattos, R.B.; Patterson, B.W.; Fagan, A.M.; Morris, J.C.; Mawuenyega, K.G.; Cruchaga, C.; Goate, A.M.; Bales, K.R.; Paul, S.M.; Bateman, R.J.; Holtzman, D.M. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci. Transl. Med., 2011, 3(89), 89ra57.
[http://dx.doi.org/10.1126/scitranslmed.3002156] [PMID: 21715678]
[36]
Verghese, P.B.; Castellano, J.M.; Garai, K.; Wang, Y.; Jiang, H.; Shah, A.; Bu, G.; Frieden, C.; Holtzman, D.M.; Apo, E. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc. Natl. Acad. Sci. USA, 2013, 110(19), E1807-E1816.
[http://dx.doi.org/10.1073/pnas.1220484110] [PMID: 23620513]
[37]
Goate, A.; Chartier-Harlin, M.C.; Mullan, M.; Brown, J.; Crawford, F.; Fidani, L.; Giuffra, L.; Haynes, A.; Irving, N.; James, L.; Mant, R.; Newton, P.; Rooke, K.; Roques, P.; Talbot, C.; Pericak-Vance, M.; Roses, A.; Williamson, R.; Rossor, M.; Owen, M.; Hardy, J. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 1991, 349(6311), 704-706.
[http://dx.doi.org/10.1038/349704a0] [PMID: 1671712]
[38]
Sherrington, R.; Rogaev, E.I.; Liang, Y.; Rogaeva, E.A.; Levesque, G.; Ikeda, M.; Chi, H.; Lin, C.; Li, G.; Holman, K.; Tsuda, T.; Mar, L.; Foncin, J.F.; Bruni, A.C.; Montesi, M.P.; Sorbi, S.; Rainero, I.; Pinessi, L.; Nee, L.; Chumakov, I.; Pollen, D.; Brookes, A.; Sanseau, P.; Polinsky, R.J.; Wasco, W.; Da Silva, H.A.R.; Haines, J.L.; Perkicak-Vance, M.A.; Tanzi, R.E.; Roses, A.D.; Fraser, P.E.; Rommens, J.M.; St George-Hyslop, P.H. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 1995, 375(6534), 754-760.
[http://dx.doi.org/10.1038/375754a0] [PMID: 7596406]
[39]
Levy-Lahad, E.; Wijsman, E.M.; Nemens, E.; Anderson, L.; Goddard, K.A.B.; Weber, J.L.; Bird, T.D.; Schellenberg, G.D. A familial Alzheimer’s disease locus on chromosome. iScience, 1995, 269, 970-973.
[40]
Rogaev, E.I.; Sherrington, R.; Rogaeva, E.A.; Levesque, G.; Ikeda, M.; Liang, Y.; Chi, H.; Lin, C.; Holman, K.; Tsuda, T.; Mar, L.; Sorbi, S.; Nacmias, B.; Piacentini, S.; Amaducci, L.; Chumakov, I.; Cohen, D.; Lannfelt, L.; Fraser, P.E.; Rommens, J.M.; George-Hyslop, P.H.S. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature, 1995, 376(6543), 775-778.
[http://dx.doi.org/10.1038/376775a0] [PMID: 7651536]
[41]
Karch, C.M.; Goate, A.M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry, 2015, 77(1), 43-51.
[http://dx.doi.org/10.1016/j.biopsych.2014.05.006] [PMID: 24951455]
[42]
de Nazareth, A.M. Type 2 diabetes mellitus in the pathophysiology of Alzheimer’s disease. Dement. Neuropsychol., 2017, 11(2), 105-113.
[http://dx.doi.org/10.1590/1980-57642016dn11-020002] [PMID: 29213501]
[43]
Hsu, H.W.; Bondy, S.C.; Kitazawa, M. Environmental and dietary exposure to copper and its cellular mechanisms linking to Alzheimer’s disease. Toxicol. Sci., 2018, 163(2), 338-345.
[http://dx.doi.org/10.1093/toxsci/kfy025] [PMID: 29409005]
[44]
Banerjee, A.; Khemka, V.K.; Roy, D.; Dhar, A.; Sinha Roy, T.K.; Biswas, A.; Mukhopadhyay, B.; Chakrabarti, S. Role of pro-inflammatory cytokines and vitamin D in probable Alzheimer’s disease with depression. Aging Dis., 2017, 8(3), 267-276.
[http://dx.doi.org/10.14336/AD.2016.1017] [PMID: 28580183]
[45]
A., Armstrong R. Risk factors for Alzheimer’s disease. Folia Neuropathol., 2019, 57(2), 87-105.
[http://dx.doi.org/10.5114/fn.2019.85929] [PMID: 31556570]
[46]
Silva, M.V.F.; Loures, C.M.G.; Alves, L.C.V.; de Souza, L.C.; Borges, K.B.G.; Carvalho, M.D.G. Alzheimer’s disease: Risk factors and potentially protective measures. J. Biomed. Sci., 2019, 26(1), 33.
[http://dx.doi.org/10.1186/s12929-019-0524-y] [PMID: 31072403]
[47]
Tejedor, F.; Zhu, X.R.; Kaltenbach, E.; Ackermann, A.; Baumann, A.; Canal, I.; Heisenberg, M.; Fischbach, K.F.; Pongs, O. minibrain: A new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron, 1995, 14(2), 287-301.
[http://dx.doi.org/10.1016/0896-6273(95)90286-4] [PMID: 7857639]
[48]
Mozzi, A.; Forni, D.; Cagliani, R.; Pozzoli, U.; Clerici, M.; Sironi, M. Distinct selective forces and Neanderthal introgression shaped genetic diversity at genes involved in neurodevelopmental disorders. Sci. Rep., 2017, 7(1), 6116.
[http://dx.doi.org/10.1038/s41598-017-06440-4] [PMID: 28733602]
[49]
Song, W.J.; Sternberg, L.R.; Kasten-Sportès, C.; Keuren, M.L.; Chung, S.H.; Slack, A.C.; Miller, D.E.; Glover, T.W.; Chiang, P.W.; Lou, L.; Kurnit, D.M. Isolation of human and murine homologues of the Drosophila minibrain gene: Human homologue maps to 21q22.2 in the Down syndrome “critical region”. Genomics, 1996, 38(3), 331-339.
[http://dx.doi.org/10.1006/geno.1996.0636] [PMID: 8975710]
[50]
Martínez-Cué, C.; Rueda, N. Signalling pathways implicated in Alzheimer’s disease neurodegeneration in individuals with and without Down Syndrome. Int. J. Mol. Sci., 2020, 21(18), 1-36.
[http://dx.doi.org/10.3390/ijms21186906] [PMID: 32962300]
[51]
Hämmerle, B.; Ulin, E.; Guimera, J.; Becker, W.; Guillemot, F.; Tejedor, F.J. Transient expression of Mnb/Dyrk1a couples cell cycle exit and differentiation of neuronal precursors by inducing p27KIP1 expression and suppressing NOTCH signaling. Development, 2011, 138(12), 2543-2554.
[http://dx.doi.org/10.1242/dev.066167] [PMID: 21610031]
[52]
Hämmerle, B.; Carnicero, A.; Elizalde, C.; Ceron, J.; Martínez, S.; Tejedor, F.J. Expression patterns and subcellular localization of the Down syndrome candidate protein MNB/DYRK1A suggest a role in late neuronal differentiation. Eur. J. Neurosci., 2003, 17(11), 2277-2286.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02665.x] [PMID: 12814361]
[53]
Tejedor, F.J.; Hämmerle, B. MNB/DYRK1A as a multiple regulator of neuronal development. FEBS J., 2011, 278(2), 223-235.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07954.x] [PMID: 21156027]
[54]
Park, J.; Song, W.J.; Chung, K.C. Function and regulation of Dyrk1A: Towards understanding Down syndrome. Cell. Mol. Life Sci., 2009, 66(20), 3235-3240.
[http://dx.doi.org/10.1007/s00018-009-0123-2] [PMID: 19685005]
[55]
Lee, Y.H. Im, E.; Hyun, M.; Park, J.; Chung, K.C. Protein phosphatase PPM1B inhibits DYRK1A kinase through dephosphorylation of pS258 and reduces toxic tau aggregation. J. Biol. Chem., 2021, 296, 100245.
[http://dx.doi.org/10.1074/jbc.RA120.015574] [PMID: 33380426]
[56]
Fortea, J.; Vilaplana, E.; Carmona-Iragui, M.; Benejam, B.; Videla, L.; Barroeta, I.; Fernández, S.; Altuna, M.; Pegueroles, J.; Montal, V.; Valldeneu, S.; Giménez, S.; González-Ortiz, S.; Muñoz, L.; Estellés, T.; Illán-Gala, I.; Belbin, O.; Camacho, V.; Wilson, L.R.; Annus, T.; Osorio, R.S.; Videla, S.; Lehmann, S.; Holland, A.J.; Alcolea, D.; Clarimón, J.; Zaman, S.H.; Blesa, R.; Lleó, A. Clinical and biomarker changes of Alzheimer’s disease in adults with Down syndrome: A cross-sectional study. Lancet, 2020, 395(10242), 1988-1997.
[http://dx.doi.org/10.1016/S0140-6736(20)30689-9] [PMID: 32593336]
[57]
Carmona-Iragui, M.; Videla, L.; Lleó, A.; Fortea, J. Down syndrome, Alzheimer disease, and cerebral amyloid angiopathy: The complex triangle of brain amyloidosis. Dev. Neurobiol., 2019, 79(7), 716-737.
[http://dx.doi.org/10.1002/dneu.22709] [PMID: 31278851]
[58]
Liu, F.; Liang, Z.; Wegiel, J.; Hwang, Y.W.; Iqbal, K.; Grundke-Iqbal, I.; Ramakrishna, N.; Gong, C.X. Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J., 2008, 22(9), 3224-3233.
[http://dx.doi.org/10.1096/fj.07-104539] [PMID: 18509201]
[59]
Ryoo, S.R.; Jeong, H.K.; Radnaabazar, C.; Yoo, J.J.; Cho, H.J.; Lee, H.W.; Kim, I.S.; Cheon, Y.H.; Ahn, Y.S.; Chung, S.H.; Song, W.J. DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J. Biol. Chem., 2007, 282(48), 34850-34857.
[http://dx.doi.org/10.1074/jbc.M707358200] [PMID: 17906291]
[60]
Coutadeur, S.; Benyamine, H.; Delalonde, L.; de Oliveira, C.; Leblond, B.; Foucourt, A.; Besson, T.; Casagrande, A.S.; Taverne, T.; Girard, A.; Pando, M.P.; Désiré, L. A novel DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1A) inhibitor for the treatment of Alzheimer’s disease: Effect on Tau and amyloid pathologies in vitro. J. Neurochem., 2015, 133(3), 440-451.
[http://dx.doi.org/10.1111/jnc.13018] [PMID: 25556849]
[61]
Janel, N.; Sarazin, M.; Corlier, F.; Corne, H.; de Souza, L.C.; Hamelin, L.; Aka, A.; Lagarde, J.; Blehaut, H.; Hindié, V.; Rain, J.C.; Arbones, M.L.; Dubois, B.; Potier, M.C.; Bottlaender, M.; Delabar, J.M. Plasma DYRK1A as a novel risk factor for Alzheimer’s disease. Transl. Psychiatry, 2014, 4(8), e425.
[http://dx.doi.org/10.1038/tp.2014.61] [PMID: 25116835]
[62]
Delabar, J.M.; Ortner, M.; Simon, S.; Wijkhuisen, A.; Feraudet-Tarisse, C.; Pegon, J.; Vidal, E.; Hirschberg, Y.; Dubois, B.; Potier, M.C. Altered age-linked regulation of plasma DYRK1A in elderly cognitive complainers (INSIGHT-PreAD Study) with high brain amyloid load. Alzheimer’s Dement. Transl. Res. Clin. Interv, 2020, 2020, 6.
[63]
Murphy, M.P.; LeVine, H., III Alzheimer’s disease and the amyloid-β peptide. J. Alzheimers Dis., 2010, 19(1), 311-323.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[64]
Paasila, P.J.; Davies, D.S.; Kril, J.J.; Goldsbury, C.; Sutherland, G.T. The relationship between the morphological subtypes of microglia and Alzheimer’s disease neuropathology. Brain Pathol., 2019, 29(6), 726-740.
[http://dx.doi.org/10.1111/bpa.12717] [PMID: 30803086]
[65]
Madav, Y.; Wairkar, S.; Prabhakar, B. Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer’s disease. Brain Res. Bull., 2019, 146, 171-184.
[http://dx.doi.org/10.1016/j.brainresbull.2019.01.004] [PMID: 30634016]
[66]
Lee, H.J.; Woo, H.; Lee, H.E.; Jeon, H.; Ryu, K.Y.; Nam, J.H.; Jeon, S.G.; Park, H.; Lee, J.S.; Han, K.M.; Lee, S.M.; Kim, J.; Kang, R.J.; Lee, Y.H.; Kim, J.I.; Hoe, H.S. The novel DYRK1A inhibitor KVN93 regulates cognitive function, amyloid-beta pathology, and neuroinflammation. Free Radic. Biol. Med., 2020, 160, 575-595.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.030] [PMID: 32896600]
[67]
Martin, L.; Latypova, X.; Wilson, C.M.; Magnaudeix, A.; Perrin, M.L.; Yardin, C.; Terro, F. Tau protein kinases: Involvement in Alzheimer’s disease. Ageing Res. Rev., 2013, 12(1), 289-309.
[http://dx.doi.org/10.1016/j.arr.2012.06.003] [PMID: 22742992]
[68]
Wegiel, J.; Gong, C.X.; Hwang, Y.W. The role of DYRK1A in neurodegenerative diseases. FEBS J., 2011, 278(2), 236-245.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07955.x] [PMID: 21156028]
[69]
Kay, L.J.; Smulders-Srinivasan, T.K.; Soundararajan, M. Understanding the multifaceted role of human Down Syndrome kinase DYRK1A. Adv. Protein Chem. Struct. Biol., 2016, 105, 127-171.
[http://dx.doi.org/10.1016/bs.apcsb.2016.07.001] [PMID: 27567487]
[70]
Lagunes, T.; Herrera-Rivero, M.; Hernández-Aguilar, M.E.; Aranda-Abreu, G. Abeta(1-42) Induces abnormal alternative splicing of tau exons 2/3 in NGF-Induced PC12 cells. An. Acad. Bras. Cienc., 2014, 86(4), 1927-1934.
[http://dx.doi.org/10.1590/0001-3765201420130333]
[71]
Pathak, A.; Rohilla, A.; Gupta, T.; Akhtar, M.J.; Haider, M.R.; Sharma, K.; Haider, K.; Yar, M.S. DYRK1A kinase inhibition with emphasis on neurodegeneration: A comprehensive evolution story-cum-perspective. Eur. J. Med. Chem., 2018, 158, 559-592.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.093] [PMID: 30243157]
[72]
Azorsa, D.O.; Robeson, R.L.H.; Frost, D. hoovet, B.M.; Brautigam, G.R.; Dickey, C.; Beaudry, C.; Basu, G.D.; Holz, D.R.; Hernandez, J.A.; Bisanz, K.M.; Gwinn, L.; Grover, A.; Rogers, J.; Reiman, E.M.; Hutton, M.; Stephan, D.A.; Mousses, S.; Dunckley, T. High-Content SiRNA screening of the kinome identifies Kinases involved in Alzheimer’s Disease-related Tau Hyperphosphorylation. BMC Genomics, 2010, 2010, 11.
[73]
Branca, C.; Shaw, D.M.; Belfiore, R.; Gokhale, V.; Shaw, A.Y.; Foley, C.; Smith, B.; Hulme, C.; Dunckley, T.; Meechoovet, B.; Caccamo, A.; Oddo, S. Dyrk1 inhibition improves Alzheimer’s disease-like pathology. Aging Cell, 2017, 16(5), 1146-1154.
[http://dx.doi.org/10.1111/acel.12648] [PMID: 28779511]
[74]
García-Cerro, S.; Rueda, N.; Vidal, V.; Lantigua, S.; Martínez-Cué, C. Normalizing the gene dosage of Dyrk1A in a mouse model of Down syndrome rescues several Alzheimer’s disease phenotypes. Neurobiol. Dis., 2017, 106, 76-88.
[http://dx.doi.org/10.1016/j.nbd.2017.06.010] [PMID: 28647555]
[75]
Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[76]
Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 2020, 25, 5789.
[77]
Hijazi, M.; Fillat, C.; Medina, J.M.; Velasco, A. Overexpression of DYRK1A inhibits choline acetyltransferase induction by oleic acid in cellular models of Down syndrome. Exp. Neurol., 2013, 239, 229-234.
[http://dx.doi.org/10.1016/j.expneurol.2012.10.016] [PMID: 23124096]
[78]
Regen, F.; Hellmann-Regen, J.; Costantini, E.; Reale, M. Neuroinflammation and Alzheimer’s disease: Implications for microglial activation. Curr. Alzheimer Res., 2017, 14(11), 1140-1148.
[http://dx.doi.org/10.2174/1567205014666170203141717] [PMID: 28164764]
[79]
Sánchez-Sarasúa, S.; Fernández-Pérez, I.; Espinosa-Fernández, V.; Sánchez-Pérez, A.M.; Ledesma, J.C. Can we treat neuroinflammation in Alzheimer’s disease? Int. J. Mol. Sci., 2020, 21, 8751.
[80]
Gelders, G.; Baekelandt, V.; Van der Perren, A. Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J. Immunol. Res., 2018, 2018, 4784268.
[http://dx.doi.org/10.1155/2018/4784268]
[81]
Jeohn, G-H.; Kong, L-Y.; Wilson, B.; Hudson, P.; Hong, J-S. Synergistic neurotoxic effects of combined treatments with cytokines in murine primary mixed neuron/glia cultures. J. Neuroimmunol., 1998, 85(1), 1-10.
[http://dx.doi.org/10.1016/S0165-5728(97)00204-X] [PMID: 9626992]
[82]
Frost, D.; Meechoovet, B.; Wang, T.; Gately, S.; Giorgetti, M.; Shcherbakova, I.; Dunckley, T. β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer’s disease-related sites. PLoS One, 2011, 6(5), e19264.
[http://dx.doi.org/10.1371/journal.pone.0019264] [PMID: 21573099]
[83]
Domingues, C. da Cruz e Silva, O.A.B.; Henriques, A.G. Impact of Cytokines and Chemokines on Alzheimer’s Disease neuropathological hallmarks. Curr. Alzheimer Res., 2017, 14(8), 870-882.
[84]
Kaur, D.; Sharma, V.; Deshmukh, R. Activation of microglia and astrocytes: A roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology, 2019, 27, 663-677.
[85]
Laurent, C.; Buée, L.; Blum, D. Tau and neuroinflammation: What impact for Alzheimer’s Disease and Tauopathies? Biomed. J., 2018, 41(1), 21-33.
[http://dx.doi.org/10.1016/j.bj.2018.01.003] [PMID: 29673549]
[86]
Michalicova, A.; Majerova, P.; Kovac, A. Tau protein and its role in blood-brain barrier dysfunction. Front. Mol. Neurosci., 2020, 13, 570045.
[http://dx.doi.org/10.3389/fnmol.2020.570045] [PMID: 33100967]
[87]
Chandra, A.; Valkimadi, P-E.; Pagano, G.; Cousins, O.; Dervenoulas, G.; Politis, M. Applications of amyloid, tau, and neuroinflammation PET imaging to Alzheimer’s disease and mild cognitive impairment. Hum. Brain Mapp., 2019, 40(18), 5424-5442.
[http://dx.doi.org/10.1002/hbm.24782] [PMID: 31520513]
[88]
Leyns, C.E.G.; Holtzman, D.M. Glial contributions to neurodegeneration in tauopathies. Mol. Neurodegener., 2017, 12, 1-16.
[89]
Melchior, B.; Mittapalli, G.K.; Lai, C.; Duong-Polk, K.; Stewart, J.; Güner, B.; Hofilena, B.; Tjitro, A.; Anderson, S.D.; Herman, D.S.; Dellamary, L.; Swearingen, C.J.; Sunil, K.C.; Yazici, Y. Tau pathology reduction with SM07883, a novel, potent, and selective oral DYRK1A inhibitor: A potential therapeutic for Alzheimer’s disease. Aging Cell, 2019, 18(5), e13000.
[http://dx.doi.org/10.1111/acel.13000] [PMID: 31267651]
[90]
Moldogazieva, N.T.; Mokhosoev, I.M. Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid. Med. Cell. Longev., 2019, 2019, 3085756.
[91]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[92]
Alavi Naini, S.M.; Soussi-Yanicostas, N. Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Oxid. Med. Cell. Longev., 2015, 2015, 151979.
[http://dx.doi.org/10.1155/2015/151979]
[93]
Nguyen, T.L.; Fruit, C.; Hérault, Y.; Meijer, L.; Besson, T. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitors: A survey of recent patent literature. Expert Opin. Ther. Pat., 2017, 27(11), 1183-1199.
[http://dx.doi.org/10.1080/13543776.2017.1360285] [PMID: 28766366]
[94]
Sebastiani, G.; Almeida-Toledano, L.; Serra-Delgado, M.; Navarro-Tapia, E.; Sailer, S.; Valverde, O.; Garcia-Algar, O.; Andreu-Fernández, V. Therapeutic effects of catechins in less common neurological and neurodegenerative disorders. Nutr, 2021, 13, 2232.
[95]
Pons-Espinal, M.; Martinez de Lagran, M.; Dierssen, M. Environmental enrichment rescues DYRK1A activity and hippocampal adult neurogenesis in TgDyrk1A. Neurobiol. Dis., 2013, 60, 18-31.
[http://dx.doi.org/10.1016/j.nbd.2013.08.008] [PMID: 23969234]
[96]
Stotani, Silvia; Giordanetto, Fabrizio; Medda, Federico DYRK1A inhibition as potential treatment for Alzheimer’s disease. Future Med. Chem., 2016, 681-696.
[97]
Bálint, B.; Wéber, C.; Cruzalegui, F.; Burbridge, M.; Kotschy, A. Structure-based design and synthesis of harmine derivatives with different selectivity profiles in kinase versus monoamine oxidase inhibition. ChemMedChem, 2017, 12(12), 932-939.
[http://dx.doi.org/10.1002/cmdc.201600539] [PMID: 28264138]
[98]
Ogawa, Y.; Nonaka, Y.; Goto, T.; Ohnishi, E.; Hiramatsu, T.; Kii, I.; Yoshida, M.; Ikura, T.; Onogi, H.; Shibuya, H.; Hosoya, T.; Ito, N.; Hagiwara, M. Development of a novel selective inhibitor of the Down syndrome-related kinase Dyrk1A. Nat. Commun., 2010, 1(1), 86.
[http://dx.doi.org/10.1038/ncomms1090] [PMID: 20981014]
[99]
Centre, cambridge crystallographic data (org.). In: GOLD User Guide; 2019.
[100]
Liu, W.; Liu, X.; Tian, L.; Gao, Y.; Liu, W.; Chen, H.; Jiang, X.; Xu, Z.; Ding, H.; Zhao, Q. Design, synthesis and biological evaluation of harmine derivatives as potent GSK-3β/DYRK1A dual inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2021, 222, 113554.
[http://dx.doi.org/10.1016/j.ejmech.2021.113554] [PMID: 34098466]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy