Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Mini-Review Article

Ethno-Botanical and Phytopharmacological Study of Limnophila rugosa Roth. Merr. (Scrophulariaceae): Mini Review

Author(s): Raghunandan Hota*, Bikash Kumar Nanda, Biswaranjan Behera and Manoj Kumar Dalai

Volume 9, Issue 5, 2023

Published on: 01 November, 2022

Article ID: e100622205838 Pages: 13

DOI: 10.2174/2215083808666220610123934

Price: $65

Abstract

Background: Limnophila rugosa (Scrophulariaceae) is an aquatic and perennial herb that finds its natural habitats in ponds, rivers, lakes as well as marshy lands of India. The traditional practitioners of Bolangir and Bargarh District of Odisha use this plant as a source of Bhringaraj. Therapeutically, it is used as diuretic, stomachic, digestive tonic and as a hair perfume, treatment of elephantiasis, diarrhoea, dysentery, dyspepsia and urinary burning.

Objective: The present study was focused to provide the information regarding its traditional uses, compounds identified from different parts and essential oil; and the pharmacological activities of the reported compounds, which will bring the scope for future research.

Methods: Extensive literature survey was carried out up to 2021 in Google scholar, Web of Science, Scopus, PubMed, Science Direct, Springer, Taylor and Francis using keywords pharmacognostical, phytochemical and pharmacological aspect of L. rugosa.

Results: The study revealed diverse chemical compounds; flavonoids, terpenoids, amino acids, alcohol, phenol, aldehyde, ketone, carboxylic acid and ether. 5,7-Dihydroxy-6,8,4'- trimethoxyflavone (Nevadensin), 5-Hydroxy-6,7,4'-trimethoxyflavone (Salvigenin), Betulin, betulinic acid, caryophyllene, cis-anethole, methylchavicol were found as major compounds. Pharmacological activities such as antimicrobial, anti-inflammatory, diuretic and hypotensive were reported. The identified compounds exhibited several pharmacological activities, including antibacterial, antimicrobial, antifungal, anxiolytic, anti-inflammatory, analgesic, antioxidant, anti-tubercular, anti-tumour, anti-cancer, immunomodulatory, hepatoprotective, antiulcer, antidiabetic, antinociceptive, antimalarial, antiviral, anti-hyperlipidaemic, anti-HIV, insecticidal, herbicidal, antifeedant, anti-coagulant, gastro-protective, antihelmintic.

Conclusion: As, most of the compounds exhibited significant antimicrobial, antibacterial and antifungal activity so, a novel dosage form can be prepared from the essential oil of L. rugosa for antimicrobial activity.

Keywords: Limnophila rugosa, essential oil, pharmacognostical, phytochemistry, antimicrobial, pharmacological activities.

Graphical Abstract
[1]
Brahmachari G. Limnophila (Scrophulariaceae): Chemical and pharmaceutical aspects. Open Nat Prod J 2008; 1(1): 34-8.
[http://dx.doi.org/10.2174/1874848100801010034]
[2]
Akter A, Basher MA, Roy R, Sultana S, UdDaula AF. Phytochemical content, antioxidant and antidiarrhoeal activities of Limnophilarepens. Indones J Pharm 2019; 30: 187-98.
[http://dx.doi.org/10.14499/indonesianjpharm30iss3pp187]
[3]
Sharma SK, Chunekar KC. Medicinal plants used in Ayurveda. New Delhi: National academy of Ayurveda. Ministry of Health and Family Welfare, Govt. of India, R.A.V. Publication 1998; pp. 83-195.
[4]
Gupta AK. Quality Standards of Indian Medicinal Plants. New Delhi: ICMR 2003; I: pp. 226-33.
[5]
Acharya R, Padiya R, Patel ED, Harisha CR, Shukla VJ. Phytochemical study of an ethno medicinal plant Limnophila rugosa Roth.(Merr)(Scrophulariaceae) whole plant. Ann Ayur Med 2013; 2: 37-40.
[6]
Gorai D, Jash SK, Singh RK, Sarkar A, Majhi S. Chemical and pharmacological aspects of Limnophila rugosa: An update. Int J Nat Prod Res 2013; 3: 120-4.
[7]
Vaidya BG. Some controversial drugs in Indian medicine. (1st ed.). Varanasi, India: Chaukhambha Orientalia 1982; p. 155.
[8]
Wannan BS, Waterhouse JT. A taxonomic revision of the Australian species of Limnophila R. Br. (Scrophulariaceae). Aust J Bot 1985; 33(4): 367-80.
[http://dx.doi.org/10.1071/BT9850367]
[9]
Patel SK, Punjani BL, Desai PR, Pandey VB, Chaniyara HB. Limnophila rugosa (Roth.) Merrill (Scrophulariaceae): A new record to the flora of Gujarat state, India. Ann Plant Sci 2014; 3: 829-31.
[10]
Acharya RN, Padiya RH, Patel ED, Harisha CR, Shukla VJ. Preliminary phyto-chemical study on the leaf of an ethno-medicinal plant Limnophilarugosa Roth. (Merr.). Int J AyurAlliSci 2012; 1: 138-43.
[11]
Shivakumar N, Agrawal P, Gupta PK. Green pharmacy: An alternative and complementary medicine. Int J Pharm Sci Res 2013; 4: 575-81.
[12]
Roy R, Jash SK, Singh RK, Gorai D. Limnophila (Scrophulariaceae): Chemical and pharmacological aspects. World J Pharm Res 2015; 4: 1269-300.
[13]
Verma RS, Padalia RC, Chauhan A. Geographical impact on essential oil composition of Limnophila rugosa (Roth.) Merr. J Essent Oil Res 2014; 26(5): 338-41.
[http://dx.doi.org/10.1080/10412905.2014.922510]
[14]
Linh NT, Thach LN. Study of the essential oil of Limnophila rugosa (Roth.) Merr. in the South of Vietnam. J Essent Oil-Bear Plants 2011; 14(3): 366-72.
[http://dx.doi.org/10.1080/0972060X.2011.10643947]
[15]
Khare CP. Encyclopedia of Indian medicinal plants. New York: Springer 2007; pp. 1-739.
[http://dx.doi.org/10.1007/978-0-387-70638-2]
[16]
Shahid M, Verma N, Joshi SP. A contribution to the medicinal plants of Doon valley, Uttarakhand. Int J Curr Res 2017; 9: 57549-54.
[17]
Panda A, Misra MK. Ethnomedicinal survey of some wetland plants of South Orissa and their conservation. Indian J Tradit Knowl 2011; 10: 296-303.
[18]
Ouncharoen K, Itharat A, Chaiyawatthanananthn P. In-vitro free radical scavenging and cell-based antioxidant activities of Kheaw-Hom remedy extracts and its plant ingredients. J Med Assoc Thai 2017; 100: 241-9.
[19]
Rabinarayan A, Padiya RH, Patel ED, Harisha CR, Shukla VJ, Chauhan MG. Pharmacognostical evaluation of leaf of Limnophila rugosa roth. Merr. (scrophulariaceae). Glob J Res Med Plants Indig Med 2012; 1: 705-11.
[20]
Sastri BN. The Wealth of India (Raw Materials). New Delhi: CSIR 1962.
[21]
Kapil VB, Sinha AK, Sinha GK. Antibacterial and antifungal study of some essential oils and their constituents from the plants of Kumaon and its Tarai tract. Bull Med Ethno-bot Res 1983; 4: 124-9.
[22]
Madhumitha B, Devi P, Meera R, Kameswari B. Diuretic and antimicrobial activity of leaves of Limnophila rugosa. Res J Pharm Technol 2009; 2: 212-3.
[23]
Acharya R, Padiya RH, Patel ED, Harisha CR, Shukla VJ. Microbial evaluation of Limnophila rugosa Roth. (Merr) leaf. Ayu 2014; 35(2): 207-10.
[http://dx.doi.org/10.4103/0974-8520.146259] [PMID: 25558169]
[24]
Brahmachari G, Jash SK, Mandal LC, Mondal A, Roy R. Cyclooxygenase (Cox)-inhibitory flavonoid from Limnophila heterophylla. Rasayan J Chem 2008; 1: 288-91.
[25]
Liu MC, Chen ZS, Chung LC, Yang MS, Ho ST, Chen MT. Studies on hypotensive constituents of Limnophila rugosa. Chung Kuo Yao Hsueh Tsa Chih 1991; 43: 35-40.
[26]
Sarg T, Abdel-Ghani A, Zayed R, El-Sayed M. Bioactive compounds from Phyllanthus atropurpureus. J Nat Prod 2012; 5: 10-20.
[27]
Liu Z, Silva J, Shao AS, et al. Flavonoid compounds isolated from Tibetan herbs, binding to GABAA receptor with anxiolytic property. J Ethnopharmacol 2021; 267: 113630.
[http://dx.doi.org/10.1016/j.jep.2020.113630] [PMID: 33246118]
[28]
Mansourabadi AH, Sadeghi HM, Razavi N, Rezvani E. Antiinflammatory and analgesic properties of salvigenin, Salvia officinalis flavonoid extracted. Adv Herb Med 2016; 2: 31-41.
[29]
Mendes FSF, Garcia LM, Moraes TDS, et al. Antibacterial activity of Salvia officinalis L. against periodontopathogens: An in vitro study. Anaerobe 2020; 63: 102194.
[http://dx.doi.org/10.1016/j.anaerobe.2020.102194] [PMID: 32205191]
[30]
Alwahsh MA, Khairuddean M, Chong WK. Chemical constituents and antioxidant activity of Teucrium barbeyanum Aschers. Rec Nat Prod 2015; 9: 159-63.
[31]
Reddy GB, Melkhani AB, Kalyani GA, et al. Chemical and pharmacological investigations of Limnophila conferta and Limnophila heterophylla. Int J Pharmacogn 1991; 29(2): 145-53.
[http://dx.doi.org/10.3109/13880209109082868]
[32]
Schwiebs A, Radeke HH. Immunopharmacological activity of betulin in inflammation-associated carcinogenesis. Anticancer Agents Med Chem 2018; 18(5): 645-51.
[http://dx.doi.org/10.2174/1871520617666171012124820] [PMID: 29022515]
[33]
Kazakova OB, Smirnova IE, Medvedeva NI, et al. Hepatoprotective activity of Betulin and Dipterocarpol derivatives. Russ J Bioorganic Chem 2019; 45(6): 558-65.
[http://dx.doi.org/10.1134/S1068162019050030]
[34]
Dehelean CA, Soica CM, Toma CC, et al. Antitumoral activity of betulin, a compound present in birch tree, in formulations with cyclodextrin. Studia Univ Vasile Goldis Arad Ser Stiintele Vietii 2010; 20(1): 55-8.
[35]
Boparai A, Niazi J, Bajwa N, Singh PA. Betulin a pentacyclic tri–terpenoid: An hour to rethink the compound. J Trans Med Res 2017; 1(2): 53-9.
[http://dx.doi.org/10.15406/oajtmr.2017.01.00012]
[36]
Kaur P, Kaur R, Arora R, Arora S. Effect of 3, hydroxy-lup- 20(29)-en-28-oic acid on 7,12-Dimethylbenz(a) anthracene impaired cellular homeostasis in extrahepatic organs of Sprague Dawley rats. J Xenobiot 2017; 7(1): 6475.
[http://dx.doi.org/10.4081/xeno.2017.6475] [PMID: 30701057]
[37]
Moghaddam MG, Ahmad FB, Samzadeh-Kermani A. Biological activity of Betulinic acid: A review. Pharmacol Pharm 2012; 03: 119-23.
[http://dx.doi.org/10.4236/pp.2012.32018]
[38]
Seo DY, Lee SR, Heo JW, et al. Ursolic acid in health and disease. Korean J Physiol Pharmacol 2018; 22(3): 235-48.
[http://dx.doi.org/10.4196/kjpp.2018.22.3.235] [PMID: 29719446]
[39]
Alpha-Alanine-Uses, Side Effects, and More. Available from: https://www.webmd.com/vitamins/ai/ingredientmono-1247/alpha-alanine
[40]
Cutrona KJ, Kaufman BA, Figueroa DM, Elmore DE. Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. FEBS Lett 2015; 589 (24 Pt B): 3915-20.
[http://dx.doi.org/10.1016/j.febslet.2015.11.002] [PMID: 26555191]
[41]
Aspartic acid. Available from: https://go.drugbank.com/drugs/DB00128
[42]
Silveira-Dorta G, Martín VS, Padrón JM. Synthesis and antiproliferative activity of glutamic acid-based dipeptides. Amino Acids 2015; 47(8): 1527-32.
[http://dx.doi.org/10.1007/s00726-015-1987-0] [PMID: 25900811]
[43]
Rewak-Soroczyńska J, Paluch E, Siebert A, Szałkiewicz K, Obłąk E. Biological activity of glycine and alanine derivatives of quaternary ammonium salts (QASs) against micro-organisms. Lett Appl Microbiol 2019; 69(3): 212-20.
[http://dx.doi.org/10.1111/lam.13195] [PMID: 31260122]
[44]
Glycine. Available from: https://go.drugbank.com/drugs/DB00145
[45]
Kacprzyk L, Rydengård V, Mörgelin M, et al. Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions. Biochim Biophys Acta 2007; 1768(11): 2667-80.
[http://dx.doi.org/10.1016/j.bbamem.2007.06.020] [PMID: 17655823]
[46]
Histidine. Available from: https://go.drugbank.com/drugs/DB00117
[47]
Leucine. Available from: https://go.drugbank.com/drugs/DB00149
[48]
Lysine. Available from: https://go.drugbank.com/drugs/DB00123
[49]
Ornithine. Available from: https://go.drugbank.com/drugs/DB00129
[50]
Phenylalanine. Available from: https://go.drugbank.com/drugs/DB00120
[51]
Bera S, Ghosh A, Sharma S, Debnath T, Giri B, Bhunia A. Probing the role of Proline in the antimicrobial activity and lipopolysaccharide binding of indolicidin. J Colloid Interface Sci 2015; 452: 148-59.
[http://dx.doi.org/10.1016/j.jcis.2015.04.031] [PMID: 25935286]
[52]
Proline. Available from: https://go.drugbank.com/drugs/DB00172
[53]
Hiwasa T, Ogawa S, Kobayashi H, Ike Y. Enhancement of catalytic activities of serine proteases by tripeptides compounds. FEBS Lett 1996; 386(1): 47-50.
[http://dx.doi.org/10.1016/0014-5793(96)00381-X] [PMID: 8635601]
[54]
Threonine. Available from: https://go.drugbank.com/drugs/DB00156
[55]
Tyrosine. Available from: https://go.drugbank.com/drugs/DB00135
[56]
Nishihira T, Takagi T, Mori S. Leucine and manifestation of antitumor activity by valine-depleted amino acid imbalance. Nutrition 1993; 9(2): 146-52.
[PMID: 8485327]
[57]
Valine. Available from: https://go.drugbank.com/drugs/DB00161
[58]
Han D, Kim HY, Lee HJ, Shim I, Hahm DH. Wound healing activity of Gamma-Aminobutyric Acid (GABA) in rats. J Microbiol Biotechnol 2007; 17(10): 1661-9.
[PMID: 18156782]
[59]
Lee BJ, Kim JS, Kang YM, et al. Antioxidant activity and γ-Aminobutyric Acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chem 2010; 122(1): 271-6.
[http://dx.doi.org/10.1016/j.foodchem.2010.02.071]
[60]
Xiong C, Li Q, Li S, Chen C, Chen Z, Huang W. In vitro antimicrobial activities and mechanism of 1-octen-3-ol against food-related bacteria and pathogenic fungi. J Oleo Sci 2017; 66(9): 1041-9.
[http://dx.doi.org/10.5650/jos.ess16196] [PMID: 28794307]
[61]
Amiri H. Antioxidant activity of the essential oil and methanolic extract of Teucriumorientale (L.) subsp. taylori (Boiss.). Iran J Pharm Res 2010; 9(4): 417-23.
[PMID: 24381607]
[62]
Peralta-Bohórquez AF, Quijano-Célis C, Gaviria M, Vanegas-López C, Pino JA. Essential oil from leaves of Lantana canescens and L. lopez-palacii grown in Colombia. Nat Prod Commun 2011; 6(2): 247-9.
[http://dx.doi.org/10.1177/1934578X1100600223] [PMID: 21425686]
[63]
Halstead FD, Rauf M, Moiemen NS, et al. The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PLoS One 2015; 10(9): e0136190.
[http://dx.doi.org/10.1371/journal.pone.0136190] [PMID: 26352256]
[64]
Famuyide IM, Aro AO, Fasina FO, Eloff JN, McGaw LJ. Antibacterial activity and mode of action of acetone crude leaf extracts of under-investigated Syzygium and Eugenia (Myrtaceae) species on multidrug resistant porcine diarrhoeagenic Escherichia coli. BMC Vet Res 2019; 15(1): 162.
[http://dx.doi.org/10.1186/s12917-019-1914-9] [PMID: 31118023]
[65]
Tunc I, Erler F, Dagli F, Calis O. Insecticidal activity of acetone vapours. J Stored Prod Res 1997; 33(2): 181-5.
[http://dx.doi.org/10.1016/S0022-474X(96)00021-5]
[66]
Farzaliyev V, Shuriberko A, Sujayev A, Osmanova S, Gojayeva S, Gahramanova K. Synthesis, computational and biological activity of heteroatomic compounds based on phenylthiourea and acetophenone. J Mol Struct 2020; 1221: 128844.
[http://dx.doi.org/10.1016/j.molstruc.2020.128844]
[67]
Ali SM, Jesmin M, Azad MA, Islam MK, Zahan R. Antiinflammatory and analgesic activities of acetophenone semicarbazone and benzophenone semicarbazone. Asian Pac J Trop Biomed 2012; 2(2): S1036-9.
[http://dx.doi.org/10.1016/S2221-1691(12)60357-8]
[68]
Adewunmi Y, Namjilsuren S, Walker WD, et al. Antimicrobial activity and cellular pathways targeted by p-anisaldehyde and epigallocatechingallate in the opportunistic human pathogen Pseudomonas aeruginosa. Appl Environ Microbiol 2020; 86(4): e02482-19.
[http://dx.doi.org/10.1128/AEM.02482-19] [PMID: 31811038]
[69]
Ndomo AF, Tapondjou LA, Tchouanguep FM. Insecticidal effect of anisaldehyde against Acanthoscelides obtectus and Callosobruchus maculatus (Coleoptera: Bruchidae). Julius-Kühn-Archiv 2010; 425: 735-40.
[http://dx.doi.org/10.5073/jka.2010.425.316]
[70]
Yang CH, Chang FR, Chang HW, Wang SM, Hsieh MC, Chuang LY. Investigation of the antioxidant activity of Illicium verum extracts. J Med Plants Res 2012; 6: 314-24.
[71]
Ghaffari T, Kafil HS, Asnaashari S, et al. Chemical composition and antimicrobial activity of essential oils from the aerial parts of Pinuseldarica grown in Northwestern Iran. Molecules 2019; 24(17): 3203.
[http://dx.doi.org/10.3390/molecules24173203] [PMID: 31484421]
[72]
Alencar Filho JMT, Araújo LC, Oliveira AP, et al. Chemical composition and antibacterial activity of essential oil from leaves of Croton heliotropiifolius in different seasons of the year. Rev Bras Farmacogn 2017; 27(4): 440-4.
[http://dx.doi.org/10.1016/j.bjp.2017.02.004]
[73]
Dahham SS, Tabana YM, Iqbal MA, et al. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015; 20(7): 11808-29.
[http://dx.doi.org/10.3390/molecules200711808] [PMID: 26132906]
[74]
El Hadri A, del Rio MG, Sanz J, et al. Cytotoxic activity of α-humulene and transcaryophyllene from Salvia officinalis in animal and human tumor cells. An R AcadNac Farm 2010; 76: 343-56.
[75]
Velasquez JE, Rojas-Fermin LB, Velasco J, Aparicio RL, Usubillaga AN, Sanoja E. Chemical diversity and antibacterial activity of volatile compounds from two Centrolobium paraense Tul. varieties. Bionatura 2019; 4(3): 908-12.
[http://dx.doi.org/10.21931/RB/2019.04.03.5]
[76]
Dunkić V, Bezić N, Vuko E. Antiphytoviral activity of essential oil from endemic species Teucrium arduini. Nat Prod Commun 2011; 6(9): 1385-8.
[http://dx.doi.org/10.1177/1934578X1100600940] [PMID: 21941920]
[77]
Hammami S, El Mokni R, Faidi K, et al. Chemical composition and antioxidant activity of essential oil from aerial parts of Teucrium flavum L. subsp. flavum growing spontaneously in Tunisia. Nat Prod Res 2015; 29(24): 2336-40.
[http://dx.doi.org/10.1080/14786419.2015.1010162] [PMID: 25687213]
[78]
Schmidt E, Bail S, Friedl SM, et al. Antimicrobial activities of single aroma compounds. Nat Prod Commun 2010; 5(9): 1365-8.
[http://dx.doi.org/10.1177/1934578X1000500906] [PMID: 20922992]
[79]
Matasyoh JC, Kiplimo JJ, Karubiu NM, Hailstorks TP. Chemical composition and antimicrobial activity of the essential oil of Satureja biflora (Lamiaceae). Bull Chem Soc Ethiop 2007; 21: 249-54.
[http://dx.doi.org/10.4314/bcse.v21i2.21204]
[80]
Marinov V, Valcheva-Kuzmanova S. Review on the pharmacological activities of anethole. ScrSci Pharm 2015; 2(2): 14-9.
[http://dx.doi.org/10.14748/ssp.v2i2.1141]
[81]
Witaicenis A, Seito LN, da Silveira Chagas A, et al. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine 2014; 21(3): 240-6.
[http://dx.doi.org/10.1016/j.phymed.2013.09.001] [PMID: 24176844]
[82]
Bronikowska J, Szliszka E, Jaworska D, Czuba ZP, Krol W. The coumarin psoralidin enhances anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Molecules 2012; 17(6): 6449-64.
[http://dx.doi.org/10.3390/molecules17066449] [PMID: 22643355]
[83]
Canning C, Sun S, Ji X, Gupta S, Zhou K. Antibacterial and cytotoxic activity of isoprenylated coumarin mammea A/AA isolated from Mammea africana. J Ethnopharmacol 2013; 147(1): 259-62.
[http://dx.doi.org/10.1016/j.jep.2013.02.026] [PMID: 23466248]
[84]
Gómez-García M, Sol C, de Nova PJG, et al. Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porcine Health Manag 2019; 5(1): 32.
[http://dx.doi.org/10.1186/s40813-019-0139-4] [PMID: 31890256]
[85]
Thompson JL, Hinton M. Antibacterial activity of formic and propionic acids in the diet of hens on Salmonellas in the crop. Br Poult Sci 1997; 38(1): 59-65.
[http://dx.doi.org/10.1080/00071669708417941] [PMID: 9088614]
[86]
Barbero-Lopez A, Hossain M, Haapala A. Antifungal activity of organic acids and their impact on wood decay resistance. Wood Fiber Sci 2020; 52(4): 410-8.
[http://dx.doi.org/10.22382/wfs-2020-039]
[87]
Deharo E, Sauvain M, Moretti C, Richard B, Ruiz E, Massiot G. [Antimalarial effect of n-hentriacontanol isolated from Cuatresia sp. (Solanaceae)]. Ann Parasitol Hum Comp 1992; 67(4): 126-7.
[http://dx.doi.org/10.1051/parasite/1992674126] [PMID: 1294019]
[88]
Chandramu C, Manohar RD, Krupadanam DG, Dashavantha RV. Isolation, characterization and biological activity of betulinic acid and ursolic acid from Vitex negundo L. Phytother Res 2003; 17(2): 129-34.
[http://dx.doi.org/10.1002/ptr.1088] [PMID: 12601674]
[89]
Nimbeshaho F, Mwangi CN, Orina F, et al. Antimycobacterial activities, cytotoxicity and phytochemical screening of extracts for three medicinal plants growing in Kenya. J Med Plants Res 2020; 14(4): 129-43.
[http://dx.doi.org/10.5897/JMPR2020.6905]
[90]
Bevilacqua A, Corbo MR, Sinigaglia M. In-vitro evaluation of the antimicrobial activity of eugenol, limonene, and citrus extract against bacteria and yeasts, representative of the spoiling microflora of fruit juices. J Food Prot 2010; 73(5): 888-94.
[http://dx.doi.org/10.4315/0362-028X-73.5.888] [PMID: 20501040]
[91]
Doughari JH, Bazza MJ. Phytochemistry, GC-MS analysis, antioxidant and antibacterial potentials of limonene isolated from pericarp of Citrus sinensis. Int J Microbiol Biotechnol 2010; 5: 22-7.
[92]
Kamatou GP, Viljoen AM. Linalool-A review of a biologically active compound of commercial importance. Nat Prod Commun 2008; 3(7): 1183-92.
[http://dx.doi.org/10.1177/1934578X0800300727]
[93]
Costa LC, Pinto JE, Bertolucci SK, Costa JC, Alves PB, Niculau ED. In vitro antifungal activity of Ocimum selloi essential oil and methylchavicol against phytopathogenic fungi. Rev Cienc Agron 2015; 46(2): 428-35.
[http://dx.doi.org/10.5935/1806-6690.20150023]
[94]
Moghaddam M, Alymanesh MR, Mehdizadeh L, Mirzaei H, Pirbalouti AG. Chemical composition and antibacterial activity of essential oil of Ocimum ciliatum, as a new source of methyl chavicol, against ten phytopathogens. Ind Crops Prod 2014; 59: 144-8.
[http://dx.doi.org/10.1016/j.indcrop.2014.05.006]
[95]
Saito AY, Marin Rodriguez AA, Menchaca Vega DS, Sussmann RAC, Kimura EA, Katzin AM. Antimalarial activity of the terpene nerolidol. Int J Antimicrob Agents 2016; 48(6): 641-6.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.08.017] [PMID: 27742206]
[96]
Krist S, Banovac D, Tabanca N, et al. Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities. Nat Prod Commun 2015; 10(1): 143-8.
[http://dx.doi.org/10.1177/1934578X1501000133] [PMID: 25920237]
[97]
Marques AM, Barreto AL, Curvelo JA, Romanos MT, Soares RM, Kaplan MA. Antileishmanial activity of nerolidol-rich essential oil from Piper claussenianum. Rev Bras Farmacogn 2011; 21(5): 908-14.
[http://dx.doi.org/10.1590/S0102-695X2011005000157]
[98]
Mathew S, Britto SJ. In vitro antidiabetic activity of Nerolidol, an active compound isolated from Alpinia calcarata. Int J Sci Res 2014; 3: 2712-5.
[99]
Fonsêca DV, Salgado PR, de Carvalho FL, et al. Nerolidol exhibits antinociceptive and anti-inflammatory activity: Involvement of the GABAergic system and proinflammatory cytokines. Fundam Clin Pharmacol 2016; 30(1): 14-22.
[http://dx.doi.org/10.1111/fcp.12166] [PMID: 26791997]
[100]
Faridha Begum I, Mohankumar R, Jeevan M, Ramani K. GC-MS analysis of bio-active molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian J Microbiol 2016; 56(4): 426-32.
[http://dx.doi.org/10.1007/s12088-016-0609-1] [PMID: 27784938]
[101]
Marchese A, Arciola CR, Barbieri R, et al. Update on monoterpenes as antimicrobial agents: A particular focus on p-Cymene. Materials (Basel) 2017; 10(8): 947.
[http://dx.doi.org/10.3390/ma10080947] [PMID: 28809799]
[102]
Gadgoli C, Mishra SH. Antihepatotoxic activity of p-methoxy benzoic acid from Capparis spinosa. J Ethnopharmacol 1999; 66(2): 187-92.
[http://dx.doi.org/10.1016/S0378-8741(98)00229-3] [PMID: 10433476]
[103]
Eş I, Khaneghah AM, Hashemi SMB, Koubaa M. Current advances in biological production of propionic acid. Biotechnol Lett 2017; 39(5): 635-45.
[http://dx.doi.org/10.1007/s10529-017-2293-6] [PMID: 28150076]
[104]
Arunkumar R, Nair SA, Rameshkumar KB, Subramoniam A. The essential oil constituents of Zorniadiphylla (L.) Pers, and antiinflammatory and antimicrobial activities of the oil. Rec Nat Prod 2014; 8: 385-93.
[106]
Tsai YC, Hsu HC, Yang WC, Tsai WJ, Chen CC, Watanabe T. α-bulnesene, a PAF inhibitor isolated from the essential oil of Pogostemon cablin. Fitoterapia 2007; 78(1): 7-11.
[http://dx.doi.org/10.1016/j.fitote.2006.09.016] [PMID: 17107759]
[107]
Kim HK, Cho SR, Kim GH. Insecticidal and antifeeding activity of Perilla frutescens derived material against the diamondback moth, Plutella xylostella L. Entomol Res 2019; 49(1): 55-62.
[http://dx.doi.org/10.1111/1748-5967.12336]
[108]
Celik K, Togar B, Turkez H, Taspinar N. In-vitro cytotoxic, genotoxic, and oxidative effects of acyclic sesquiterpenefarnesene. Turk J Biol 2014; 38: 253-9.
[http://dx.doi.org/10.3906/biy-1309-55]
[109]
Rivas da Silva AC, Lopes PM, Barros de Azevedo MM, Costa DC, Alviano CS, Alviano DS. Biological activities of α-pinene and β-pinene enantiomers. Molecules 2012; 17(6): 6305-16.
[http://dx.doi.org/10.3390/molecules17066305] [PMID: 22634841]
[110]
Rufino AT, Ribeiro M, Judas F, et al. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: Structural and enantiomeric selectivity. J Nat Prod 2014; 77(2): 264-9.
[http://dx.doi.org/10.1021/np400828x] [PMID: 24455984]
[111]
Him A, Ozbek H, Turel I, Oner AC. Antinociceptive activity of alpha-pinene and fenchone. Pharmacologyonline 2008; 3: 363-9.
[112]
Simionatto E, Bonani VF, Peres MT, et al. Bioactivity and chemical composition of the essential oils of Croton urucurana Baillon (Euphorbiaceae). J Essent Oil-Bear Plants 2009; 12(3): 250-61.
[http://dx.doi.org/10.1080/0972060X.2009.10643718]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy