Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis, Docking Studies, Enzyme Inhibitory and Antiplatelet Aggregation Activities of New 1,3-Diphenyl-3-(Phenylthio)Propan-1-One Derivatives as Selective COX-2 Inhibitors

Author(s): Maryam Bayanati, Bahram Daraei* and Afshin Zarghi*

Volume 23, Issue 2, 2023

Published on: 20 August, 2022

Page: [192 - 200] Pages: 9

DOI: 10.2174/1871520622666220609111628

Price: $65

Abstract

Background: Cancer is the second leading cause of death worldwide after heart disease. A vast number of studies indicated that selective cyclooxygenase-2 (COX-2) inhibitors could be chemopreventive against different types of cancer because the expression of COX-2 is increased. Therefore, to develop new therapeutics for cancer, the design and synthesis of new COX-2 inhibitors with few side effects seem attractive as anti-cancer agents.

Objective: Some of the well-known drugs that have been widely used for some time have been removed from the market due to the cardiac side effects they cause, so there is a need to introduce a scaffold that can inhibit COX-2 with high potency and low side effects. This study aimed to introduce a new COX-2 inhibitor structure.

Methods: A new series of β-aryl-β-mercapto ketones possessing a methylsulfonyl pharmacophore was synthesized and evaluated as selective COX-2 inhibitors. In-vitro COX-1 and COX-2 inhibition effects of these compounds were evaluated, and molecular modeling was examined. Also, the antiplatelet aggregation activity of the synthesized compounds was tested.

Results: In-vitro COX-1 and COX-2 inhibition assays indicated that almost all newly synthesized compounds showed selectivity for COX-2 with IC50 values in the 0.07-0.22 μM range and COX-2 selectivity indexes in the 170 to 703.7 range. Among the tested compounds 1-(4-(methylsulfonyl)phenyl)-3-phenyl-3-(phenylthio)propan-1-one (4a), 3-(3,4- dimethoxyphenyl)-1-(4-(methylsulfonyl)phenyl)-3-(phenylthio)propan-1-one (4g) and 3-(4-fluorophenyl)-1-(4-(methyl sulfonyl)phenyl)-3-(phenylthio)propan-1-one (4h) were the most potent COX-2 inhibitors and 3-(3,4- dimethoxyphenyl)-1-(4-(methylsulfonyl)phenyl)-3-(phenylthio)propan-1-one had the highest selectivity index for COX-2 enzyme inhibitory activity. The Anti-platelet aggregation activity results indicated that the compound 1-(4- (methylsulfonyl)phenyl)-3-(phenylthio)-3-(p-tolyl)propan-1-one (4b) possesses the strong anti-platelet activity. Our molecular modeling studies also indicated that the methylsulfonyl pharmacophore group is placed into the adjunct pocket in the COX-2 active site and forms hydrogen bond interactions with NH of Arg513 and NH of His90.

Conclusion: In brief, all designed and synthesized compounds showed moderate to good COX-2 inhibitory effects and showed good anti-platelet activity. Therefore, these compounds have the potential for further research into developing anti-cancer agents.

Keywords: COX-2 inhibitory, anti-platelet aggregation, docking study, aldol condensation, thio-Michael addition, β-aryl-β-mercapto ketones.

Graphical Abstract
[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[3]
Masferrer, J.L.; Leahy, K.M.; Koki, A.T.; Zweifel, B.S.; Settle, S.L.; Woerner, B.M.; Edwards, D.A.; Flickinger, A.G.; Moore, R.J.; Seibert, K. Antiangiogenic and antitumor activities of cy-clooxygenase-2 inhibitors. Cancer Res., 2000, 60(5), 1306-1311.
[PMID: 10728691]
[4]
Mazhar, D.; Ang, R.; Waxman, J. COX inhibitors and breast cancer. Br. J. Cancer, 2006, 94(3), 346-350.
[http://dx.doi.org/10.1038/sj.bjc.6602942] [PMID: 16421592]
[5]
Bertino, J.R.; Dannenberg, A.J.; DuBois, R.N. Cox-2: A new target for cancer prevention and treatment. Karger Medical and Scientific Publishers, (Basel); , 2003, 37, pp. 25-51.
[6]
Ghosh, N.; Chaki, R.; Mandal, V.; Mandal, S.C. COX-2 as a target for cancer chemotherapy. Pharmacol. Rep., 2010, 62(2), 233-244.
[http://dx.doi.org/10.1016/S1734-1140(10)70262-0] [PMID: 20508278]
[7]
Brater, D.C.; Harris, C.; Redfern, J.S.; Gertz, B.J. Renal effects of COX-2-selective inhibitors. Am. J. Nephrol., 2001, 21(1), 1-15.
[http://dx.doi.org/10.1159/000046212] [PMID: 11275626]
[8]
Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: Structural, cellular, and molecular biology. Annu. Rev. Biochem., 2000, 69(1), 145-182.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.145] [PMID: 10966456]
[9]
Attiq, A.; Jalil, J.; Husain, K.; Ahmad, W. Raging the war against inflammation with natural products. Front. Pharmacol., 2018, 9, 976-1002.
[http://dx.doi.org/10.3389/fphar.2018.00976] [PMID: 30245627]
[10]
Greenhough, A.; Smartt, H.J.; Moore, A.E.; Roberts, H.R.; Williams, A.C.; Paraskeva, C.; Kaidi, A. The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 2009, 30(3), 377-386.
[http://dx.doi.org/10.1093/carcin/bgp014] [PMID: 19136477]
[11]
Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683.
[PMID: 24250402]
[12]
Borer, J.S.; Simon, L.S. Cardiovascular and gastrointestinal effects of COX-2 inhibitors and NSAIDs: Achieving a bal-ance. Arthritis Res. Ther., 2005, 7(4)(Suppl. 4), S14-S22.
[http://dx.doi.org/10.1186/ar1794] [PMID: 16168077]
[13]
Yuan, C.; Smith, W.L. A cyclooxygenase-2-dependent prosta-glandin E2 biosynthetic system in the Golgi apparatus. J. Biol. Chem., 2015, 290(9), 5606-5620.
[http://dx.doi.org/10.1074/jbc.M114.632463] [PMID: 25548276]
[14]
Allameh, A.; Vansoun, E.Y.; Zarghi, A. Role of glutathione conjugation in protection of weanling rat liver against aceta-minophen-induced hepatotoxicity. Mech. Ageing Dev., 1997, 95(1-2), 71-79.
[http://dx.doi.org/10.1016/S0047-6374(97)01862-9] [PMID: 9152962]
[15]
Mirian, M.; Zarghi, A.; Sadeghi, S.; Tabaraki, P.; Tavallaee, M.; Dadrass, O.; Sadeghi-Aliabadi, H. Synthesis and cytotoxic evaluation of some novel sulfonamidederivativesagainst a few human cancer cells. Iran. J. Pharm. Res., 2011, 10(4), 741-748.
[PMID: 24250409]
[16]
Mahboubi Rabbani, S.M.I.; Zarghi, A. Selective COX-2 in-hibitors as anticancer agents: A patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(6), 407-427.
[http://dx.doi.org/10.1080/13543776.2019.1623880] [PMID: 31132889]
[17]
Wang, P.; Guan, P.P.; Wang, T.; Yu, X.; Guo, J.J.; Wang, Z.Y. Aggravation of Alzheimer’s disease due to the COX-2-mediated reciprocal regulation of IL-1β and Aβ between glial and neuron cells. Aging Cell, 2014, 13(4), 605-615.
[http://dx.doi.org/10.1111/acel.12209] [PMID: 24621265]
[18]
Pannunzio, A.; Coluccia, M. Cyclooxygenase-1 (COX-1) and COX-1 inhibitors in cancer: A review of oncology and medic-inal chemistry literature. Pharmaceuticals (Basel), 2018, 11(4), 101-120.
[http://dx.doi.org/10.3390/ph11040101] [PMID: 30314310]
[19]
Teismann, P. COX-2 in the neurodegenerative process of Parkinson’s disease. Biofactors, 2012, 38(6), 395-397.
[http://dx.doi.org/10.1002/biof.1035] [PMID: 22826171]
[20]
Sun, S.X.; Lee, K.Y.; Bertram, C.T.; Goldstein, J.L. With-drawal of COX-2 selective inhibitors rofecoxib and valdecox-ib: Impact on NSAID and gastroprotective drug prescribing and utilization. Curr. Med. Res. Opin., 2007, 23(8), 1859-1866.
[http://dx.doi.org/10.1185/030079907X210561] [PMID: 17605893]
[21]
Gans, K.R.; Galbraith, W.; Roman, R.J.; Haber, S.B.; Kerr, J.S.; Schmidt, W.K.; Smith, C.; Hewes, W.E.; Ackerman, N.R. Anti-inflammatory and safety profile of DuP 697, a novel orally effective prostaglandin synthesis inhibitor. J. Pharmacol. Exp. Ther., 1990, 254(1), 180-187.
[PMID: 2366180]
[22]
Zarghi, A.; Ghodsi, R. Design, synthesis, and biological eval-uation of ketoprofen analogs as potent cyclooxygenase-2 in-hibitors. Bioorg. Med. Chem., 2010, 18(16), 5855-5860.
[http://dx.doi.org/10.1016/j.bmc.2010.06.094] [PMID: 20650641]
[23]
Zarghi, A.; Kakhgi, S.; Hadipoor, A.; Daraee, B.; Dadrass, O.G.; Hedayati, M. Design and synthesis of 1,3-diarylurea de-rivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(4), 1336-1339.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.021] [PMID: 18226898]
[24]
Azami Movahed, M.; Daraei, B.; Shahosseini, S.; Esfahaniza-deh, M.; Zarghi, A. Design, synthesis, and biological evaluation of new pyrazino [1, 2‐a] benzimidazole derivatives as selective cyclooxygenase (COX‐2) inhibitors. Arch. Pharm. (Weinheim, Ger.), 2018. e1800265
[25]
Arefi, H.; Naderi, N.; Shemirani, A.B.I.; Falavarjani, K.M.; Azami Movahed, M.; Zarghi, A. Design, synthesis, and biological evaluation of new 1, 4‐diarylazetidin‐2‐one derivatives (β‐lactams) as selective cyclooxygenase‐2 inhibitors. Arch. Pharm. (Weinheim, Ger.), 2020. e1900293
[26]
Ghodsi, R.; Azizi, E.; Grazia Ferlin, M.; Pezzi, V.; Zarghi, A. Design, synthesis and biological evaluation of 4-(imidazolylmethyl)-2-aryl-quinoline derivatives as aromatase inhibitors and anti-breast cancer agents. Lett. Drug Des. Discov., 2016, 13(1), 89-97.
[http://dx.doi.org/10.2174/1570180812666150611185605]
[27]
Prasit, P.; Riendeau, D. Selective cyclooxygenase-2 inhibitors.In: Annual Reports in Medicinal Chemistry; Elsevier: Amsterdam , 1997; Vol. 32, pp. 211-220.
[28]
Marnett, L.J.; Kalgutkar, A.S. Design of selective inhibitors of cyclooxygenase-2 as nonulcerogenic anti-inflammatory agents. Curr. Opin. Chem. Biol., 1998, 2(4), 482-490.
[http://dx.doi.org/10.1016/S1367-5931(98)80124-5] [PMID: 9736921]
[29]
Bekhit, A.A.; Habib, N.S.; el-Din, A.; Bekhit, A. Synthesis and antimicrobial evaluation of chalcone and syndrome de-rivatives of 4(3H)-quinazolinone. Boll. Chim. Farm., 2001, 140(5), 297-301.
[PMID: 11680081]
[30]
Hsieh, H-K.; Lee, T-H.; Wang, J-P.; Wang, J-J.; Lin, C-N. Synthesis and anti-inflammatory effect of chalcones and re-lated compounds. Pharm. Res., 1998, 15(1), 39-46.
[http://dx.doi.org/10.1023/A:1011940401754] [PMID: 9487544]
[31]
Murakami, S.; Muramatsu, M. Aihara.; Otomo, S. Inhibition of gastric H+, K+-ATPase by the anti-ulcer agent, sofalcone. Biochem. Pharmacol., 1991, 42(7), 1447-1451.
[PMID: 1656986]
[32]
Deshpande, A.M.; Argade, N.P.; Natu, A.A.; Eckman, J. Syn-thesis and screening of a combinatorial library of naphthalene substituted chalcones: Inhibitors of leukotriene B4. Bioorg. Med. Chem., 1999, 7(6), 1237-1240.
[http://dx.doi.org/10.1016/S0968-0896(99)00047-4] [PMID: 10428396]
[33]
Khatib, S.; Nerya, O.; Musa, R.; Shmuel, M.; Tamir, S.; Vaya, J. Chalcones as potent tyrosinase inhibitors: The importance of a 2,4-substituted resorcinol moiety. Bioorg. Med. Chem., 2005, 13(2), 433-441.
[http://dx.doi.org/10.1016/j.bmc.2004.10.010] [PMID: 15598564]
[34]
Zarghi, A.; Zebardast, T.; Hakimion, F.; Shirazi, F.H.; Rao, P.N.; Knaus, E.E. Synthesis and biological evaluation of 1,3-diphenylprop-2-en-1-ones possessing a methanesulfonamido or an azido pharmacophore as cyclooxygenase-1/-2 inhibi-tors. Bioorg. Med. Chem., 2006, 14(20), 7044-7050.
[http://dx.doi.org/10.1016/j.bmc.2006.06.022] [PMID: 16798002]
[35]
Zarghi, A.; Arfaee, S.; Rao, P.N.; Knaus, E.E. Design, synthe-sis, and biological evaluation of 1,3-diarylprop-2-en-1-ones: A novel class of cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2006, 14(8), 2600-2605.
[http://dx.doi.org/10.1016/j.bmc.2005.11.041] [PMID: 16356730]
[36]
Farzaneh, S.; Zeinalzadeh, E.; Daraei, B.; Shahhosseini, S.; Zarghi, A. New ferrocene compounds as selective cyclooxy-genase (COX-2) inhibitors: Design, synthesis, cytotoxicity and enzyme-inhibitory activity. Anticancer. Agents Med. Chem., 2018, 18(2), 295-301.
[http://dx.doi.org/10.2174/1871520617666171003145533] [PMID: 28971779]
[37]
Arfaie, S.; Zarghi, A. Design, synthesis and biological evalua-tion of new (E)- and (Z)-1,2,3-triaryl-2-propen-1-ones as se-lective COX-2 inhibitors. Eur. J. Med. Chem., 2010, 45(9), 4013-4017.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.058] [PMID: 20691338]
[38]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B]
[39]
Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Miyashiro, J.M.; Penning, T.D.; Seibert, K.; Isakson, P.C.; Stallings, W.C. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 1996, 384(6610), 644-648.
[http://dx.doi.org/10.1038/384644a0] [PMID: 8967954]
[40]
COX Fluorescent Inhibitor Screening Assay Kit. Available from: https://www.caymanchem.com/pdfs/700100.pdf
[41]
Born, G.V.R. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature, 1962, 194(4832), 927-929.
[http://dx.doi.org/10.1038/194927b0] [PMID: 13871375]
[42]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[43]
Zarghi, A.; Najafnia, L.; Daraee, B.; Dadrass, O.G.; Hedayati, M. Synthesis of 2,3-diaryl-1,3-thiazolidine-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(20), 5634-5637.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.084] [PMID: 17822894]
[44]
Farzaneh, S.; Shahhosseini, S.; Arefi, H.; Daraei, B.; Esfa-hanizadeh, M.; Zarghi, A. Design, synthesis and biological evaluation of new 1,3-diphenyl-3- (phenylamino)propan-1-ones as selective cyclooxygenase (COX-2) inhibitors. Med. Chem., 2018, 14(7), 652-659.
[http://dx.doi.org/10.2174/1573406414666180525133221] [PMID: 29804536]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy