Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Heart Failure And Type 2 Diabetes Mellitus: Neurohumoral, Histological And Molecular Interconnections

Author(s): A. Ushakov, V. Ivanchenko* and A. Gagarina

Volume 19, Issue 2, 2023

Published on: 26 August, 2022

Article ID: e170622206132 Pages: 16

DOI: 10.2174/1573403X18666220617121144

Price: $65

Abstract

Heart failure (HF) is a global healthcare burden and a leading cause of morbidity and mortality worldwide. Type 2 diabetes mellitus (T2DM) appears to be one of the major risk factors that significantly worsen HF prognosis and increase the risk of fatal cardiovascular outcomes. Despite a great knowledge of pathophysiological mechanisms involved in HF development and progression, hospitalization rates in patients with HF and concomitant T2DM remain elevated. In this review, we discuss the complex interplay between systemic neurohumoral regulation and local cardiac mechanisms participating in myocardial remodeling and HF development in T2DM with special attention to cardiomyocyte energy metabolism, mitochondrial function and calcium metabolism, cardiomyocyte hypertrophy and death, extracellular matrix remodeling.

Keywords: Heart failure, type 2 diabetes mellitus, pathophysiology, cardiac remodeling, glucotoxicity, lipotoxicity.

[1]
Tan LB, Williams SG, Tan DK, Cohen-Solal A. So many definitions of heart failure: are they all universally valid? A critical appraisal. Expert Rev Cardiovasc Ther 2010; 8(2): 217-28.
[http://dx.doi.org/10.1586/erc.09.187] [PMID: 20136608]
[2]
Dokainish H, Teo K, Zhu J, et al. Global mortality variations in patients with heart failure: results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. Lancet Glob Health 2017; 5(7): e665-72.
[http://dx.doi.org/10.1016/S2214-109X(17)30196-1] [PMID: 28476564]
[3]
Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev 2017; 3(1): 7-11.
[http://dx.doi.org/10.15420/cfr.2016:25:2] [PMID: 28785469]
[4]
Ofstad AP, Atar D, Gullestad L, Langslet G, Johansen OE. The heart failure burden of type 2 diabetes mellitus-a review of pathophysiology and interventions. Heart Fail Rev 2018; 23(3): 303-23.
[http://dx.doi.org/10.1007/s10741-018-9685-0] [PMID: 29516230]
[5]
Bozkurt B. What Is New in Heart Failure Management in 2017? Update on ACC/AHA Heart Failure Guidelines. Curr Cardiol Rep 2018; 20(6): 39.
[http://dx.doi.org/10.1007/s11886-018-0978-7] [PMID: 29667019]
[6]
Solomon SD, Claggett B, Desai AS, et al. Influence of Ejection Fraction on Outcomes and Efficacy of Sacubitril/Valsartan (LCZ696) in Heart Failure with Reduced Ejection Fraction: The Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) Trial. Circ Heart Fail 2016; 9(3): e002744.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002744] [PMID: 26915374]
[7]
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med 2019; 381(21): 1995-2008.
[http://dx.doi.org/10.1056/NEJMoa1911303] [PMID: 31535829]
[8]
Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med 2020; 383(15): 1413-24.
[http://dx.doi.org/10.1056/NEJMoa2022190] [PMID: 32865377]
[9]
Li N, Zhou H. SGLT2 inhibitors: A novel player in the treatment and prevention of diabetic cardiomyopathy. Drug Des Devel Ther 2020; 14: 4775-88.
[http://dx.doi.org/10.2147/DDDT.S269514]
[10]
Ojha U, Reyes L, Eyenga F, Oumbe D, Watkowska J, Saint-Jacques H. Diabetes, Heart Failure and Beyond: Elucidating the Cardioprotective Mechanisms of Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors. Am J Cardiovasc Drugs 2022; 22(1): 35-46.
[http://dx.doi.org/10.1007/s40256-021-00486-6] [PMID: 34189716]
[11]
Xing YJ, Liu BH, Wan SJ, et al. A SGLT2 inhibitor dapagliflozin alleviates diabetic cardiomyopathy by suppressing high glucose-induced oxidative stress in vivo and in vitro. Front Pharmacol 2021; 12: 708177.
[http://dx.doi.org/10.3389/fphar.2021.708177] [PMID: 34322029]
[12]
Patterson JH, Adams KF Jr. Pathophysiology of heart failure: changing perceptions. Pharmacotherapy 1996; 16(2 Pt 2): 27S-36S.
[PMID: 8668603]
[13]
Kemp CD, Conte JV. The pathophysiology of heart failure. Cardiovasc Pathol 2012; 21(5): 365-71.
[http://dx.doi.org/10.1016/j.carpath.2011.11.007] [PMID: 22227365]
[14]
Jackson G, Gibbs CR, Davies MK, Lip GY. ABC of heart failure. Pathophysiology. BMJ 2000; 320(7228): 167-70.
[http://dx.doi.org/10.1136/bmj.320.7228.167] [PMID: 10634740]
[15]
Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J Diabetes Res 2015; 2015: 341583.
[http://dx.doi.org/10.1155/2015/341583] [PMID: 26064978]
[16]
Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J 2012; 33(9): 1058-66.
[http://dx.doi.org/10.1093/eurheartj/ehs041] [PMID: 22507981]
[17]
Antoine S, Vaidya G, Imam H, Villarreal D. Pathophysiologic mechanisms in heart failure: Role of the sympathetic nervous system. Am J Med Sci 2017; 353(1): 27-30.
[http://dx.doi.org/10.1016/j.amjms.2016.06.016] [PMID: 28104100]
[18]
Grassi G, Quarti-Trevano F, Esler MD. Sympathetic activation in congestive heart failure: An updated overview. Heart Fail Rev 2021; 26(1): 173-82.
[http://dx.doi.org/10.1007/s10741-019-09901-2] [PMID: 31832833]
[19]
Nehme A, Zouein FA, Zayeri ZD, Zibara K. An update on the tissue renin angiotensin system and its role in physiology and pathology. J Cardiovasc Dev Dis 2019; 6(2): 14.
[http://dx.doi.org/10.3390/jcdd6020014] [PMID: 30934934]
[20]
Pugliese NR, Masi S, Taddei S. The renin-angiotensin-aldosterone system: a crossroad from arterial hypertension to heart failure. Heart Fail Rev 2020; 25(1): 31-42.
[http://dx.doi.org/10.1007/s10741-019-09855-5] [PMID: 31512149]
[21]
Unger T, Li J. The role of the renin-angiotensin-aldosterone system in heart failure. J Renin Angiotensin Aldosterone Syst 2004; 5 (Suppl. 1): S7-S10.
[http://dx.doi.org/10.3317/jraas.2004.024] [PMID: 15526242]
[22]
Shin SJ, Chung S, Kim SJ, et al. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS One 2016; 11(11): e0165703.
[http://dx.doi.org/10.1371/journal.pone.0165703] [PMID: 27802313]
[23]
Chen CM, Juan SH, Chou HC. Hyperglycemia activates the renin-angiotensin system and induces epithelial-mesenchymal transition in streptozotocin-induced diabetic kidneys. J Renin Angiotensin Aldosterone Syst 2018; 19(3): 1470320318803009.
[http://dx.doi.org/10.1177/1470320318803009] [PMID: 30264671]
[24]
Riphagen IJ, Boertien WE, Alkhalaf A, et al. Copeptin, a surrogate marker for arginine vasopressin, is associated with cardiovascular and all-cause mortality in patients with type 2 diabetes (ZODIAC-31). Diabetes Care 2013; 36(10): 3201-7.
[http://dx.doi.org/10.2337/dc12-2165] [PMID: 23757433]
[25]
Goldsmith SR, Francis GS, Cowley AW Jr, Levine TB, Cohn JN. Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol 1983; 1(6): 1385-90.
[http://dx.doi.org/10.1016/S0735-1097(83)80040-0] [PMID: 6343460]
[26]
Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci (Lond) 2016; 130(2): 57-77.
[http://dx.doi.org/10.1042/CS20150469] [PMID: 26637405]
[27]
Díez J. Chronic heart failure as a state of reduced effectiveness of the natriuretic peptide system: implications for therapy. Eur J Heart Fail 2017; 19(2): 167-76.
[http://dx.doi.org/10.1002/ejhf.656] [PMID: 27766748]
[28]
Fu S, Chang Z, Luo L, Deng J. Therapeutic progress and knowledge basis on the natriuretic peptide system in heart failure. Curr Top Med Chem 2019; 19(20): 1850-66.
[http://dx.doi.org/10.2174/1568026619666190826163536] [PMID: 31448711]
[29]
Vinnakota S, Chen HH. The importance of natriuretic peptides in cardiometabolic diseases. J Endocr Soc 2020; 4(6): bvaa052.
[http://dx.doi.org/10.1210/jendso/bvaa052] [PMID: 32537542]
[30]
Knapp M, Tu X, Wu R. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol Sin 2019; 40(1): 1-8.
[http://dx.doi.org/10.1038/s41401-018-0042-6] [PMID: 29867137]
[31]
Kasznicki J, Drzewoski J. Heart failure in the diabetic population - pathophysiology, diagnosis and management. Arch Med Sci 2014; 10(3): 546-56.
[http://dx.doi.org/10.5114/aoms.2014.43748] [PMID: 25097587]
[32]
Zuchi C, Tritto I, Carluccio E, Mattei C, Cattadori G, Ambrosio G. Role of endothelial dysfunction in heart failure. Heart Fail Rev 2020; 25(1): 21-30.
[http://dx.doi.org/10.1007/s10741-019-09881-3] [PMID: 31686283]
[33]
Giannitsi S, Bougiakli M, Bechlioulis A, Naka K. Endothelial dysfunction and heart failure: A review of the existing bibliography with emphasis on flow mediated dilation. JRSM Cardiovasc Dis 2019; 8: 2048004019843047.
[http://dx.doi.org/10.1177/2048004019843047] [PMID: 31007907]
[34]
Maupoint J, Besnier M, Gomez E, et al. Selective vascular endothelial protection reduces cardiac dysfunction in chronic heart failure. Circ Heart Fail 2016; 9(4): e002895.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002895] [PMID: 27059805]
[35]
Azevedo PS, Minicucci MF, Santos PP, Paiva SA, Zornoff LA. Energy metabolism in cardiac remodeling and heart failure. Cardiol Rev 2013; 21(3): 135-40.
[http://dx.doi.org/10.1097/CRD.0b013e318274956d] [PMID: 22990373]
[36]
Cho GW, Altamirano F, Hill JA. Chronic heart failure: Ca2+, catabolism, and catastrophic cell death. Biochim Biophys Acta 2016; 1862(4): 763-77.
[http://dx.doi.org/10.1016/j.bbadis.2016.01.011] [PMID: 26775029]
[37]
Athithan L, Gulsin GS, McCann GP, Levelt E. Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date. World J Diabetes 2019; 10(10): 490-510.
[http://dx.doi.org/10.4239/wjd.v10.i10.490] [PMID: 31641426]
[38]
Marks AR. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J Clin Invest 2013; 123(1): 46-52.
[http://dx.doi.org/10.1172/JCI62834] [PMID: 23281409]
[39]
Singh RM, Waqar T, Howarth FC, Adeghate E, Bidasee K, Singh J. Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart. Heart Fail Rev 2018; 23(1): 37-54.
[http://dx.doi.org/10.1007/s10741-017-9663-y] [PMID: 29192360]
[40]
Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci USA 2015; 112(36): 11389-94.
[http://dx.doi.org/10.1073/pnas.1513047112] [PMID: 26217001]
[41]
Liu H, Zhao Y, Xie A, et al. Interleukin-1β oxidative stress, and abnormal calcium handling mediate diabetic arrhythmic risk. JACC Basic Transl Sci 2021; 6(1): 42-52.
[http://dx.doi.org/10.1016/j.jacbts.2020.11.002] [PMID: 33532665]
[42]
Marx SO, Marks AR. Dysfunctional ryanodine receptors in the heart: new insights into complex cardiovascular diseases. J Mol Cell Cardiol 2013; 58: 225-31.
[http://dx.doi.org/10.1016/j.yjmcc.2013.03.005] [PMID: 23507255]
[43]
Lipskaia L, Keuylian Z, Blirando K, et al. Expression of sarco (endo) plasmic reticulum calcium ATPase (SERCA) system in normal mouse cardiovascular tissues, heart failure and atherosclerosis. Biochim Biophys Acta 2014; 1843(11): 2705-18.
[http://dx.doi.org/10.1016/j.bbamcr.2014.08.002] [PMID: 25110346]
[44]
Goldhaber JI, Philipson KD. Cardiac sodium-calcium exchange and efficient excitation-contraction coupling: implications for heart disease. Adv Exp Med Biol 2013; 961: 355-64.
[http://dx.doi.org/10.1007/978-1-4614-4756-6_30] [PMID: 23224894]
[45]
Gorski PA, Ceholski DK, Hajjar RJ. Altered myocardial calcium cycling and energetics in heart failure--a rational approach for disease treatment. Cell Metab 2015; 21(2): 183-94.
[http://dx.doi.org/10.1016/j.cmet.2015.01.005] [PMID: 25651173]
[46]
Despa S. Myocyte [Na +] i dysregulation in heart failure and diabetic cardiomyopathy. Front Physiol 2018; 9: 1303.
[http://dx.doi.org/10.3389/fphys.2018.01303] [PMID: 30258369]
[47]
Gollmer J, Zirlik A, Bugger H. Established and Emerging Mechanisms of Diabetic Cardiomyopathy. J Lipid Atheroscler 2019; 8(1): 26-47.
[http://dx.doi.org/10.12997/jla.2019.8.1.26] [PMID: 32821697]
[48]
Williams GS, Boyman L, Lederer WJ. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 2015; 78: 35-45.
[http://dx.doi.org/10.1016/j.yjmcc.2014.10.019] [PMID: 25450609]
[49]
Shenasa M, Shenasa H. Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int J Cardiol 2017; 237: 60-3.
[http://dx.doi.org/10.1016/j.ijcard.2017.03.002] [PMID: 28285801]
[50]
You J, Wu J, Zhang Q, et al. Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload. Am J Physiol Heart Circ Physiol 2018; 314(3): H552-62.
[http://dx.doi.org/10.1152/ajpheart.00212.2017] [PMID: 29196344]
[51]
Lazzeroni D, Rimoldi O, Camici PG. From left ventricular hypertrophy to dysfunction and failure. Circ J 2016; 80(3): 555-64.
[http://dx.doi.org/10.1253/circj.CJ-16-0062] [PMID: 26853555]
[52]
Samak M, Fatullayev J, Sabashnikov A, et al. Cardiac hypertrophy: An introduction to molecular and cellular basis. Med Sci Monit Basic Res 2016; 22: 75-9.
[http://dx.doi.org/10.12659/MSMBR.900437] [PMID: 27450399]
[53]
Melaku LS, Desalegn T. Molecular mediators, characterization of signaling pathways with descriptions of cellular distinctions in pathophysiology of cardiac hypertrophy and molecular changes underlying a transition to heart failure. Int J Health Allied Sci 2019; 8(1): 1-24.
[http://dx.doi.org/10.4103/ijhas.IJHAS_104_17]
[54]
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28(1): 1-39.e14.
[http://dx.doi.org/10.1016/j.echo.2014.10.003] [PMID: 25559473]
[55]
Müller AL, Dhalla NS. Differences in concentric cardiac hypertrophy and eccentric hypertrophy Cardiac Adaptations. New York, NY: Springer 2013; pp. 147-66.
[56]
Sciarretta S, Sadoshima J. New insights into the molecular phenotype of eccentric hypertrophy. J Mol Cell Cardiol 2010; 49(2): 153-6.
[http://dx.doi.org/10.1016/j.yjmcc.2010.03.018] [PMID: 20381498]
[57]
Miyazaki H, Oka N, Koga A, Ohmura H, Ueda T, Imaizumi T. Comparison of gene expression profiling in pressure and volume overload-induced myocardial hypertrophies in rats. Hypertens Res 2006; 29(12): 1029-45.
[http://dx.doi.org/10.1291/hypres.29.1029] [PMID: 17378376]
[58]
Gallo S, Vitacolonna A, Bonzano A, Comoglio P, Crepaldi T. ERK: A key player in the pathophysiology of cardiac hypertrophy. Int J Mol Sci 2019; 20(9): 2164.
[http://dx.doi.org/10.3390/ijms20092164] [PMID: 31052420]
[59]
Li XM, Ma YT, Yang YN, et al. Downregulation of survival signalling pathways and increased apoptosis in the transition of pressure overload-induced cardiac hypertrophy to heart failure. Clin Exp Pharmacol Physiol 2009; 36(11): 1054-61.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05243.x] [PMID: 19566828]
[60]
Xue M, Li T, Wang Y, et al. Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice. Clin Sci (Lond) 2019; 133(15): 1705-20.
[http://dx.doi.org/10.1042/CS20190585] [PMID: 31337673]
[61]
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 2020; 17(9): 585-607.
[http://dx.doi.org/10.1038/s41569-020-0339-2] [PMID: 32080423]
[62]
Youssef ME, Abdelrazek HM, Moustafa YM. Cardioprotective role of GTS-21 by attenuating the TLR4/NF-κB pathway in streptozotocin-induced diabetic cardiomyopathy in rats. Naunyn Schmiedebergs Arch Pharmacol 2021; 394(1): 11-31.
[http://dx.doi.org/10.1007/s00210-020-01957-4] [PMID: 32776158]
[63]
Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 2018; 15(7): 387-407.
[http://dx.doi.org/10.1038/s41569-018-0007-y] [PMID: 29674714]
[64]
Moe GW, Marín-García J. Role of cell death in the progression of heart failure. Heart Fail Rev 2016; 21(2): 157-67.
[http://dx.doi.org/10.1007/s10741-016-9532-0] [PMID: 26872675]
[65]
Marín-García J. Cell death in the pathogenesis and progression of heart failure. Heart Fail Rev 2016; 21(2): 117-21.
[http://dx.doi.org/10.1007/s10741-016-9538-7] [PMID: 26886226]
[66]
D’Arcy MS. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 2019; 43(6): 582-92.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[67]
Teringova E, Tousek P. Apoptosis in ischemic heart disease. J Transl Med 2017; 15(1): 87.
[http://dx.doi.org/10.1186/s12967-017-1191-y] [PMID: 28460644]
[68]
Jose Corbalan J, Vatner DE, Vatner SF. Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Res Cardiol 2016; 111(3): 31.
[http://dx.doi.org/10.1007/s00395-016-0549-2] [PMID: 27043720]
[69]
Marunouchi T, Tanonaka K. Cell death in the cardiac myocyte. Biol Pharm Bull 2015; 38(8): 1094-7.
[http://dx.doi.org/10.1248/bpb.b15-00288] [PMID: 26235571]
[70]
Chen XG, Lv YX, Zhao D, et al. Vascular endothelial growth factor-C protects heart from ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. Mol Cell Biochem 2016; 413(1-2): 9-23.
[http://dx.doi.org/10.1007/s11010-015-2622-9] [PMID: 26769665]
[71]
Edlich F. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochem Biophys Res Commun 2018; 500(1): 26-34.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.190] [PMID: 28676391]
[72]
Bhandari U, Kumar V, Kumar P, Tripathi CD, Khanna G. Protective effect of pioglitazone on cardiomyocyte apoptosis in low-dose streptozotocin & high-fat diet-induced type-2 diabetes in rats. Indian J Med Res 2015; 142(5): 598-605.
[http://dx.doi.org/10.4103/0971-5916.171290] [PMID: 26658596]
[73]
Saotome M, Ikoma T, Hasan P, Maekawa Y. Cardiac insulin resistance in heart failure: The role of mitochondrial dynamics. Int J Mol Sci 2019; 20(14): 3552.
[http://dx.doi.org/10.3390/ijms20143552] [PMID: 31330848]
[74]
Wang CH, Wei YH. Role of mitochondrial dysfunction and dysregulation of Ca2+ homeostasis in the pathophysiology of insulin resistance and type 2 diabetes. J Biomed Sci 2017; 24(1): 70.
[http://dx.doi.org/10.1186/s12929-017-0375-3] [PMID: 28882140]
[75]
Elena-Real CA, Díaz-Quintana A, González-Arzola K, et al. Cytochrome c speeds up caspase cascade activation by blocking 14-3-3ε-dependent Apaf-1 inhibition. Cell Death Dis 2018; 9(3): 365.
[http://dx.doi.org/10.1038/s41419-018-0408-1] [PMID: 29511177]
[76]
Eid RA, Alkhateeb MA, Eleawa SM, et al. Fas/FasL-mediated cell death in rat’s diabetic hearts involves activation of calcineurin/NFAT4 and is potentiated by a high-fat diet rich in corn oil. J Nutr Biochem 2019; 68: 79-90.
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.007] [PMID: 31030170]
[77]
Niessner A, Hohensinner PJ, Rychli K, et al. Prognostic value of apoptosis markers in advanced heart failure patients. Eur Heart J 2009; 30(7): 789-96.
[http://dx.doi.org/10.1093/eurheartj/ehp004] [PMID: 19196721]
[78]
Kinugawa T, Kato M, Yamamoto K, Hisatome I, Nohara R. Proinflammatory cytokine activation is linked to apoptotic mediator, soluble Fas level in patients with chronic heart failure. Int Heart J 2012; 53(3): 182-6.
[http://dx.doi.org/10.1536/ihj.53.182] [PMID: 22790687]
[79]
Schumacher SM, Naga Prasad SV. Tumor necrosis factor-α in heart failure: An updated review. Curr Cardiol Rep 2018; 20(11): 117.
[http://dx.doi.org/10.1007/s11886-018-1067-7] [PMID: 30259192]
[80]
Zhu H, Sun A. Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. J Mol Cell Cardiol 2018; 116: 125-34.
[http://dx.doi.org/10.1016/j.yjmcc.2018.01.018] [PMID: 29426003]
[81]
Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 2019; 99(4): 1765-817.
[http://dx.doi.org/10.1152/physrev.00022.2018] [PMID: 31364924]
[82]
Dondelinger Y, Hulpiau P, Saeys Y, Bertrand MJM, Vandenabeele P. An evolutionary perspective on the necroptotic pathway. Trends Cell Biol 2016; 26(10): 721-32.
[http://dx.doi.org/10.1016/j.tcb.2016.06.004] [PMID: 27368376]
[83]
Linkermann A, Bräsen JH, Darding M, et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA 2013; 110(29): 12024-9.
[http://dx.doi.org/10.1073/pnas.1305538110] [PMID: 23818611]
[84]
Amgalan D, Chen Y, Kitsis RN. Death receptor signaling in the heart: Cell survival, apoptosis, and necroptosis. Circulation 2017; 136(8): 743-6.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029566] [PMID: 28827219]
[85]
Elrod JW, Wong R, Mishra S, et al. Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest 2010; 120(10): 3680-7.
[http://dx.doi.org/10.1172/JCI43171] [PMID: 20890047]
[86]
Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G. Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol 2020; 11: 42.
[http://dx.doi.org/10.3389/fphar.2020.00042] [PMID: 32116717]
[87]
Nakayama H, Chen X, Baines CP, et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 2007; 117(9): 2431-44.
[http://dx.doi.org/10.1172/JCI31060] [PMID: 17694179]
[88]
Feng N, Anderson ME. CaMKII is a nodal signal for multiple programmed cell death pathways in heart. J Mol Cell Cardiol 2017; 103: 102-9.
[http://dx.doi.org/10.1016/j.yjmcc.2016.12.007] [PMID: 28025046]
[89]
Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K. The role of autophagy in the heart. Cell Death Differ 2009; 16(1): 31-8.
[http://dx.doi.org/10.1038/cdd.2008.163] [PMID: 19008922]
[90]
Lilienbaum A. Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol 2013; 4(1): 1-26.
[PMID: 23638318]
[91]
Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 2012; 22(8): 407-17.
[http://dx.doi.org/10.1016/j.tcb.2012.05.006] [PMID: 22748206]
[92]
Alers S, Löffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 2012; 32(1): 2-11.
[http://dx.doi.org/10.1128/MCB.06159-11] [PMID: 22025673]
[93]
Dunlop EA, Tee AR. The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochem Soc Trans 2013; 41(4): 939-43.
[http://dx.doi.org/10.1042/BST20130030] [PMID: 23863160]
[94]
Carroll B, Dunlop EA. The lysosome: A crucial hub for AMPK and mTORC1 signalling. Biochem J 2017; 474(9): 1453-66.
[http://dx.doi.org/10.1042/BCJ20160780] [PMID: 28408430]
[95]
Bhattacharya D, Mukhopadhyay M, Bhattacharyya M, Karmakar P. Is autophagy associated with diabetes mellitus and its complications? A review. EXCLI J 2018; 17: 709-20.
[http://dx.doi.org/10.17179/excli2018-1353] [PMID: 30190661]
[96]
Kobayashi S, Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta 2015; 1852(2): 252-61.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.020] [PMID: 24882754]
[97]
Li Y, Wang Y, Zou M, et al. AMPK blunts chronic heart failure by inhibiting autophagy. Biosci Rep 2018; 38(4): BSR20170982.
[http://dx.doi.org/10.1042/BSR20170982] [PMID: 30021848]
[98]
Russo SB, Baicu CF, Van Laer A, et al. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin Invest 2012; 122(11): 3919-30.
[http://dx.doi.org/10.1172/JCI63888] [PMID: 23023704]
[99]
Kobayashi S, Xu X, Chen K, Liang Q. Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy 2012; 8(4): 577-92.
[http://dx.doi.org/10.4161/auto.18980] [PMID: 22498478]
[100]
Corsetti G, Chen-Scarabelli C, Romano C, et al. Autophagy and oncosis/necroptosis are enhanced in cardiomyocytes from heart failure patients. Med Sci Monit Basic Res 2019; 25: 33-44.
[http://dx.doi.org/10.12659/MSMBR.913436] [PMID: 30713336]
[101]
Barac YD, Emrich F, Krutzwakd-Josefson E, et al. The ubiquitin-proteasome system: A potential therapeutic target for heart failure. J Heart Lung Transplant 2017; 36(7): 708-14.
[http://dx.doi.org/10.1016/j.healun.2017.02.012] [PMID: 28341100]
[102]
Su H, Wang X. The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. Cardiovasc Res 2010; 85(2): 253-62.
[http://dx.doi.org/10.1093/cvr/cvp287] [PMID: 19696071]
[103]
Drews O, Taegtmeyer H. Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies. Antioxid Redox Signal 2014; 21(17): 2322-43.
[http://dx.doi.org/10.1089/ars.2013.5823] [PMID: 25133688]
[104]
Koulaouzidis G, Lyon AR. Proteasome inhibitors as a potential cause of heart failure. Heart Fail Clin 2017; 13(2): 289-95.
[http://dx.doi.org/10.1016/j.hfc.2016.12.001] [PMID: 28279415]
[105]
Hedhli N, Lizano P, Hong C, et al. Proteasome inhibition decreases cardiac remodeling after initiation of pressure overload. Am J Physiol Heart Circ Physiol 2008; 295(4): H1385-93.
[http://dx.doi.org/10.1152/ajpheart.00532.2008] [PMID: 18676687]
[106]
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular protein quality control in diabetic cardiomyopathy: From bench to bedside. Front Cardiovasc Med 2020; 7: 585309.
[http://dx.doi.org/10.3389/fcvm.2020.585309] [PMID: 33195472]
[107]
Li J, Ma W, Yue G, et al. Cardiac proteasome functional insufficiency plays a pathogenic role in diabetic cardiomyopathy. J Mol Cell Cardiol 2017; 102: 53-60.
[http://dx.doi.org/10.1016/j.yjmcc.2016.11.013] [PMID: 27913284]
[108]
Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M. Diabetic cardiomyopathy: Current approach and potential diagnostic and therapeutic targets. J Diabetes Res 2017; 2017: 1310265.
[http://dx.doi.org/10.1155/2017/1310265] [PMID: 28421204]
[109]
Portbury AL, Ronnebaum SM, Zungu M, Patterson C, Willis MS. Back to your heart: ubiquitin proteasome system-regulated signal transduction. J Mol Cell Cardiol 2012; 52(3): 526-37.
[http://dx.doi.org/10.1016/j.yjmcc.2011.10.023] [PMID: 22085703]
[110]
Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest 2017; 127(5): 1600-12.
[http://dx.doi.org/10.1172/JCI87491] [PMID: 28459429]
[111]
Frangogiannis NG. The Extracellular matrix in ischemic and nonischemic heart failure. Circ Res 2019; 125(1): 117-46.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.311148] [PMID: 31219741]
[112]
Rienks M, Papageorgiou AP, Frangogiannis NG, Heymans S. Myocardial extracellular matrix: an ever-changing and diverse entity. Circ Res 2014; 114(5): 872-88.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302533] [PMID: 24577967]
[113]
Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 2014; 71(4): 549-74.
[http://dx.doi.org/10.1007/s00018-013-1349-6] [PMID: 23649149]
[114]
Fan D, Takawale A, Lee J, Kassiri Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 2012; 5(1): 15.
[http://dx.doi.org/10.1186/1755-1536-5-15] [PMID: 22943504]
[115]
Nielsen SH, Mouton AJ, DeLeon-Pennell KY, Genovese F, Karsdal M, Lindsey ML. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biol 2019; 75-76: 43-57.
[http://dx.doi.org/10.1016/j.matbio.2017.12.001] [PMID: 29247693]
[116]
Ushakov A, Ivanchenko V, Gagarina A. Regulation of myocardial extracellular matrix dynamic changes in myocardial infarction and postinfarct remodeling. Curr Cardiol Rev 2020; 16(1): 11-24.
[http://dx.doi.org/10.2174/1573403X15666190509090832] [PMID: 31072294]
[117]
Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol 2018; 68-69: 490-506.
[http://dx.doi.org/10.1016/j.matbio.2018.01.013] [PMID: 29371055]
[118]
Messerli FH, Rimoldi SF, Bangalore S. The transition from hypertension to heart failure: Contemporary update. JACC Heart Fail 2017; 5(8): 543-51.
[http://dx.doi.org/10.1016/j.jchf.2017.04.012] [PMID: 28711447]
[119]
Russo I, Cavalera M, Huang S, et al. Protective effects of activated myofibroblasts in the pressure-overloaded myocardium are mediated through smad-dependent activation of a matrix-preserving program. Circ Res 2019; 124(8): 1214-27.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314438] [PMID: 30686120]
[120]
Duca F, Zotter-Tufaro C, Kammerlander AA, et al. Cardiac extracellular matrix is associated with adverse outcome in patients with chronic heart failure. Eur J Heart Fail 2017; 19(4): 502-11.
[http://dx.doi.org/10.1002/ejhf.680] [PMID: 27891745]
[121]
Corporan D, Onohara D, Hernandez-Merlo R, Sielicka A, Padala M. Temporal changes in myocardial collagen, matrix metalloproteinases, and their tissue inhibitors in the left ventricular myocardium in experimental chronic mitral regurgitation in rodents. Am J Physiol Heart Circ Physiol 2018; 315(5): H1269-78.
[http://dx.doi.org/10.1152/ajpheart.00099.2018] [PMID: 30141979]
[122]
Fu L, Wei CC, Powell PC, Bradley WE, Collawn JF, Dell'Italia LJ. Volume overload induces autophagic degradation of procollagen in cardiac fibroblasts. J Mol Cell Cardiol 2015; 89(Part B): 241-50.
[http://dx.doi.org/10.1016/j.yjmcc.2015.10.027]
[123]
Meng L, Uzui H, Guo H, Tada H. Role of SGLT1 in high glucose level-induced MMP-2 expression in human cardiac fibroblasts. Mol Med Rep 2018; 17(5): 6887-92.
[http://dx.doi.org/10.3892/mmr.2018.8688] [PMID: 29512713]
[124]
Atale N, Yadav D, Rani V, Jin JO. Pathophysiology, clinical characteristics of diabetic cardiomyopathy: Therapeutic potential of natural polyphenols. Front Nutr 2020; 7: 564352.
[http://dx.doi.org/10.3389/fnut.2020.564352] [PMID: 33344490]
[125]
Yazdani F, Shahidi F, Karimi P. The effect of 8 weeks of high-intensity interval training and moderate-intensity continuous training on cardiac angiogenesis factor in diabetic male rats. J Physiol Biochem 2020; 76(2): 291-9.
[http://dx.doi.org/10.1007/s13105-020-00733-5] [PMID: 32157499]
[126]
Van Linthout S, Seeland U, Riad A, et al. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 2008; 103(4): 319-27.
[http://dx.doi.org/10.1007/s00395-008-0715-2] [PMID: 18347835]
[127]
Fukushima A, Milner K, Gupta A, Lopaschuk GD. Myocardial energy substrate metabolism in heart failure: From pathways to therapeutic targets. Curr Pharm Des 2015; 21(25): 3654-64.
[http://dx.doi.org/10.2174/1381612821666150710150445] [PMID: 26166604]
[128]
Dolinsky VW, Cole LK, Sparagna GC, Hatch GM. Cardiac mitochondrial energy metabolism in heart failure: Role of cardiolipin and sirtuins. Biochim Biophys Acta 2016; 1861(10): 1544-54.
[http://dx.doi.org/10.1016/j.bbalip.2016.03.008] [PMID: 26972373]
[129]
Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest 2018; 128(9): 3716-26.
[http://dx.doi.org/10.1172/JCI120849] [PMID: 30124471]
[130]
Myles S, Lea RA, Ohashi J, et al. Testing the thrifty gene hypothesis: The Gly482Ser variant in PPARGC1A is associated with BMI in Tongans. BMC Med Genet 2011; 12: 10.
[http://dx.doi.org/10.1186/1471-2350-12-10] [PMID: 21244673]
[131]
Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? 1962. Bull World Health Organ 1999; 77(8): 694-703.
[PMID: 10516792]
[132]
Calvani M, Reda E, Arrigoni-Martelli E. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Res Cardiol 2000; 95(2): 75-83.
[http://dx.doi.org/10.1007/s003950050167] [PMID: 10826498]
[133]
Wang SP, Yang H, Wu JW, Gauthier N, Fukao T, Mitchell GA. Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example. J Hum Evol 2014; 77: 41-9.
[http://dx.doi.org/10.1016/j.jhevol.2014.06.013] [PMID: 25488255]
[134]
Monteuuis G, Suomi F, Kerätär JM, Masud AJ, Kastaniotis AJ. A conserved mammalian mitochondrial isoform of acetyl-CoA carboxylase ACC1 provides the malonyl-CoA essential for mitochondrial biogenesis in tandem with ACSF3. Biochem J 2017; 474(22): 3783-97.
[http://dx.doi.org/10.1042/BCJ20170416] [PMID: 28986507]
[135]
Spurlock ME, Gabler NK. The development of porcine models of obesity and the metabolic syndrome. J Nutr 2008; 138(2): 397-402.
[http://dx.doi.org/10.1093/jn/138.2.397] [PMID: 18203910]
[136]
Reddon H, Patel Y, Turcotte M, Pigeyre M, Meyre D. Revisiting the evolutionary origins of obesity: Lazy versus peppy-thrifty genotype hypothesis. Obes Rev 2018; 19(11): 1525-43.
[http://dx.doi.org/10.1111/obr.12742] [PMID: 30261552]
[137]
Hall ME, Harmancey R, Stec DE. Lean heart: Role of leptin in cardiac hypertrophy and metabolism. World J Cardiol 2015; 7(9): 511-24.
[http://dx.doi.org/10.4330/wjc.v7.i9.511] [PMID: 26413228]
[138]
Eichmann TO, Lass A. DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling. Cell Mol Life Sci 2015; 72(20): 3931-52.
[http://dx.doi.org/10.1007/s00018-015-1982-3] [PMID: 26153463]
[139]
Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90(1): 207-58.
[http://dx.doi.org/10.1152/physrev.00015.2009] [PMID: 20086077]
[140]
Chiu HC, Kovacs A, Ford DA, et al. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 2001; 107(7): 813-22.
[http://dx.doi.org/10.1172/JCI10947] [PMID: 11285300]
[141]
Foufelle F, Girard J, Ferré P. Glucose regulation of gene expression. Curr Opin Clin Nutr Metab Care 1998; 1(4): 323-8.
[http://dx.doi.org/10.1097/00075197-199807000-00002] [PMID: 10565368]
[142]
Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 2001; 291(5512): 2376-8.
[http://dx.doi.org/10.1126/science.1058714] [PMID: 11269319]
[143]
Daniel S, Kim KH. Sp1 mediates glucose activation of the acetyl-CoA carboxylase promoter. J Biol Chem 1996; 271(3): 1385-92.
[http://dx.doi.org/10.1074/jbc.271.3.1385] [PMID: 8576128]
[144]
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-acetylglucosamine protein modification in cellular (patho)physiology. Physiol Rev 2021; 101(2): 427-93.
[http://dx.doi.org/10.1152/physrev.00043.2019] [PMID: 32730113]
[145]
Qi Y, Zhu Q, Zhang K, et al. Activation of Foxo1 by insulin resistance promotes cardiac dysfunction and β-myosin heavy chain gene expression. Circ Heart Fail 2015; 8(1): 198-208.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.114.001457] [PMID: 25477432]
[146]
Levelt E, Mahmod M, Piechnik SK, et al. Relationship between left ventricular structural and metabolic remodeling in type 2 diabetes. Diabetes 2016; 65(1): 44-52.
[http://dx.doi.org/10.2337/db15-0627] [PMID: 26438611]
[147]
Young ME, Laws FA, Goodwin GW, Taegtmeyer H. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 2001; 276(48): 44390-5.
[http://dx.doi.org/10.1074/jbc.M103826200] [PMID: 11574533]
[148]
Ardehali H, Sabbah HN, Burke MA, et al. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur J Heart Fail 2012; 14(2): 120-9.
[http://dx.doi.org/10.1093/eurjhf/hfr173] [PMID: 22253453]
[149]
Chu LM, Osipov RM, Robich MP, et al. Is hyperglycemia bad for the heart during acute ischemia? J Thorac Cardiovasc Surg 2010; 140(6): 1345-52.
[http://dx.doi.org/10.1016/j.jtcvs.2010.05.009] [PMID: 20542299]
[150]
Karwi QG, Sun Q, Lopaschuk GD. The contribution of cardiac fatty acid oxidation to diabetic cardiomyopathy severity. Cells 2021; 10(11): 3259.
[http://dx.doi.org/10.3390/cells10113259] [PMID: 34831481]
[151]
Ingebretsen CG, Moreau P, Hawelu-Johnson C. Ingebretsen WRJr. Performance of diabetic rat hearts: effects of anoxia and increased work. Am J Physiol 1980; 239(5): H614-20.
[http://dx.doi.org/10.1152/ajpheart.1980.239.5.H614] [PMID: 7001927]
[152]
Erdogan BR, Michel MC, Arioglu-Inan E. Expression and signaling of β-adrenoceptor subtypes in the diabetic hearT. Cells 2020; 9(12): 2548.
[http://dx.doi.org/10.3390/cells9122548] [PMID: 33256212]
[153]
Liu Y, Thornton JD, Cohen MV, Downey JM, Schaffer SW. Streptozotocin-induced non-insulin-dependent diabetes protects the heart from infarction. Circulation 1993; 88(3): 1273-8.
[http://dx.doi.org/10.1161/01.CIR.88.3.1273] [PMID: 8353889]
[154]
Bayrami G, Karimi P, Agha-Hosseini F, Feyzizadeh S, Badalzadeh R. Effect of ischemic postconditioning on myocardial function and infarct size following reperfusion injury in diabetic rats pretreated with vildagliptin. J Cardiovasc Pharmacol Ther 2018; 23(2): 174-83.
[http://dx.doi.org/10.1177/1074248417729881] [PMID: 28901167]
[155]
Pastukh V, Wu S, Ricci C, Mozaffari M, Schaffer S. Reversal of hyperglycemic preconditioning by angiotensin II: role of calcium transport. Am J Physiol Heart Circ Physiol 2005; 288(4): H1965-75.
[http://dx.doi.org/10.1152/ajpheart.00855.2004] [PMID: 15604129]
[156]
Ansley DM, Wang B. Oxidative stress and myocardial injury in the diabetic heart. J Pathol 2013; 229(2): 232-41.
[http://dx.doi.org/10.1002/path.4113] [PMID: 23011912]
[157]
El Hadi H, Vettor R, Rossato M. Cardiomyocyte mitochondrial dysfunction in diabetes and its contribution in cardiac arrhythmogenesis. Mitochondrion 2019; 46: 6-14.
[http://dx.doi.org/10.1016/j.mito.2019.03.005] [PMID: 30905865]
[158]
Neely JR, Grotyohann LW. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 1984; 55(6): 816-24.
[http://dx.doi.org/10.1161/01.RES.55.6.816] [PMID: 6499136]
[159]
Tani M, Neely JR. Hearts from diabetic rats are more resistant to in vitro ischemia: possible role of altered Ca2+ metabolism. Circ Res 1988; 62(5): 931-40.
[http://dx.doi.org/10.1161/01.RES.62.5.931] [PMID: 3359577]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy